File indexing completed on 2025-01-18 09:56:15
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #ifndef EIGEN_MATHFUNCTIONS_H
0012 #define EIGEN_MATHFUNCTIONS_H
0013
0014
0015
0016 #define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L
0017 #define EIGEN_LOG2E 1.442695040888963407359924681001892137426645954152985934135449406931109219L
0018 #define EIGEN_LN2 0.693147180559945309417232121458176568075500134360255254120680009493393621L
0019
0020 namespace Eigen {
0021
0022
0023
0024 #if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
0025 long abs(long x) { return (labs(x)); }
0026 double abs(double x) { return (fabs(x)); }
0027 float abs(float x) { return (fabsf(x)); }
0028 long double abs(long double x) { return (fabsl(x)); }
0029 #endif
0030
0031 namespace internal {
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053 template<typename T, typename dummy = void>
0054 struct global_math_functions_filtering_base
0055 {
0056 typedef T type;
0057 };
0058
0059 template<typename T> struct always_void { typedef void type; };
0060
0061 template<typename T>
0062 struct global_math_functions_filtering_base
0063 <T,
0064 typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
0065 >
0066 {
0067 typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
0068 };
0069
0070 #define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
0071 #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
0072
0073
0074
0075
0076
0077 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
0078 struct real_default_impl
0079 {
0080 typedef typename NumTraits<Scalar>::Real RealScalar;
0081 EIGEN_DEVICE_FUNC
0082 static inline RealScalar run(const Scalar& x)
0083 {
0084 return x;
0085 }
0086 };
0087
0088 template<typename Scalar>
0089 struct real_default_impl<Scalar,true>
0090 {
0091 typedef typename NumTraits<Scalar>::Real RealScalar;
0092 EIGEN_DEVICE_FUNC
0093 static inline RealScalar run(const Scalar& x)
0094 {
0095 using std::real;
0096 return real(x);
0097 }
0098 };
0099
0100 template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
0101
0102 #if defined(EIGEN_GPU_COMPILE_PHASE)
0103 template<typename T>
0104 struct real_impl<std::complex<T> >
0105 {
0106 typedef T RealScalar;
0107 EIGEN_DEVICE_FUNC
0108 static inline T run(const std::complex<T>& x)
0109 {
0110 return x.real();
0111 }
0112 };
0113 #endif
0114
0115 template<typename Scalar>
0116 struct real_retval
0117 {
0118 typedef typename NumTraits<Scalar>::Real type;
0119 };
0120
0121
0122
0123
0124
0125 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
0126 struct imag_default_impl
0127 {
0128 typedef typename NumTraits<Scalar>::Real RealScalar;
0129 EIGEN_DEVICE_FUNC
0130 static inline RealScalar run(const Scalar&)
0131 {
0132 return RealScalar(0);
0133 }
0134 };
0135
0136 template<typename Scalar>
0137 struct imag_default_impl<Scalar,true>
0138 {
0139 typedef typename NumTraits<Scalar>::Real RealScalar;
0140 EIGEN_DEVICE_FUNC
0141 static inline RealScalar run(const Scalar& x)
0142 {
0143 using std::imag;
0144 return imag(x);
0145 }
0146 };
0147
0148 template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
0149
0150 #if defined(EIGEN_GPU_COMPILE_PHASE)
0151 template<typename T>
0152 struct imag_impl<std::complex<T> >
0153 {
0154 typedef T RealScalar;
0155 EIGEN_DEVICE_FUNC
0156 static inline T run(const std::complex<T>& x)
0157 {
0158 return x.imag();
0159 }
0160 };
0161 #endif
0162
0163 template<typename Scalar>
0164 struct imag_retval
0165 {
0166 typedef typename NumTraits<Scalar>::Real type;
0167 };
0168
0169
0170
0171
0172
0173 template<typename Scalar>
0174 struct real_ref_impl
0175 {
0176 typedef typename NumTraits<Scalar>::Real RealScalar;
0177 EIGEN_DEVICE_FUNC
0178 static inline RealScalar& run(Scalar& x)
0179 {
0180 return reinterpret_cast<RealScalar*>(&x)[0];
0181 }
0182 EIGEN_DEVICE_FUNC
0183 static inline const RealScalar& run(const Scalar& x)
0184 {
0185 return reinterpret_cast<const RealScalar*>(&x)[0];
0186 }
0187 };
0188
0189 template<typename Scalar>
0190 struct real_ref_retval
0191 {
0192 typedef typename NumTraits<Scalar>::Real & type;
0193 };
0194
0195
0196
0197
0198
0199 template<typename Scalar, bool IsComplex>
0200 struct imag_ref_default_impl
0201 {
0202 typedef typename NumTraits<Scalar>::Real RealScalar;
0203 EIGEN_DEVICE_FUNC
0204 static inline RealScalar& run(Scalar& x)
0205 {
0206 return reinterpret_cast<RealScalar*>(&x)[1];
0207 }
0208 EIGEN_DEVICE_FUNC
0209 static inline const RealScalar& run(const Scalar& x)
0210 {
0211 return reinterpret_cast<RealScalar*>(&x)[1];
0212 }
0213 };
0214
0215 template<typename Scalar>
0216 struct imag_ref_default_impl<Scalar, false>
0217 {
0218 EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
0219 static inline Scalar run(Scalar&)
0220 {
0221 return Scalar(0);
0222 }
0223 EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
0224 static inline const Scalar run(const Scalar&)
0225 {
0226 return Scalar(0);
0227 }
0228 };
0229
0230 template<typename Scalar>
0231 struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
0232
0233 template<typename Scalar>
0234 struct imag_ref_retval
0235 {
0236 typedef typename NumTraits<Scalar>::Real & type;
0237 };
0238
0239
0240
0241
0242
0243 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
0244 struct conj_default_impl
0245 {
0246 EIGEN_DEVICE_FUNC
0247 static inline Scalar run(const Scalar& x)
0248 {
0249 return x;
0250 }
0251 };
0252
0253 template<typename Scalar>
0254 struct conj_default_impl<Scalar,true>
0255 {
0256 EIGEN_DEVICE_FUNC
0257 static inline Scalar run(const Scalar& x)
0258 {
0259 using std::conj;
0260 return conj(x);
0261 }
0262 };
0263
0264 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
0265 struct conj_impl : conj_default_impl<Scalar, IsComplex> {};
0266
0267 template<typename Scalar>
0268 struct conj_retval
0269 {
0270 typedef Scalar type;
0271 };
0272
0273
0274
0275
0276
0277 template<typename Scalar,bool IsComplex>
0278 struct abs2_impl_default
0279 {
0280 typedef typename NumTraits<Scalar>::Real RealScalar;
0281 EIGEN_DEVICE_FUNC
0282 static inline RealScalar run(const Scalar& x)
0283 {
0284 return x*x;
0285 }
0286 };
0287
0288 template<typename Scalar>
0289 struct abs2_impl_default<Scalar, true>
0290 {
0291 typedef typename NumTraