Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-19 09:51:39

0001 // This file is part of Eigen, a lightweight C++ template library
0002 // for linear algebra.
0003 //
0004 // Copyright (C) 2007 Julien Pommier
0005 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
0006 // Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
0007 //
0008 // This Source Code Form is subject to the terms of the Mozilla
0009 // Public License v. 2.0. If a copy of the MPL was not distributed
0010 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
0011 
0012 /* The exp and log functions of this file initially come from
0013  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
0014  */
0015 
0016 #ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
0017 #define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
0018 
0019 namespace Eigen {
0020 namespace internal {
0021 
0022 // Creates a Scalar integer type with same bit-width.
0023 template<typename T> struct make_integer;
0024 template<> struct make_integer<float>    { typedef numext::int32_t type; };
0025 template<> struct make_integer<double>   { typedef numext::int64_t type; };
0026 template<> struct make_integer<half>     { typedef numext::int16_t type; };
0027 template<> struct make_integer<bfloat16> { typedef numext::int16_t type; };
0028 
0029 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC  
0030 Packet pfrexp_generic_get_biased_exponent(const Packet& a) {
0031   typedef typename unpacket_traits<Packet>::type Scalar;
0032   typedef typename unpacket_traits<Packet>::integer_packet PacketI;
0033   enum { mantissa_bits = numext::numeric_limits<Scalar>::digits - 1};
0034   return pcast<PacketI, Packet>(plogical_shift_right<mantissa_bits>(preinterpret<PacketI>(pabs(a))));
0035 }
0036 
0037 // Safely applies frexp, correctly handles denormals.
0038 // Assumes IEEE floating point format.
0039 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
0040 Packet pfrexp_generic(const Packet& a, Packet& exponent) {
0041   typedef typename unpacket_traits<Packet>::type Scalar;
0042   typedef typename make_unsigned<typename make_integer<Scalar>::type>::type ScalarUI;
0043   enum {
0044     TotalBits = sizeof(Scalar) * CHAR_BIT,
0045     MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
0046     ExponentBits = int(TotalBits) - int(MantissaBits) - 1
0047   };
0048 
0049   EIGEN_CONSTEXPR ScalarUI scalar_sign_mantissa_mask = 
0050       ~(((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1)) << int(MantissaBits)); // ~0x7f800000
0051   const Packet sign_mantissa_mask = pset1frombits<Packet>(static_cast<ScalarUI>(scalar_sign_mantissa_mask)); 
0052   const Packet half = pset1<Packet>(Scalar(0.5));
0053   const Packet zero = pzero(a);
0054   const Packet normal_min = pset1<Packet>((numext::numeric_limits<Scalar>::min)()); // Minimum normal value, 2^-126
0055   
0056   // To handle denormals, normalize by multiplying by 2^(int(MantissaBits)+1).
0057   const Packet is_denormal = pcmp_lt(pabs(a), normal_min);
0058   EIGEN_CONSTEXPR ScalarUI scalar_normalization_offset = ScalarUI(int(MantissaBits) + 1); // 24
0059   // The following cannot be constexpr because bfloat16(uint16_t) is not constexpr.
0060   const Scalar scalar_normalization_factor = Scalar(ScalarUI(1) << int(scalar_normalization_offset)); // 2^24
0061   const Packet normalization_factor = pset1<Packet>(scalar_normalization_factor);  
0062   const Packet normalized_a = pselect(is_denormal, pmul(a, normalization_factor), a);
0063   
0064   // Determine exponent offset: -126 if normal, -126-24 if denormal
0065   const Scalar scalar_exponent_offset = -Scalar((ScalarUI(1)<<(int(ExponentBits)-1)) - ScalarUI(2)); // -126
0066   Packet exponent_offset = pset1<Packet>(scalar_exponent_offset);
0067   const Packet normalization_offset = pset1<Packet>(-Scalar(scalar_normalization_offset)); // -24
0068   exponent_offset = pselect(is_denormal, padd(exponent_offset, normalization_offset), exponent_offset);
0069   
0070   // Determine exponent and mantissa from normalized_a.
0071   exponent = pfrexp_generic_get_biased_exponent(normalized_a);
0072   // Zero, Inf and NaN return 'a' unmodified, exponent is zero
0073   // (technically the exponent is unspecified for inf/NaN, but GCC/Clang set it to zero)
0074   const Scalar scalar_non_finite_exponent = Scalar((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1));  // 255
0075   const Packet non_finite_exponent = pset1<Packet>(scalar_non_finite_exponent);
0076   const Packet is_zero_or_not_finite = por(pcmp_eq(a, zero), pcmp_eq(exponent, non_finite_exponent));
0077   const Packet m = pselect(is_zero_or_not_finite, a, por(pand(normalized_a, sign_mantissa_mask), half));
0078   exponent = pselect(is_zero_or_not_finite, zero, padd(exponent, exponent_offset));  
0079   return m;
0080 }
0081 
0082 // Safely applies ldexp, correctly handles overflows, underflows and denormals.
0083 // Assumes IEEE floating point format.
0084 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
0085 Packet pldexp_generic(const Packet& a, const Packet& exponent) {
0086   // We want to return a * 2^exponent, allowing for all possible integer
0087   // exponents without overflowing or underflowing in intermediate
0088   // computations.
0089   //
0090   // Since 'a' and the output can be denormal, the maximum range of 'exponent'
0091   // to consider for a float is:
0092   //   -255-23 -> 255+23
0093   // Below -278 any finite float 'a' will become zero, and above +278 any
0094   // finite float will become inf, including when 'a' is the smallest possible 
0095   // denormal.
0096   //
0097   // Unfortunately, 2^(278) cannot be represented using either one or two
0098   // finite normal floats, so we must split the scale factor into at least
0099   // three parts. It turns out to be faster to split 'exponent' into four
0100   // factors, since [exponent>>2] is much faster to compute that [exponent/3].
0101   //
0102   // Set e = min(max(exponent, -278), 278);
0103   //     b = floor(e/4);
0104   //   out = ((((a * 2^(b)) * 2^(b)) * 2^(b)) * 2^(e-3*b))
0105   //
0106   // This will avoid any intermediate overflows and correctly handle 0, inf,
0107   // NaN cases.
0108   typedef typename unpacket_traits<Packet>::integer_packet PacketI;
0109   typedef typename unpacket_traits<Packet>::type Scalar;
0110   typedef typename unpacket_traits<PacketI>::type ScalarI;
0111   enum {
0112     TotalBits = sizeof(Scalar) * CHAR_BIT,
0113     MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
0114     ExponentBits = int(TotalBits) - int(MantissaBits) - 1
0115   };
0116 
0117   const Packet max_exponent = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) + ScalarI(int(MantissaBits) - 1)));  // 278
0118   const PacketI bias = pset1<PacketI>((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1));  // 127
0119   const PacketI e = pcast<Packet, PacketI>(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent));
0120   PacketI b = parithmetic_shift_right<2>(e); // floor(e/4);
0121   Packet c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias)));  // 2^b
0122   Packet out = pmul(pmul(pmul(a, c), c), c);  // a * 2^(3b)
0123   b = psub(psub(psub(e, b), b), b); // e - 3b
0124   c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias)));  // 2^(e-3*b)
0125   out = pmul(out, c);
0126   return out;
0127 }
0128 
0129 // Explicitly multiplies 
0130 //    a * (2^e)
0131 // clamping e to the range
0132 // [NumTraits<Scalar>::min_exponent()-2, NumTraits<Scalar>::max_exponent()]
0133 //
0134 // This is approx 7x faster than pldexp_impl, but will prematurely over/underflow
0135 // if 2^e doesn't fit into a normal floating-point Scalar.
0136 //
0137 // Assumes IEEE floating point format
0138 template<typename Packet>
0139 struct pldexp_fast_impl {
0140   typedef typename unpacket_traits<Packet>::integer_packet PacketI;
0141   typedef typename unpacket_traits<Packet>::type Scalar;
0142   typedef typename unpacket_traits<PacketI>::type ScalarI;
0143   enum {
0144     TotalBits = sizeof(Scalar) * CHAR_BIT,
0145     MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
0146     ExponentBits = int(TotalBits) - int(MantissaBits) - 1
0147   };
0148   
0149   static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
0150   Packet run(const Packet& a, const Packet& exponent) {
0151     const Packet bias = pset1<Packet>(Scalar((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1)));  // 127
0152     const Packet limit = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) - ScalarI(1)));     // 255
0153     // restrict biased exponent between 0 and 255 for float.
0154     const PacketI e = pcast<Packet, PacketI>(pmin(pmax(padd(exponent, bias), pzero(limit)), limit)); // exponent + 127
0155     // return a * (2^e)
0156     return pmul(a, preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(e)));
0157   }
0158 };
0159 
0160 // Natural or base 2 logarithm.
0161 // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
0162 // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
0163 // be easily approximated by a polynomial centered on m=1 for stability.
0164 // TODO(gonnet): Further reduce the interval allowing for lower-degree
0165 //               polynomial interpolants -> ... -> profit!
0166 template <typename Packet, bool base2>
0167 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0168 EIGEN_UNUSED
0169 Packet plog_impl_float(const Packet _x)
0170 {
0171   Packet x = _x;
0172 
0173   const Packet cst_1              = pset1<Packet>(1.0f);
0174   const Packet cst_neg_half       = pset1<Packet>(-0.5f);
0175   // The smallest non denormalized float number.
0176   const Packet cst_min_norm_pos   = pset1frombits<Packet>( 0x00800000u);
0177   const Packet cst_minus_inf      = pset1frombits<Packet>( 0xff800000u);
0178   const Packet cst_pos_inf        = pset1frombits<Packet>( 0x7f800000u);
0179 
0180   // Polynomial coefficients.
0181   const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f);
0182   const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f);
0183   const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f);
0184   const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f);
0185   const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f);
0186   const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f);
0187   const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f);
0188   const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f);
0189   const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f);
0190   const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f);
0191 
0192   // Truncate input values to the minimum positive normal.
0193   x = pmax(x, cst_min_norm_pos);
0194 
0195   Packet e;
0196   // extract significant in the range [0.5,1) and exponent
0197   x = pfrexp(x,e);
0198 
0199   // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
0200   // and shift by -1. The values are then centered around 0, which improves
0201   // the stability of the polynomial evaluation.
0202   //   if( x < SQRTHF ) {
0203   //     e -= 1;
0204   //     x = x + x - 1.0;
0205   //   } else { x = x - 1.0; }
0206   Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
0207   Packet tmp = pand(x, mask);
0208   x = psub(x, cst_1);
0209   e = psub(e, pand(cst_1, mask));
0210   x = padd(x, tmp);
0211 
0212   Packet x2 = pmul(x, x);
0213   Packet x3 = pmul(x2, x);
0214 
0215   // Evaluate the polynomial approximant of degree 8 in three parts, probably
0216   // to improve instruction-level parallelism.
0217   Packet y, y1, y2;
0218   y  = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
0219   y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
0220   y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7);
0221   y  = pmadd(y, x, cst_cephes_log_p2);
0222   y1 = pmadd(y1, x, cst_cephes_log_p5);
0223   y2 = pmadd(y2, x, cst_cephes_log_p8);
0224   y  = pmadd(y, x3, y1);
0225   y  = pmadd(y, x3, y2);
0226   y  = pmul(y, x3);
0227 
0228   y = pmadd(cst_neg_half, x2, y);
0229   x = padd(x, y);
0230 
0231   // Add the logarithm of the exponent back to the result of the interpolation.
0232   if (base2) {
0233     const Packet cst_log2e = pset1<Packet>(static_cast<float>(EIGEN_LOG2E));
0234     x = pmadd(x, cst_log2e, e);
0235   } else {
0236     const Packet cst_ln2 = pset1<Packet>(static_cast<float>(EIGEN_LN2));
0237     x = pmadd(e, cst_ln2, x);
0238   }
0239 
0240   Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
0241   Packet iszero_mask  = pcmp_eq(_x,pzero(_x));
0242   Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
0243   // Filter out invalid inputs, i.e.:
0244   //  - negative arg will be NAN
0245   //  - 0 will be -INF
0246   //  - +INF will be +INF
0247   return pselect(iszero_mask, cst_minus_inf,
0248                               por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
0249 }
0250 
0251 template <typename Packet>
0252 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0253 EIGEN_UNUSED
0254 Packet plog_float(const Packet _x)
0255 {
0256   return plog_impl_float<Packet, /* base2 */ false>(_x);
0257 }
0258 
0259 template <typename Packet>
0260 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0261 EIGEN_UNUSED
0262 Packet plog2_float(const Packet _x)
0263 {
0264   return plog_impl_float<Packet, /* base2 */ true>(_x);
0265 }
0266 
0267 /* Returns the base e (2.718...) or base 2 logarithm of x.
0268  * The argument is separated into its exponent and fractional parts.
0269  * The logarithm of the fraction in the interval [sqrt(1/2), sqrt(2)],
0270  * is approximated by
0271  *
0272  *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
0273  *
0274  * for more detail see: http://www.netlib.org/cephes/
0275  */
0276 template <typename Packet, bool base2>
0277 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0278 EIGEN_UNUSED
0279 Packet plog_impl_double(const Packet _x)
0280 {
0281   Packet x = _x;
0282 
0283   const Packet cst_1              = pset1<Packet>(1.0);
0284   const Packet cst_neg_half       = pset1<Packet>(-0.5);
0285   // The smallest non denormalized double.
0286   const Packet cst_min_norm_pos   = pset1frombits<Packet>( static_cast<uint64_t>(0x0010000000000000ull));
0287   const Packet cst_minus_inf      = pset1frombits<Packet>( static_cast<uint64_t>(0xfff0000000000000ull));
0288   const Packet cst_pos_inf        = pset1frombits<Packet>( static_cast<uint64_t>(0x7ff0000000000000ull));
0289 
0290 
0291  // Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
0292  //                             1/sqrt(2) <= x < sqrt(2)
0293   const Packet cst_cephes_SQRTHF = pset1<Packet>(0.70710678118654752440E0);
0294   const Packet cst_cephes_log_p0 = pset1<Packet>(1.01875663804580931796E-4);
0295   const Packet cst_cephes_log_p1 = pset1<Packet>(4.97494994976747001425E-1);
0296   const Packet cst_cephes_log_p2 = pset1<Packet>(4.70579119878881725854E0);
0297   const Packet cst_cephes_log_p3 = pset1<Packet>(1.44989225341610930846E1);
0298   const Packet cst_cephes_log_p4 = pset1<Packet>(1.79368678507819816313E1);
0299   const Packet cst_cephes_log_p5 = pset1<Packet>(7.70838733755885391666E0);
0300 
0301   const Packet cst_cephes_log_q0 = pset1<Packet>(1.0);
0302   const Packet cst_cephes_log_q1 = pset1<Packet>(1.12873587189167450590E1);
0303   const Packet cst_cephes_log_q2 = pset1<Packet>(4.52279145837532221105E1);
0304   const Packet cst_cephes_log_q3 = pset1<Packet>(8.29875266912776603211E1);
0305   const Packet cst_cephes_log_q4 = pset1<Packet>(7.11544750618563894466E1);
0306   const Packet cst_cephes_log_q5 = pset1<Packet>(2.31251620126765340583E1);
0307 
0308   // Truncate input values to the minimum positive normal.
0309   x = pmax(x, cst_min_norm_pos);
0310 
0311   Packet e;
0312   // extract significant in the range [0.5,1) and exponent
0313   x = pfrexp(x,e);
0314   
0315   // Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
0316   // and shift by -1. The values are then centered around 0, which improves
0317   // the stability of the polynomial evaluation.
0318   //   if( x < SQRTHF ) {
0319   //     e -= 1;
0320   //     x = x + x - 1.0;
0321   //   } else { x = x - 1.0; }
0322   Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
0323   Packet tmp = pand(x, mask);
0324   x = psub(x, cst_1);
0325   e = psub(e, pand(cst_1, mask));
0326   x = padd(x, tmp);
0327 
0328   Packet x2 = pmul(x, x);
0329   Packet x3 = pmul(x2, x);
0330 
0331   // Evaluate the polynomial approximant , probably to improve instruction-level parallelism.
0332   // y = x - 0.5*x^2 + x^3 * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) );
0333   Packet y, y1, y_;
0334   y  = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
0335   y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
0336   y  = pmadd(y, x, cst_cephes_log_p2);
0337   y1 = pmadd(y1, x, cst_cephes_log_p5);
0338   y_ = pmadd(y, x3, y1);
0339 
0340   y  = pmadd(cst_cephes_log_q0, x, cst_cephes_log_q1);
0341   y1 = pmadd(cst_cephes_log_q3, x, cst_cephes_log_q4);
0342   y  = pmadd(y, x, cst_cephes_log_q2);
0343   y1 = pmadd(y1, x, cst_cephes_log_q5);
0344   y  = pmadd(y, x3, y1);
0345 
0346   y_ = pmul(y_, x3);
0347   y  = pdiv(y_, y);
0348 
0349   y = pmadd(cst_neg_half, x2, y);
0350   x = padd(x, y);
0351 
0352   // Add the logarithm of the exponent back to the result of the interpolation.
0353   if (base2) {
0354     const Packet cst_log2e = pset1<Packet>(static_cast<double>(EIGEN_LOG2E));
0355     x = pmadd(x, cst_log2e, e);
0356   } else {
0357     const Packet cst_ln2 = pset1<Packet>(static_cast<double>(EIGEN_LN2));
0358     x = pmadd(e, cst_ln2, x);
0359   }
0360 
0361   Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
0362   Packet iszero_mask  = pcmp_eq(_x,pzero(_x));
0363   Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
0364   // Filter out invalid inputs, i.e.:
0365   //  - negative arg will be NAN
0366   //  - 0 will be -INF
0367   //  - +INF will be +INF
0368   return pselect(iszero_mask, cst_minus_inf,
0369                               por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
0370 }
0371 
0372 template <typename Packet>
0373 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0374 EIGEN_UNUSED
0375 Packet plog_double(const Packet _x)
0376 {
0377   return plog_impl_double<Packet, /* base2 */ false>(_x);
0378 }
0379 
0380 template <typename Packet>
0381 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0382 EIGEN_UNUSED
0383 Packet plog2_double(const Packet _x)
0384 {
0385   return plog_impl_double<Packet, /* base2 */ true>(_x);
0386 }
0387 
0388 /** \internal \returns log(1 + x) computed using W. Kahan's formula.
0389     See: http://www.plunk.org/~hatch/rightway.php
0390  */
0391 template<typename Packet>
0392 Packet generic_plog1p(const Packet& x)
0393 {
0394   typedef typename unpacket_traits<Packet>::type ScalarType;
0395   const Packet one = pset1<Packet>(ScalarType(1));
0396   Packet xp1 = padd(x, one);
0397   Packet small_mask = pcmp_eq(xp1, one);
0398   Packet log1 = plog(xp1);
0399   Packet inf_mask = pcmp_eq(xp1, log1);
0400   Packet log_large = pmul(x, pdiv(log1, psub(xp1, one)));
0401   return pselect(por(small_mask, inf_mask), x, log_large);
0402 }
0403 
0404 /** \internal \returns exp(x)-1 computed using W. Kahan's formula.
0405     See: http://www.plunk.org/~hatch/rightway.php
0406  */
0407 template<typename Packet>
0408 Packet generic_expm1(const Packet& x)
0409 {
0410   typedef typename unpacket_traits<Packet>::type ScalarType;
0411   const Packet one = pset1<Packet>(ScalarType(1));
0412   const Packet neg_one = pset1<Packet>(ScalarType(-1));
0413   Packet u = pexp(x);
0414   Packet one_mask = pcmp_eq(u, one);
0415   Packet u_minus_one = psub(u, one);
0416   Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one);
0417   Packet logu = plog(u);
0418   // The following comparison is to catch the case where
0419   // exp(x) = +inf. It is written in this way to avoid having
0420   // to form the constant +inf, which depends on the packet
0421   // type.
0422   Packet pos_inf_mask = pcmp_eq(logu, u);
0423   Packet expm1 = pmul(u_minus_one, pdiv(x, logu));
0424   expm1 = pselect(pos_inf_mask, u, expm1);
0425   return pselect(one_mask,
0426                  x,
0427                  pselect(neg_one_mask,
0428                          neg_one,
0429                          expm1));
0430 }
0431 
0432 
0433 // Exponential function. Works by writing "x = m*log(2) + r" where
0434 // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
0435 // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
0436 template <typename Packet>
0437 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0438 EIGEN_UNUSED
0439 Packet pexp_float(const Packet _x)
0440 {
0441   const Packet cst_1      = pset1<Packet>(1.0f);
0442   const Packet cst_half   = pset1<Packet>(0.5f);
0443   const Packet cst_exp_hi = pset1<Packet>( 88.723f);
0444   const Packet cst_exp_lo = pset1<Packet>(-88.723f);
0445 
0446   const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f);
0447   const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f);
0448   const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f);
0449   const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f);
0450   const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f);
0451   const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f);
0452   const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f);
0453 
0454   // Clamp x.
0455   Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo);
0456 
0457   // Express exp(x) as exp(m*ln(2) + r), start by extracting
0458   // m = floor(x/ln(2) + 0.5).
0459   Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half));
0460 
0461   // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
0462   // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
0463   // truncation errors.
0464   const Packet cst_cephes_exp_C1 = pset1<Packet>(-0.693359375f);
0465   const Packet cst_cephes_exp_C2 = pset1<Packet>(2.12194440e-4f);
0466   Packet r = pmadd(m, cst_cephes_exp_C1, x);
0467   r = pmadd(m, cst_cephes_exp_C2, r);
0468 
0469   Packet r2 = pmul(r, r);
0470   Packet r3 = pmul(r2, r);
0471 
0472   // Evaluate the polynomial approximant,improved by instruction-level parallelism.
0473   Packet y, y1, y2;
0474   y  = pmadd(cst_cephes_exp_p0, r, cst_cephes_exp_p1);
0475   y1 = pmadd(cst_cephes_exp_p3, r, cst_cephes_exp_p4);
0476   y2 = padd(r, cst_1);
0477   y  = pmadd(y, r, cst_cephes_exp_p2);
0478   y1 = pmadd(y1, r, cst_cephes_exp_p5);
0479   y  = pmadd(y, r3, y1);
0480   y  = pmadd(y, r2, y2);
0481 
0482   // Return 2^m * exp(r).
0483   // TODO: replace pldexp with faster implementation since y in [-1, 1).
0484   return pmax(pldexp(y,m), _x);
0485 }
0486 
0487 template <typename Packet>
0488 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0489 EIGEN_UNUSED
0490 Packet pexp_double(const Packet _x)
0491 {
0492   Packet x = _x;
0493 
0494   const Packet cst_1 = pset1<Packet>(1.0);
0495   const Packet cst_2 = pset1<Packet>(2.0);
0496   const Packet cst_half = pset1<Packet>(0.5);
0497 
0498   const Packet cst_exp_hi = pset1<Packet>(709.784);
0499   const Packet cst_exp_lo = pset1<Packet>(-709.784);
0500 
0501   const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599);
0502   const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4);
0503   const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2);
0504   const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1);
0505   const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6);
0506   const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3);
0507   const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1);
0508   const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0);
0509   const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125);
0510   const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6);
0511 
0512   Packet tmp, fx;
0513 
0514   // clamp x
0515   x = pmax(pmin(x, cst_exp_hi), cst_exp_lo);
0516   // Express exp(x) as exp(g + n*log(2)).
0517   fx = pmadd(cst_cephes_LOG2EF, x, cst_half);
0518 
0519   // Get the integer modulus of log(2), i.e. the "n" described above.
0520   fx = pfloor(fx);
0521 
0522   // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
0523   // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
0524   // digits right.
0525   tmp = pmul(fx, cst_cephes_exp_C1);
0526   Packet z = pmul(fx, cst_cephes_exp_C2);
0527   x = psub(x, tmp);
0528   x = psub(x, z);
0529 
0530   Packet x2 = pmul(x, x);
0531 
0532   // Evaluate the numerator polynomial of the rational interpolant.
0533   Packet px = cst_cephes_exp_p0;
0534   px = pmadd(px, x2, cst_cephes_exp_p1);
0535   px = pmadd(px, x2, cst_cephes_exp_p2);
0536   px = pmul(px, x);
0537 
0538   // Evaluate the denominator polynomial of the rational interpolant.
0539   Packet qx = cst_cephes_exp_q0;
0540   qx = pmadd(qx, x2, cst_cephes_exp_q1);
0541   qx = pmadd(qx, x2, cst_cephes_exp_q2);
0542   qx = pmadd(qx, x2, cst_cephes_exp_q3);
0543 
0544   // I don't really get this bit, copied from the SSE2 routines, so...
0545   // TODO(gonnet): Figure out what is going on here, perhaps find a better
0546   // rational interpolant?
0547   x = pdiv(px, psub(qx, px));
0548   x = pmadd(cst_2, x, cst_1);
0549 
0550   // Construct the result 2^n * exp(g) = e * x. The max is used to catch
0551   // non-finite values in the input.
0552   // TODO: replace pldexp with faster implementation since x in [-1, 1).
0553   return pmax(pldexp(x,fx), _x);
0554 }
0555 
0556 // The following code is inspired by the following stack-overflow answer:
0557 //   https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
0558 // It has been largely optimized:
0559 //  - By-pass calls to frexp.
0560 //  - Aligned loads of required 96 bits of 2/pi. This is accomplished by
0561 //    (1) balancing the mantissa and exponent to the required bits of 2/pi are
0562 //    aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi.
0563 //  - Avoid a branch in rounding and extraction of the remaining fractional part.
0564 // Overall, I measured a speed up higher than x2 on x86-64.
0565 inline float trig_reduce_huge (float xf, int *quadrant)
0566 {
0567   using Eigen::numext::int32_t;
0568   using Eigen::numext::uint32_t;
0569   using Eigen::numext::int64_t;
0570   using Eigen::numext::uint64_t;
0571 
0572   const double pio2_62 = 3.4061215800865545e-19;    // pi/2 * 2^-62
0573   const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt
0574 
0575   // 192 bits of 2/pi for Payne-Hanek reduction
0576   // Bits are introduced by packet of 8 to enable aligned reads.
0577   static const uint32_t two_over_pi [] = 
0578   {
0579     0x00000028, 0x000028be, 0x0028be60, 0x28be60db,
0580     0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a,
0581     0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4,
0582     0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770,
0583     0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566,
0584     0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410,
0585     0x10e41000, 0xe4100000
0586   };
0587   
0588   uint32_t xi = numext::bit_cast<uint32_t>(xf);
0589   // Below, -118 = -126 + 8.
0590   //   -126 is to get the exponent,
0591   //   +8 is to enable alignment of 2/pi's bits on 8 bits.
0592   // This is possible because the fractional part of x as only 24 meaningful bits.
0593   uint32_t e = (xi >> 23) - 118;
0594   // Extract the mantissa and shift it to align it wrt the exponent
0595   xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7);
0596 
0597   uint32_t i = e >> 3;
0598   uint32_t twoopi_1  = two_over_pi[i-1];
0599   uint32_t twoopi_2  = two_over_pi[i+3];
0600   uint32_t twoopi_3  = two_over_pi[i+7];
0601 
0602   // Compute x * 2/pi in 2.62-bit fixed-point format.
0603   uint64_t p;
0604   p = uint64_t(xi) * twoopi_3;
0605   p = uint64_t(xi) * twoopi_2 + (p >> 32);
0606   p = (uint64_t(xi * twoopi_1) << 32) + p;
0607 
0608   // Round to nearest: add 0.5 and extract integral part.
0609   uint64_t q = (p + zero_dot_five) >> 62;
0610   *quadrant = int(q);
0611   // Now it remains to compute "r = x - q*pi/2" with high accuracy,
0612   // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as:
0613   //   r = (p-q)*pi/2,
0614   // where the product can be be carried out with sufficient accuracy using double precision.
0615   p -= q<<62;
0616   return float(double(int64_t(p)) * pio2_62);
0617 }
0618 
0619 template<bool ComputeSine,typename Packet>
0620 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0621 EIGEN_UNUSED
0622 #if EIGEN_GNUC_AT_LEAST(4,4) && EIGEN_COMP_GNUC_STRICT
0623 __attribute__((optimize("-fno-unsafe-math-optimizations")))
0624 #endif
0625 Packet psincos_float(const Packet& _x)
0626 {
0627   typedef typename unpacket_traits<Packet>::integer_packet PacketI;
0628 
0629   const Packet  cst_2oPI            = pset1<Packet>(0.636619746685028076171875f); // 2/PI
0630   const Packet  cst_rounding_magic  = pset1<Packet>(12582912); // 2^23 for rounding
0631   const PacketI csti_1              = pset1<PacketI>(1);
0632   const Packet  cst_sign_mask       = pset1frombits<Packet>(0x80000000u);
0633 
0634   Packet x = pabs(_x);
0635 
0636   // Scale x by 2/Pi to find x's octant.
0637   Packet y = pmul(x, cst_2oPI);
0638 
0639   // Rounding trick:
0640   Packet y_round = padd(y, cst_rounding_magic);
0641   EIGEN_OPTIMIZATION_BARRIER(y_round)
0642   PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
0643   y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi
0644 
0645   // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
0646   // using "Extended precision modular arithmetic"
0647   #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
0648   // This version requires true FMA for high accuracy
0649   // It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08):
0650   const float huge_th = ComputeSine ? 117435.992f : 71476.0625f;
0651   x = pmadd(y, pset1<Packet>(-1.57079601287841796875f), x);
0652   x = pmadd(y, pset1<Packet>(-3.1391647326017846353352069854736328125e-07f), x);
0653   x = pmadd(y, pset1<Packet>(-5.390302529957764765544681040410068817436695098876953125e-15f), x);
0654   #else
0655   // Without true FMA, the previous set of coefficients maintain 1ULP accuracy
0656   // up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7.
0657   // We thus use one more iteration to maintain 2ULPs up to reasonably large inputs.
0658 
0659   // The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively.
0660   // and 2 ULP up to:
0661   const float huge_th = ComputeSine ? 25966.f : 18838.f;
0662   x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000
0663   EIGEN_OPTIMIZATION_BARRIER(x)
0664   x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000
0665   EIGEN_OPTIMIZATION_BARRIER(x)
0666   x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000
0667   x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee
0668 
0669   // For the record, the following set of coefficients maintain 2ULP up
0670   // to a slightly larger range:
0671   // const float huge_th = ComputeSine ? 51981.f : 39086.125f;
0672   // but it slightly fails to maintain 1ULP for two values of sin below pi.
0673   // x = pmadd(y, pset1<Packet>(-3.140625/2.), x);
0674   // x = pmadd(y, pset1<Packet>(-0.00048351287841796875), x);
0675   // x = pmadd(y, pset1<Packet>(-3.13855707645416259765625e-07), x);
0676   // x = pmadd(y, pset1<Packet>(-6.0771006282767103812147979624569416046142578125e-11), x);
0677 
0678   // For the record, with only 3 iterations it is possible to maintain
0679   // 1 ULP up to 3PI (maybe more) and 2ULP up to 255.
0680   // The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
0681   #endif
0682 
0683   if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x))))
0684   {
0685     const int PacketSize = unpacket_traits<Packet>::size;
0686     EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
0687     EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize];
0688     EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize];
0689     pstoreu(vals, pabs(_x));
0690     pstoreu(x_cpy, x);
0691     pstoreu(y_int2, y_int);
0692     for(int k=0; k<PacketSize;++k)
0693     {
0694       float val = vals[k];
0695       if(val>=huge_th && (numext::isfinite)(val))
0696         x_cpy[k] = trig_reduce_huge(val,&y_int2[k]);
0697     }
0698     x = ploadu<Packet>(x_cpy);
0699     y_int = ploadu<PacketI>(y_int2);
0700   }
0701 
0702   // Compute the sign to apply to the polynomial.
0703   // sin: sign = second_bit(y_int) xor signbit(_x)
0704   // cos: sign = second_bit(y_int+1)
0705   Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(plogical_shift_left<30>(y_int)))
0706                                 : preinterpret<Packet>(plogical_shift_left<30>(padd(y_int,csti_1)));
0707   sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
0708 
0709   // Get the polynomial selection mask from the second bit of y_int
0710   // We'll calculate both (sin and cos) polynomials and then select from the two.
0711   Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
0712 
0713   Packet x2 = pmul(x,x);
0714 
0715   // Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
0716   Packet y1 =        pset1<Packet>(2.4372266125283204019069671630859375e-05f);
0717   y1 = pmadd(y1, x2, pset1<Packet>(-0.00138865201734006404876708984375f     ));
0718   y1 = pmadd(y1, x2, pset1<Packet>(0.041666619479656219482421875f           ));
0719   y1 = pmadd(y1, x2, pset1<Packet>(-0.5f));
0720   y1 = pmadd(y1, x2, pset1<Packet>(1.f));
0721 
0722   // Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4)
0723   // octave/matlab code to compute those coefficients:
0724   //    x = (0:0.0001:pi/4)';
0725   //    A = [x.^3 x.^5 x.^7];
0726   //    w = ((1.-(x/(pi/4)).^2).^5)*2000+1;         # weights trading relative accuracy
0727   //    c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1
0728   //    printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1))
0729   //
0730   Packet y2 =        pset1<Packet>(-0.0001959234114083702898469196984621021329076029360294342041015625f);
0731   y2 = pmadd(y2, x2, pset1<Packet>( 0.0083326873655616851693794799871284340042620897293090820312500000f));
0732   y2 = pmadd(y2, x2, pset1<Packet>(-0.1666666203982298255503735617821803316473960876464843750000000000f));
0733   y2 = pmul(y2, x2);
0734   y2 = pmadd(y2, x, x);
0735 
0736   // Select the correct result from the two polynomials.
0737   y = ComputeSine ? pselect(poly_mask,y2,y1)
0738                   : pselect(poly_mask,y1,y2);
0739 
0740   // Update the sign and filter huge inputs
0741   return pxor(y, sign_bit);
0742 }
0743 
0744 template<typename Packet>
0745 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0746 EIGEN_UNUSED
0747 Packet psin_float(const Packet& x)
0748 {
0749   return psincos_float<true>(x);
0750 }
0751 
0752 template<typename Packet>
0753 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0754 EIGEN_UNUSED
0755 Packet pcos_float(const Packet& x)
0756 {
0757   return psincos_float<false>(x);
0758 }
0759 
0760 
0761 template<typename Packet>
0762 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
0763 EIGEN_UNUSED
0764 Packet psqrt_complex(const Packet& a) {
0765   typedef typename unpacket_traits<Packet>::type Scalar;
0766   typedef typename Scalar::value_type RealScalar;
0767   typedef typename unpacket_traits<Packet>::as_real RealPacket;
0768 
0769   // Computes the principal sqrt of the complex numbers in the input.
0770   //
0771   // For example, for packets containing 2 complex numbers stored in interleaved format
0772   //    a = [a0, a1] = [x0, y0, x1, y1],
0773   // where x0 = real(a0), y0 = imag(a0) etc., this function returns
0774   //    b = [b0, b1] = [u0, v0, u1, v1],
0775   // such that b0^2 = a0, b1^2 = a1.
0776   //
0777   // To derive the formula for the complex square roots, let's consider the equation for
0778   // a single complex square root of the number x + i*y. We want to find real numbers
0779   // u and v such that
0780   //    (u + i*v)^2 = x + i*y  <=>
0781   //    u^2 - v^2 + i*2*u*v = x + i*v.
0782   // By equating the real and imaginary parts we get:
0783   //    u^2 - v^2 = x
0784   //    2*u*v = y.
0785   //
0786   // For x >= 0, this has the numerically stable solution
0787   //    u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
0788   //    v = 0.5 * (y / u)
0789   // and for x < 0,
0790   //    v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
0791   //    u = 0.5 * (y / v)
0792   //
0793   //  To avoid unnecessary over- and underflow, we compute sqrt(x^2 + y^2) as
0794   //     l = max(|x|, |y|) * sqrt(1 + (min(|x|, |y|) / max(|x|, |y|))^2) ,
0795 
0796   // In the following, without lack of generality, we have annotated the code, assuming
0797   // that the input is a packet of 2 complex numbers.
0798   //
0799   // Step 1. Compute l = [l0, l0, l1, l1], where
0800   //    l0 = sqrt(x0^2 + y0^2),  l1 = sqrt(x1^2 + y1^2)
0801   // To avoid over- and underflow, we use the stable formula for each hypotenuse
0802   //    l0 = (min0 == 0 ? max0 : max0 * sqrt(1 + (min0/max0)**2)),
0803   // where max0 = max(|x0|, |y0|), min0 = min(|x0|, |y0|), and similarly for l1.
0804 
0805   RealPacket a_abs = pabs(a.v);           // [|x0|, |y0|, |x1|, |y1|]
0806   RealPacket a_abs_flip = pcplxflip(Packet(a_abs)).v; // [|y0|, |x0|, |y1|, |x1|]
0807   RealPacket a_max = pmax(a_abs, a_abs_flip);
0808   RealPacket a_min = pmin(a_abs, a_abs_flip);
0809   RealPacket a_min_zero_mask = pcmp_eq(a_min, pzero(a_min));
0810   RealPacket a_max_zero_mask = pcmp_eq(a_max, pzero(a_max));
0811   RealPacket r = pdiv(a_min, a_max);
0812   const RealPacket cst_one  = pset1<RealPacket>(RealScalar(1));
0813   RealPacket l = pmul(a_max, psqrt(padd(cst_one, pmul(r, r))));  // [l0, l0, l1, l1]
0814   // Set l to a_max if a_min is zero.
0815   l = pselect(a_min_zero_mask, a_max, l);
0816 
0817   // Step 2. Compute [rho0, *, rho1, *], where
0818   // rho0 = sqrt(0.5 * (l0 + |x0|)), rho1 =  sqrt(0.5 * (l1 + |x1|))
0819   // We don't care about the imaginary parts computed here. They will be overwritten later.
0820   const RealPacket cst_half = pset1<RealPacket>(RealScalar(0.5));
0821   Packet rho;
0822   rho.v = psqrt(pmul(cst_half, padd(a_abs, l)));
0823 
0824   // Step 3. Compute [rho0, eta0, rho1, eta1], where
0825   // eta0 = (y0 / l0) / 2, and eta1 = (y1 / l1) / 2.
0826   // set eta = 0 of input is 0 + i0.
0827   RealPacket eta = pandnot(pmul(cst_half, pdiv(a.v, pcplxflip(rho).v)), a_max_zero_mask);
0828   RealPacket real_mask = peven_mask(a.v);
0829   Packet positive_real_result;
0830   // Compute result for inputs with positive real part.
0831   positive_real_result.v = pselect(real_mask, rho.v, eta);
0832 
0833   // Step 4. Compute solution for inputs with negative real part:
0834   //         [|eta0|, sign(y0)*rho0, |eta1|, sign(y1)*rho1]
0835   const RealScalar neg_zero = RealScalar(numext::bit_cast<float>(0x80000000u));
0836   const RealPacket cst_imag_sign_mask = pset1<Packet>(Scalar(RealScalar(0.0), neg_zero)).v;
0837   RealPacket imag_signs = pand(a.v, cst_imag_sign_mask);
0838   Packet negative_real_result;
0839   // Notice that rho is positive, so taking it's absolute value is a noop.
0840   negative_real_result.v = por(pabs(pcplxflip(positive_real_result).v), imag_signs);
0841 
0842   // Step 5. Select solution branch based on the sign of the real parts.
0843   Packet negative_real_mask;
0844   negative_real_mask.v = pcmp_lt(pand(real_mask, a.v), pzero(a.v));
0845   negative_real_mask.v = por(negative_real_mask.v, pcplxflip(negative_real_mask).v);
0846   Packet result = pselect(negative_real_mask, negative_real_result, positive_real_result);
0847 
0848   // Step 6. Handle special cases for infinities:
0849   // * If z is (x,+∞), the result is (+∞,+∞) even if x is NaN
0850   // * If z is (x,-∞), the result is (+∞,-∞) even if x is NaN
0851   // * If z is (-∞,y), the result is (0*|y|,+∞) for finite or NaN y
0852   // * If z is (+∞,y), the result is (+∞,0*|y|) for finite or NaN y
0853   const RealPacket cst_pos_inf = pset1<RealPacket>(NumTraits<RealScalar>::infinity());
0854   Packet is_inf;
0855   is_inf.v = pcmp_eq(a_abs, cst_pos_inf);
0856   Packet is_real_inf;
0857   is_real_inf.v = pand(is_inf.v, real_mask);
0858   is_real_inf = por(is_real_inf, pcplxflip(is_real_inf));
0859   // prepare packet of (+∞,0*|y|) or (0*|y|,+∞), depending on the sign of the infinite real part.
0860   Packet real_inf_result;
0861   real_inf_result.v = pmul(a_abs, pset1<Packet>(Scalar(RealScalar(1.0), RealScalar(0.0))).v);
0862   real_inf_result.v = pselect(negative_real_mask.v, pcplxflip(real_inf_result).v, real_inf_result.v);
0863   // prepare packet of (+∞,+∞) or (+∞,-∞), depending on the sign of the infinite imaginary part.
0864   Packet is_imag_inf;
0865   is_imag_inf.v = pandnot(is_inf.v, real_mask);
0866   is_imag_inf = por(is_imag_inf, pcplxflip(is_imag_inf));
0867   Packet imag_inf_result;
0868   imag_inf_result.v = por(pand(cst_pos_inf, real_mask), pandnot(a.v, real_mask));
0869 
0870   return  pselect(is_imag_inf, imag_inf_result,
0871                   pselect(is_real_inf, real_inf_result,result));
0872 }
0873 
0874 // TODO(rmlarsen): The following set of utilities for double word arithmetic
0875 // should perhaps be refactored as a separate file, since it would be generally
0876 // useful for special function implementation etc. Writing the algorithms in
0877 // terms if a double word type would also make the code more readable.
0878 
0879 // This function splits x into the nearest integer n and fractional part r,
0880 // such that x = n + r holds exactly.
0881 template<typename Packet>
0882 EIGEN_STRONG_INLINE
0883 void absolute_split(const Packet& x, Packet& n, Packet& r) {
0884   n = pround(x);
0885   r = psub(x, n);
0886 }
0887 
0888 // This function computes the sum {s, r}, such that x + y = s_hi + s_lo
0889 // holds exactly, and s_hi = fl(x+y), if |x| >= |y|.
0890 template<typename Packet>
0891 EIGEN_STRONG_INLINE
0892 void fast_twosum(const Packet& x, const Packet& y, Packet& s_hi, Packet& s_lo) {
0893   s_hi = padd(x, y);
0894   const Packet t = psub(s_hi, x);
0895   s_lo = psub(y, t);
0896 }
0897 
0898 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
0899 // This function implements the extended precision product of
0900 // a pair of floating point numbers. Given {x, y}, it computes the pair
0901 // {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
0902 // p_hi = fl(x * y).
0903 template<typename Packet>
0904 EIGEN_STRONG_INLINE
0905 void twoprod(const Packet& x, const Packet& y,
0906              Packet& p_hi, Packet& p_lo) {
0907   p_hi = pmul(x, y);
0908   p_lo = pmadd(x, y, pnegate(p_hi));
0909 }
0910 
0911 #else
0912 
0913 // This function implements the Veltkamp splitting. Given a floating point
0914 // number x it returns the pair {x_hi, x_lo} such that x_hi + x_lo = x holds
0915 // exactly and that half of the significant of x fits in x_hi.
0916 // This is Algorithm 3 from Jean-Michel Muller, "Elementary Functions",
0917 // 3rd edition, Birkh\"auser, 2016.
0918 template<typename Packet>
0919 EIGEN_STRONG_INLINE
0920 void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) {
0921   typedef typename unpacket_traits<Packet>::type Scalar;
0922   EIGEN_CONSTEXPR int shift = (NumTraits<Scalar>::digits() + 1) / 2;
0923   const Scalar shift_scale = Scalar(uint64_t(1) << shift);  // Scalar constructor not necessarily constexpr.
0924   const Packet gamma = pmul(pset1<Packet>(shift_scale + Scalar(1)), x);
0925   Packet rho = psub(x, gamma);
0926   x_hi = padd(rho, gamma);
0927   x_lo = psub(x, x_hi);
0928 }
0929 
0930 // This function implements Dekker's algorithm for products x * y.
0931 // Given floating point numbers {x, y} computes the pair
0932 // {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
0933 // p_hi = fl(x * y).
0934 template<typename Packet>
0935 EIGEN_STRONG_INLINE
0936 void twoprod(const Packet& x, const Packet& y,
0937              Packet& p_hi, Packet& p_lo) {
0938   Packet x_hi, x_lo, y_hi, y_lo;
0939   veltkamp_splitting(x, x_hi, x_lo);
0940   veltkamp_splitting(y, y_hi, y_lo);
0941 
0942   p_hi = pmul(x, y);
0943   p_lo = pmadd(x_hi, y_hi, pnegate(p_hi));
0944   p_lo = pmadd(x_hi, y_lo, p_lo);
0945   p_lo = pmadd(x_lo, y_hi, p_lo);
0946   p_lo = pmadd(x_lo, y_lo, p_lo);
0947 }
0948 
0949 #endif  // EIGEN_HAS_SINGLE_INSTRUCTION_MADD
0950 
0951 
0952 // This function implements Dekker's algorithm for the addition
0953 // of two double word numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
0954 // It returns the result as a pair {s_hi, s_lo} such that
0955 // x_hi + x_lo + y_hi + y_lo = s_hi + s_lo holds exactly.
0956 // This is Algorithm 5 from Jean-Michel Muller, "Elementary Functions",
0957 // 3rd edition, Birkh\"auser, 2016.
0958 template<typename Packet>
0959 EIGEN_STRONG_INLINE
0960   void twosum(const Packet& x_hi, const Packet& x_lo,
0961               const Packet& y_hi, const Packet& y_lo,
0962               Packet& s_hi, Packet& s_lo) {
0963   const Packet x_greater_mask = pcmp_lt(pabs(y_hi), pabs(x_hi));
0964   Packet r_hi_1, r_lo_1;
0965   fast_twosum(x_hi, y_hi,r_hi_1, r_lo_1);
0966   Packet r_hi_2, r_lo_2;
0967   fast_twosum(y_hi, x_hi,r_hi_2, r_lo_2);
0968   const Packet r_hi = pselect(x_greater_mask, r_hi_1, r_hi_2);
0969 
0970   const Packet s1 = padd(padd(y_lo, r_lo_1), x_lo);
0971   const Packet s2 = padd(padd(x_lo, r_lo_2), y_lo);
0972   const Packet s = pselect(x_greater_mask, s1, s2);
0973 
0974   fast_twosum(r_hi, s, s_hi, s_lo);
0975 }
0976 
0977 // This is a version of twosum for double word numbers,
0978 // which assumes that |x_hi| >= |y_hi|.
0979 template<typename Packet>
0980 EIGEN_STRONG_INLINE
0981   void fast_twosum(const Packet& x_hi, const Packet& x_lo,
0982               const Packet& y_hi, const Packet& y_lo,
0983               Packet& s_hi, Packet& s_lo) {
0984   Packet r_hi, r_lo;
0985   fast_twosum(x_hi, y_hi, r_hi, r_lo);
0986   const Packet s = padd(padd(y_lo, r_lo), x_lo);
0987   fast_twosum(r_hi, s, s_hi, s_lo);
0988 }
0989 
0990 // This is a version of twosum for adding a floating point number x to
0991 // double word number {y_hi, y_lo} number, with the assumption
0992 // that |x| >= |y_hi|.
0993 template<typename Packet>
0994 EIGEN_STRONG_INLINE
0995 void fast_twosum(const Packet& x,
0996                  const Packet& y_hi, const Packet& y_lo,
0997                  Packet& s_hi, Packet& s_lo) {
0998   Packet r_hi, r_lo;
0999   fast_twosum(x, y_hi, r_hi, r_lo);
1000   const Packet s = padd(y_lo, r_lo);
1001   fast_twosum(r_hi, s, s_hi, s_lo);
1002 }
1003 
1004 // This function implements the multiplication of a double word
1005 // number represented by {x_hi, x_lo} by a floating point number y.
1006 // It returns the result as a pair {p_hi, p_lo} such that
1007 // (x_hi + x_lo) * y = p_hi + p_lo hold with a relative error
1008 // of less than 2*2^{-2p}, where p is the number of significand bit
1009 // in the floating point type.
1010 // This is Algorithm 7 from Jean-Michel Muller, "Elementary Functions",
1011 // 3rd edition, Birkh\"auser, 2016.
1012 template<typename Packet>
1013 EIGEN_STRONG_INLINE
1014 void twoprod(const Packet& x_hi, const Packet& x_lo, const Packet& y,
1015              Packet& p_hi, Packet& p_lo) {
1016   Packet c_hi, c_lo1;
1017   twoprod(x_hi, y, c_hi, c_lo1);
1018   const Packet c_lo2 = pmul(x_lo, y);
1019   Packet t_hi, t_lo1;
1020   fast_twosum(c_hi, c_lo2, t_hi, t_lo1);
1021   const Packet t_lo2 = padd(t_lo1, c_lo1);
1022   fast_twosum(t_hi, t_lo2, p_hi, p_lo);
1023 }
1024 
1025 // This function implements the multiplication of two double word
1026 // numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
1027 // It returns the result as a pair {p_hi, p_lo} such that
1028 // (x_hi + x_lo) * (y_hi + y_lo) = p_hi + p_lo holds with a relative error
1029 // of less than 2*2^{-2p}, where p is the number of significand bit
1030 // in the floating point type.
1031 template<typename Packet>
1032 EIGEN_STRONG_INLINE
1033 void twoprod(const Packet& x_hi, const Packet& x_lo,
1034              const Packet& y_hi, const Packet& y_lo,
1035              Packet& p_hi, Packet& p_lo) {
1036   Packet p_hi_hi, p_hi_lo;
1037   twoprod(x_hi, x_lo, y_hi, p_hi_hi, p_hi_lo);
1038   Packet p_lo_hi, p_lo_lo;
1039   twoprod(x_hi, x_lo, y_lo, p_lo_hi, p_lo_lo);
1040   fast_twosum(p_hi_hi, p_hi_lo, p_lo_hi, p_lo_lo, p_hi, p_lo);
1041 }
1042 
1043 // This function computes the reciprocal of a floating point number
1044 // with extra precision and returns the result as a double word.
1045 template <typename Packet>
1046 void doubleword_reciprocal(const Packet& x, Packet& recip_hi, Packet& recip_lo) {
1047   typedef typename unpacket_traits<Packet>::type Scalar;
1048   // 1. Approximate the reciprocal as the reciprocal of the high order element.
1049   Packet approx_recip = prsqrt(x);
1050   approx_recip = pmul(approx_recip, approx_recip);
1051 
1052   // 2. Run one step of Newton-Raphson iteration in double word arithmetic
1053   // to get the bottom half. The NR iteration for reciprocal of 'a' is
1054   //    x_{i+1} = x_i * (2 - a * x_i)
1055 
1056   // -a*x_i
1057   Packet t1_hi, t1_lo;
1058   twoprod(pnegate(x), approx_recip, t1_hi, t1_lo);
1059   // 2 - a*x_i
1060   Packet t2_hi, t2_lo;
1061   fast_twosum(pset1<Packet>(Scalar(2)), t1_hi, t2_hi, t2_lo);
1062   Packet t3_hi, t3_lo;
1063   fast_twosum(t2_hi, padd(t2_lo, t1_lo), t3_hi, t3_lo);
1064   // x_i * (2 - a * x_i)
1065   twoprod(t3_hi, t3_lo, approx_recip, recip_hi, recip_lo);
1066 }
1067 
1068 
1069 // This function computes log2(x) and returns the result as a double word.
1070 template <typename Scalar>
1071 struct accurate_log2 {
1072   template <typename Packet>
1073   EIGEN_STRONG_INLINE
1074   void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
1075     log2_x_hi = plog2(x);
1076     log2_x_lo = pzero(x);
1077   }
1078 };
1079 
1080 // This specialization uses a more accurate algorithm to compute log2(x) for
1081 // floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~6.42e-10.
1082 // This additional accuracy is needed to counter the error-magnification
1083 // inherent in multiplying by a potentially large exponent in pow(x,y).
1084 // The minimax polynomial used was calculated using the Sollya tool.
1085 // See sollya.org.
1086 template <>
1087 struct accurate_log2<float> {
1088   template <typename Packet>
1089   EIGEN_STRONG_INLINE
1090   void operator()(const Packet& z, Packet& log2_x_hi, Packet& log2_x_lo) {
1091     // The function log(1+x)/x is approximated in the interval
1092     // [1/sqrt(2)-1;sqrt(2)-1] by a degree 10 polynomial of the form
1093     //  Q(x) = (C0 + x * (C1 + x * (C2 + x * (C3 + x * P(x))))),
1094     // where the degree 6 polynomial P(x) is evaluated in single precision,
1095     // while the remaining 4 terms of Q(x), as well as the final multiplication by x
1096     // to reconstruct log(1+x) are evaluated in extra precision using
1097     // double word arithmetic. C0 through C3 are extra precise constants
1098     // stored as double words.
1099     //
1100     // The polynomial coefficients were calculated using Sollya commands:
1101     // > n = 10;
1102     // > f = log2(1+x)/x;
1103     // > interval = [sqrt(0.5)-1;sqrt(2)-1];
1104     // > p = fpminimax(f,n,[|double,double,double,double,single...|],interval,relative,floating);
1105     
1106     const Packet p6 = pset1<Packet>( 9.703654795885e-2f);
1107     const Packet p5 = pset1<Packet>(-0.1690667718648f);
1108     const Packet p4 = pset1<Packet>( 0.1720575392246f);
1109     const Packet p3 = pset1<Packet>(-0.1789081543684f);
1110     const Packet p2 = pset1<Packet>( 0.2050433009862f);
1111     const Packet p1 = pset1<Packet>(-0.2404672354459f);
1112     const Packet p0 = pset1<Packet>( 0.2885761857032f);
1113 
1114     const Packet C3_hi = pset1<Packet>(-0.360674142838f);
1115     const Packet C3_lo = pset1<Packet>(-6.13283912543e-09f);
1116     const Packet C2_hi = pset1<Packet>(0.480897903442f);
1117     const Packet C2_lo = pset1<Packet>(-1.44861207474e-08f);
1118     const Packet C1_hi = pset1<Packet>(-0.721347510815f);
1119     const Packet C1_lo = pset1<Packet>(-4.84483164698e-09f);
1120     const Packet C0_hi = pset1<Packet>(1.44269502163f);
1121     const Packet C0_lo = pset1<Packet>(2.01711713999e-08f);
1122     const Packet one = pset1<Packet>(1.0f);
1123 
1124     const Packet x = psub(z, one);
1125     // Evaluate P(x) in working precision.
1126     // We evaluate it in multiple parts to improve instruction level
1127     // parallelism.
1128     Packet x2 = pmul(x,x);
1129     Packet p_even = pmadd(p6, x2, p4);
1130     p_even = pmadd(p_even, x2, p2);
1131     p_even = pmadd(p_even, x2, p0);
1132     Packet p_odd = pmadd(p5, x2, p3);
1133     p_odd = pmadd(p_odd, x2, p1);
1134     Packet p = pmadd(p_odd, x, p_even);
1135 
1136     // Now evaluate the low-order tems of Q(x) in double word precision.
1137     // In the following, due to the alternating signs and the fact that
1138     // |x| < sqrt(2)-1, we can assume that |C*_hi| >= q_i, and use
1139     // fast_twosum instead of the slower twosum.
1140     Packet q_hi, q_lo;
1141     Packet t_hi, t_lo;
1142     // C3 + x * p(x)
1143     twoprod(p, x, t_hi, t_lo);
1144     fast_twosum(C3_hi, C3_lo, t_hi, t_lo, q_hi, q_lo);
1145     // C2 + x * p(x)
1146     twoprod(q_hi, q_lo, x, t_hi, t_lo);
1147     fast_twosum(C2_hi, C2_lo, t_hi, t_lo, q_hi, q_lo);
1148     // C1 + x * p(x)
1149     twoprod(q_hi, q_lo, x, t_hi, t_lo);
1150     fast_twosum(C1_hi, C1_lo, t_hi, t_lo, q_hi, q_lo);
1151     // C0 + x * p(x)
1152     twoprod(q_hi, q_lo, x, t_hi, t_lo);
1153     fast_twosum(C0_hi, C0_lo, t_hi, t_lo, q_hi, q_lo);
1154 
1155     // log(z) ~= x * Q(x)
1156     twoprod(q_hi, q_lo, x, log2_x_hi, log2_x_lo);
1157   }
1158 };
1159 
1160 // This specialization uses a more accurate algorithm to compute log2(x) for
1161 // floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~1.27e-18.
1162 // This additional accuracy is needed to counter the error-magnification
1163 // inherent in multiplying by a potentially large exponent in pow(x,y).
1164 // The minimax polynomial used was calculated using the Sollya tool.
1165 // See sollya.org.
1166 
1167 template <>
1168 struct accurate_log2<double> {
1169   template <typename Packet>
1170   EIGEN_STRONG_INLINE
1171   void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
1172     // We use a transformation of variables:
1173     //    r = c * (x-1) / (x+1),
1174     // such that
1175     //    log2(x) = log2((1 + r/c) / (1 - r/c)) = f(r).
1176     // The function f(r) can be approximated well using an odd polynomial
1177     // of the form
1178     //   P(r) = ((Q(r^2) * r^2 + C) * r^2 + 1) * r,
1179     // For the implementation of log2<double> here, Q is of degree 6 with
1180     // coefficient represented in working precision (double), while C is a
1181     // constant represented in extra precision as a double word to achieve
1182     // full accuracy.
1183     //
1184     // The polynomial coefficients were computed by the Sollya script:
1185     //
1186     // c = 2 / log(2);
1187     // trans = c * (x-1)/(x+1);
1188     // itrans = (1+x/c)/(1-x/c);
1189     // interval=[trans(sqrt(0.5)); trans(sqrt(2))];
1190     // print(interval);
1191     // f = log2(itrans(x));
1192     // p=fpminimax(f,[|1,3,5,7,9,11,13,15,17|],[|1,DD,double...|],interval,relative,floating);
1193     const Packet q12 = pset1<Packet>(2.87074255468000586e-9);
1194     const Packet q10 = pset1<Packet>(2.38957980901884082e-8);
1195     const Packet q8 = pset1<Packet>(2.31032094540014656e-7);
1196     const Packet q6 = pset1<Packet>(2.27279857398537278e-6);
1197     const Packet q4 = pset1<Packet>(2.31271023278625638e-5);
1198     const Packet q2 = pset1<Packet>(2.47556738444535513e-4);
1199     const Packet q0 = pset1<Packet>(2.88543873228900172e-3);
1200     const Packet C_hi = pset1<Packet>(0.0400377511598501157);
1201     const Packet C_lo = pset1<Packet>(-4.77726582251425391e-19);
1202     const Packet one = pset1<Packet>(1.0);
1203 
1204     const Packet cst_2_log2e_hi = pset1<Packet>(2.88539008177792677);
1205     const Packet cst_2_log2e_lo = pset1<Packet>(4.07660016854549667e-17);
1206     // c * (x - 1)
1207     Packet num_hi, num_lo;
1208     twoprod(cst_2_log2e_hi, cst_2_log2e_lo, psub(x, one), num_hi, num_lo);
1209     // TODO(rmlarsen): Investigate if using the division algorithm by
1210     // Muller et al. is faster/more accurate.
1211     // 1 / (x + 1)
1212     Packet denom_hi, denom_lo;
1213     doubleword_reciprocal(padd(x, one), denom_hi, denom_lo);
1214     // r =  c * (x-1) / (x+1),
1215     Packet r_hi, r_lo;
1216     twoprod(num_hi, num_lo, denom_hi, denom_lo, r_hi, r_lo);
1217     // r2 = r * r
1218     Packet r2_hi, r2_lo;
1219     twoprod(r_hi, r_lo, r_hi, r_lo, r2_hi, r2_lo);
1220     // r4 = r2 * r2
1221     Packet r4_hi, r4_lo;
1222     twoprod(r2_hi, r2_lo, r2_hi, r2_lo, r4_hi, r4_lo);
1223 
1224     // Evaluate Q(r^2) in working precision. We evaluate it in two parts
1225     // (even and odd in r^2) to improve instruction level parallelism.
1226     Packet q_even = pmadd(q12, r4_hi, q8);
1227     Packet q_odd = pmadd(q10, r4_hi, q6);
1228     q_even = pmadd(q_even, r4_hi, q4);
1229     q_odd = pmadd(q_odd, r4_hi, q2);
1230     q_even = pmadd(q_even, r4_hi, q0);
1231     Packet q = pmadd(q_odd, r2_hi, q_even);
1232 
1233     // Now evaluate the low order terms of P(x) in double word precision.
1234     // In the following, due to the increasing magnitude of the coefficients
1235     // and r being constrained to [-0.5, 0.5] we can use fast_twosum instead
1236     // of the slower twosum.
1237     // Q(r^2) * r^2
1238     Packet p_hi, p_lo;
1239     twoprod(r2_hi, r2_lo, q, p_hi, p_lo);
1240     // Q(r^2) * r^2 + C
1241     Packet p1_hi, p1_lo;
1242     fast_twosum(C_hi, C_lo, p_hi, p_lo, p1_hi, p1_lo);
1243     // (Q(r^2) * r^2 + C) * r^2
1244     Packet p2_hi, p2_lo;
1245     twoprod(r2_hi, r2_lo, p1_hi, p1_lo, p2_hi, p2_lo);
1246     // ((Q(r^2) * r^2 + C) * r^2 + 1)
1247     Packet p3_hi, p3_lo;
1248     fast_twosum(one, p2_hi, p2_lo, p3_hi, p3_lo);
1249 
1250     // log(z) ~= ((Q(r^2) * r^2 + C) * r^2 + 1) * r
1251     twoprod(p3_hi, p3_lo, r_hi, r_lo, log2_x_hi, log2_x_lo);
1252   }
1253 };
1254 
1255 // This function computes exp2(x) (i.e. 2**x).
1256 template <typename Scalar>
1257 struct fast_accurate_exp2 {
1258   template <typename Packet>
1259   EIGEN_STRONG_INLINE
1260   Packet operator()(const Packet& x) {
1261     // TODO(rmlarsen): Add a pexp2 packetop.
1262     return pexp(pmul(pset1<Packet>(Scalar(EIGEN_LN2)), x));
1263   }
1264 };
1265 
1266 // This specialization uses a faster algorithm to compute exp2(x) for floats
1267 // in [-0.5;0.5] with a relative accuracy of 1 ulp.
1268 // The minimax polynomial used was calculated using the Sollya tool.
1269 // See sollya.org.
1270 template <>
1271 struct fast_accurate_exp2<float> {
1272   template <typename Packet>
1273   EIGEN_STRONG_INLINE
1274   Packet operator()(const Packet& x) {
1275     // This function approximates exp2(x) by a degree 6 polynomial of the form
1276     // Q(x) = 1 + x * (C + x * P(x)), where the degree 4 polynomial P(x) is evaluated in
1277     // single precision, and the remaining steps are evaluated with extra precision using
1278     // double word arithmetic. C is an extra precise constant stored as a double word.
1279     //
1280     // The polynomial coefficients were calculated using Sollya commands:
1281     // > n = 6;
1282     // > f = 2^x;
1283     // > interval = [-0.5;0.5];
1284     // > p = fpminimax(f,n,[|1,double,single...|],interval,relative,floating);
1285 
1286     const Packet p4 = pset1<Packet>(1.539513905e-4f);
1287     const Packet p3 = pset1<Packet>(1.340007293e-3f);
1288     const Packet p2 = pset1<Packet>(9.618283249e-3f);
1289     const Packet p1 = pset1<Packet>(5.550328270e-2f);
1290     const Packet p0 = pset1<Packet>(0.2402264923f);
1291 
1292     const Packet C_hi = pset1<Packet>(0.6931471825f);
1293     const Packet C_lo = pset1<Packet>(2.36836577e-08f);
1294     const Packet one = pset1<Packet>(1.0f);
1295 
1296     // Evaluate P(x) in working precision.
1297     // We evaluate even and odd parts of the polynomial separately
1298     // to gain some instruction level parallelism.
1299     Packet x2 = pmul(x,x);
1300     Packet p_even = pmadd(p4, x2, p2);
1301     Packet p_odd = pmadd(p3, x2, p1);
1302     p_even = pmadd(p_even, x2, p0);
1303     Packet p = pmadd(p_odd, x, p_even);
1304 
1305     // Evaluate the remaining terms of Q(x) with extra precision using
1306     // double word arithmetic.
1307     Packet p_hi, p_lo;
1308     // x * p(x)
1309     twoprod(p, x, p_hi, p_lo);
1310     // C + x * p(x)
1311     Packet q1_hi, q1_lo;
1312     twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
1313     // x * (C + x * p(x))
1314     Packet q2_hi, q2_lo;
1315     twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
1316     // 1 + x * (C + x * p(x))
1317     Packet q3_hi, q3_lo;
1318     // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
1319     // for adding it to unity here.
1320     fast_twosum(one, q2_hi, q3_hi, q3_lo);
1321     return padd(q3_hi, padd(q2_lo, q3_lo));
1322   }
1323 };
1324 
1325 // in [-0.5;0.5] with a relative accuracy of 1 ulp.
1326 // The minimax polynomial used was calculated using the Sollya tool.
1327 // See sollya.org.
1328 template <>
1329 struct fast_accurate_exp2<double> {
1330   template <typename Packet>
1331   EIGEN_STRONG_INLINE
1332   Packet operator()(const Packet& x) {
1333     // This function approximates exp2(x) by a degree 10 polynomial of the form
1334     // Q(x) = 1 + x * (C + x * P(x)), where the degree 8 polynomial P(x) is evaluated in
1335     // single precision, and the remaining steps are evaluated with extra precision using
1336     // double word arithmetic. C is an extra precise constant stored as a double word.
1337     //
1338     // The polynomial coefficients were calculated using Sollya commands:
1339     // > n = 11;
1340     // > f = 2^x;
1341     // > interval = [-0.5;0.5];
1342     // > p = fpminimax(f,n,[|1,DD,double...|],interval,relative,floating);
1343 
1344     const Packet p9 = pset1<Packet>(4.431642109085495276e-10);
1345     const Packet p8 = pset1<Packet>(7.073829923303358410e-9);
1346     const Packet p7 = pset1<Packet>(1.017822306737031311e-7);
1347     const Packet p6 = pset1<Packet>(1.321543498017646657e-6);
1348     const Packet p5 = pset1<Packet>(1.525273342728892877e-5);
1349     const Packet p4 = pset1<Packet>(1.540353045780084423e-4);
1350     const Packet p3 = pset1<Packet>(1.333355814685869807e-3);
1351     const Packet p2 = pset1<Packet>(9.618129107593478832e-3);
1352     const Packet p1 = pset1<Packet>(5.550410866481961247e-2);
1353     const Packet p0 = pset1<Packet>(0.240226506959101332);
1354     const Packet C_hi = pset1<Packet>(0.693147180559945286); 
1355     const Packet C_lo = pset1<Packet>(4.81927865669806721e-17);
1356     const Packet one = pset1<Packet>(1.0);
1357 
1358     // Evaluate P(x) in working precision.
1359     // We evaluate even and odd parts of the polynomial separately
1360     // to gain some instruction level parallelism.
1361     Packet x2 = pmul(x,x);
1362     Packet p_even = pmadd(p8, x2, p6);
1363     Packet p_odd = pmadd(p9, x2, p7);
1364     p_even = pmadd(p_even, x2, p4);
1365     p_odd = pmadd(p_odd, x2, p5);
1366     p_even = pmadd(p_even, x2, p2);
1367     p_odd = pmadd(p_odd, x2, p3);
1368     p_even = pmadd(p_even, x2, p0);
1369     p_odd = pmadd(p_odd, x2, p1);
1370     Packet p = pmadd(p_odd, x, p_even);
1371 
1372     // Evaluate the remaining terms of Q(x) with extra precision using
1373     // double word arithmetic.
1374     Packet p_hi, p_lo;
1375     // x * p(x)
1376     twoprod(p, x, p_hi, p_lo);
1377     // C + x * p(x)
1378     Packet q1_hi, q1_lo;
1379     twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
1380     // x * (C + x * p(x))
1381     Packet q2_hi, q2_lo;
1382     twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
1383     // 1 + x * (C + x * p(x))
1384     Packet q3_hi, q3_lo;
1385     // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
1386     // for adding it to unity here.
1387     fast_twosum(one, q2_hi, q3_hi, q3_lo);
1388     return padd(q3_hi, padd(q2_lo, q3_lo));
1389   }
1390 };
1391 
1392 // This function implements the non-trivial case of pow(x,y) where x is
1393 // positive and y is (possibly) non-integer.
1394 // Formally, pow(x,y) = exp2(y * log2(x)), where exp2(x) is shorthand for 2^x.
1395 // TODO(rmlarsen): We should probably add this as a packet up 'ppow', to make it
1396 // easier to specialize or turn off for specific types and/or backends.x
1397 template <typename Packet>
1398 EIGEN_STRONG_INLINE Packet generic_pow_impl(const Packet& x, const Packet& y) {
1399   typedef typename unpacket_traits<Packet>::type Scalar;
1400   // Split x into exponent e_x and mantissa m_x.
1401   Packet e_x;
1402   Packet m_x = pfrexp(x, e_x);
1403 
1404   // Adjust m_x to lie in [1/sqrt(2):sqrt(2)] to minimize absolute error in log2(m_x).
1405   EIGEN_CONSTEXPR Scalar sqrt_half = Scalar(0.70710678118654752440);
1406   const Packet m_x_scale_mask = pcmp_lt(m_x, pset1<Packet>(sqrt_half));
1407   m_x = pselect(m_x_scale_mask, pmul(pset1<Packet>(Scalar(2)), m_x), m_x);
1408   e_x = pselect(m_x_scale_mask, psub(e_x, pset1<Packet>(Scalar(1))), e_x);
1409 
1410   // Compute log2(m_x) with 6 extra bits of accuracy.
1411   Packet rx_hi, rx_lo;
1412   accurate_log2<Scalar>()(m_x, rx_hi, rx_lo);
1413 
1414   // Compute the two terms {y * e_x, y * r_x} in f = y * log2(x) with doubled
1415   // precision using double word arithmetic.
1416   Packet f1_hi, f1_lo, f2_hi, f2_lo;
1417   twoprod(e_x, y, f1_hi, f1_lo);
1418   twoprod(rx_hi, rx_lo, y, f2_hi, f2_lo);
1419   // Sum the two terms in f using double word arithmetic. We know
1420   // that |e_x| > |log2(m_x)|, except for the case where e_x==0.
1421   // This means that we can use fast_twosum(f1,f2).
1422   // In the case e_x == 0, e_x * y = f1 = 0, so we don't lose any
1423   // accuracy by violating the assumption of fast_twosum, because
1424   // it's a no-op.
1425   Packet f_hi, f_lo;
1426   fast_twosum(f1_hi, f1_lo, f2_hi, f2_lo, f_hi, f_lo);
1427 
1428   // Split f into integer and fractional parts.
1429   Packet n_z, r_z;
1430   absolute_split(f_hi, n_z, r_z);
1431   r_z = padd(r_z, f_lo);
1432   Packet n_r;
1433   absolute_split(r_z, n_r, r_z);
1434   n_z = padd(n_z, n_r);
1435 
1436   // We now have an accurate split of f = n_z + r_z and can compute
1437   //   x^y = 2**{n_z + r_z) = exp2(r_z) * 2**{n_z}.
1438   // Since r_z is in [-0.5;0.5], we compute the first factor to high accuracy
1439   // using a specialized algorithm. Multiplication by the second factor can
1440   // be done exactly using pldexp(), since it is an integer power of 2.
1441   const Packet e_r = fast_accurate_exp2<Scalar>()(r_z);
1442   return pldexp(e_r, n_z);
1443 }
1444 
1445 // Generic implementation of pow(x,y).
1446 template<typename Packet>
1447 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
1448 EIGEN_UNUSED
1449 Packet generic_pow(const Packet& x, const Packet& y) {
1450   typedef typename unpacket_traits<Packet>::type Scalar;
1451 
1452   const Packet cst_pos_inf = pset1<Packet>(NumTraits<Scalar>::infinity());
1453   const Packet cst_zero = pset1<Packet>(Scalar(0));
1454   const Packet cst_one = pset1<Packet>(Scalar(1));
1455   const Packet cst_nan = pset1<Packet>(NumTraits<Scalar>::quiet_NaN());
1456 
1457   const Packet abs_x = pabs(x);
1458   // Predicates for sign and magnitude of x.
1459   const Packet x_is_zero = pcmp_eq(x, cst_zero);
1460   const Packet x_is_neg = pcmp_lt(x, cst_zero);
1461   const Packet abs_x_is_inf = pcmp_eq(abs_x, cst_pos_inf);
1462   const Packet abs_x_is_one =  pcmp_eq(abs_x, cst_one);
1463   const Packet abs_x_is_gt_one = pcmp_lt(cst_one, abs_x);
1464   const Packet abs_x_is_lt_one = pcmp_lt(abs_x, cst_one);
1465   const Packet x_is_one =  pandnot(abs_x_is_one, x_is_neg);
1466   const Packet x_is_neg_one =  pand(abs_x_is_one, x_is_neg);
1467   const Packet x_is_nan = pandnot(ptrue(x), pcmp_eq(x, x));
1468 
1469   // Predicates for sign and magnitude of y.
1470   const Packet y_is_one = pcmp_eq(y, cst_one);
1471   const Packet y_is_zero = pcmp_eq(y, cst_zero);
1472   const Packet y_is_neg = pcmp_lt(y, cst_zero);
1473   const Packet y_is_pos = pandnot(ptrue(y), por(y_is_zero, y_is_neg));
1474   const Packet y_is_nan = pandnot(ptrue(y), pcmp_eq(y, y));
1475   const Packet abs_y_is_inf = pcmp_eq(pabs(y), cst_pos_inf);
1476   EIGEN_CONSTEXPR Scalar huge_exponent =
1477       (NumTraits<Scalar>::max_exponent() * Scalar(EIGEN_LN2)) /
1478        NumTraits<Scalar>::epsilon();
1479   const Packet abs_y_is_huge = pcmp_le(pset1<Packet>(huge_exponent), pabs(y));
1480 
1481   // Predicates for whether y is integer and/or even.
1482   const Packet y_is_int = pcmp_eq(pfloor(y), y);
1483   const Packet y_div_2 = pmul(y, pset1<Packet>(Scalar(0.5)));
1484   const Packet y_is_even = pcmp_eq(pround(y_div_2), y_div_2);
1485 
1486   // Predicates encoding special cases for the value of pow(x,y)
1487   const Packet invalid_negative_x = pandnot(pandnot(pandnot(x_is_neg, abs_x_is_inf),
1488                                                     y_is_int),
1489                                             abs_y_is_inf);
1490   const Packet pow_is_one = por(por(x_is_one, y_is_zero),
1491                                 pand(x_is_neg_one,
1492                                      por(abs_y_is_inf, pandnot(y_is_even, invalid_negative_x))));
1493   const Packet pow_is_nan = por(invalid_negative_x, por(x_is_nan, y_is_nan));
1494   const Packet pow_is_zero = por(por(por(pand(x_is_zero, y_is_pos),
1495                                          pand(abs_x_is_inf, y_is_neg)),
1496                                      pand(pand(abs_x_is_lt_one, abs_y_is_huge),
1497                                           y_is_pos)),
1498                                  pand(pand(abs_x_is_gt_one, abs_y_is_huge),
1499                                       y_is_neg));
1500   const Packet pow_is_inf = por(por(por(pand(x_is_zero, y_is_neg),
1501                                         pand(abs_x_is_inf, y_is_pos)),
1502                                     pand(pand(abs_x_is_lt_one, abs_y_is_huge),
1503                                          y_is_neg)),
1504                                 pand(pand(abs_x_is_gt_one, abs_y_is_huge),
1505                                      y_is_pos));
1506 
1507   // General computation of pow(x,y) for positive x or negative x and integer y.
1508   const Packet negate_pow_abs = pandnot(x_is_neg, y_is_even);
1509   const Packet pow_abs = generic_pow_impl(abs_x, y);
1510   return pselect(y_is_one, x,
1511                  pselect(pow_is_one, cst_one,
1512                          pselect(pow_is_nan, cst_nan,
1513                                  pselect(pow_is_inf, cst_pos_inf,
1514                                          pselect(pow_is_zero, cst_zero,
1515                                                  pselect(negate_pow_abs, pnegate(pow_abs), pow_abs))))));
1516 }
1517 
1518 
1519 
1520 /* polevl (modified for Eigen)
1521  *
1522  *      Evaluate polynomial
1523  *
1524  *
1525  *
1526  * SYNOPSIS:
1527  *
1528  * int N;
1529  * Scalar x, y, coef[N+1];
1530  *
1531  * y = polevl<decltype(x), N>( x, coef);
1532  *
1533  *
1534  *
1535  * DESCRIPTION:
1536  *
1537  * Evaluates polynomial of degree N:
1538  *
1539  *                     2          N
1540  * y  =  C  + C x + C x  +...+ C x
1541  *        0    1     2          N
1542  *
1543  * Coefficients are stored in reverse order:
1544  *
1545  * coef[0] = C  , ..., coef[N] = C  .
1546  *            N                   0
1547  *
1548  *  The function p1evl() assumes that coef[N] = 1.0 and is
1549  * omitted from the array.  Its calling arguments are
1550  * otherwise the same as polevl().
1551  *
1552  *
1553  * The Eigen implementation is templatized.  For best speed, store
1554  * coef as a const array (constexpr), e.g.
1555  *
1556  * const double coef[] = {1.0, 2.0, 3.0, ...};
1557  *
1558  */
1559 template <typename Packet, int N>
1560 struct ppolevl {
1561   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
1562     EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
1563     return pmadd(ppolevl<Packet, N-1>::run(x, coeff), x, pset1<Packet>(coeff[N]));
1564   }
1565 };
1566 
1567 template <typename Packet>
1568 struct ppolevl<Packet, 0> {
1569   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
1570     EIGEN_UNUSED_VARIABLE(x);
1571     return pset1<Packet>(coeff[0]);
1572   }
1573 };
1574 
1575 /* chbevl (modified for Eigen)
1576  *
1577  *     Evaluate Chebyshev series
1578  *
1579  *
1580  *
1581  * SYNOPSIS:
1582  *
1583  * int N;
1584  * Scalar x, y, coef[N], chebevl();
1585  *
1586  * y = chbevl( x, coef, N );
1587  *
1588  *
1589  *
1590  * DESCRIPTION:
1591  *
1592  * Evaluates the series
1593  *
1594  *        N-1
1595  *         - '
1596  *  y  =   >   coef[i] T (x/2)
1597  *         -            i
1598  *        i=0
1599  *
1600  * of Chebyshev polynomials Ti at argument x/2.
1601  *
1602  * Coefficients are stored in reverse order, i.e. the zero
1603  * order term is last in the array.  Note N is the number of
1604  * coefficients, not the order.
1605  *
1606  * If coefficients are for the interval a to b, x must
1607  * have been transformed to x -> 2(2x - b - a)/(b-a) before
1608  * entering the routine.  This maps x from (a, b) to (-1, 1),
1609  * over which the Chebyshev polynomials are defined.
1610  *
1611  * If the coefficients are for the inverted interval, in
1612  * which (a, b) is mapped to (1/b, 1/a), the transformation
1613  * required is x -> 2(2ab/x - b - a)/(b-a).  If b is infinity,
1614  * this becomes x -> 4a/x - 1.
1615  *
1616  *
1617  *
1618  * SPEED:
1619  *
1620  * Taking advantage of the recurrence properties of the
1621  * Chebyshev polynomials, the routine requires one more
1622  * addition per loop than evaluating a nested polynomial of
1623  * the same degree.
1624  *
1625  */
1626 
1627 template <typename Packet, int N>
1628 struct pchebevl {
1629   EIGEN_DEVICE_FUNC
1630   static EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits<Packet>::type coef[]) {
1631     typedef typename unpacket_traits<Packet>::type Scalar;
1632     Packet b0 = pset1<Packet>(coef[0]);
1633     Packet b1 = pset1<Packet>(static_cast<Scalar>(0.f));
1634     Packet b2;
1635 
1636     for (int i = 1; i < N; i++) {
1637       b2 = b1;
1638       b1 = b0;
1639       b0 = psub(pmadd(x, b1, pset1<Packet>(coef[i])), b2);
1640     }
1641 
1642     return pmul(pset1<Packet>(static_cast<Scalar>(0.5f)), psub(b0, b2));
1643   }
1644 };
1645 
1646 } // end namespace internal
1647 } // end namespace Eigen
1648 
1649 #endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H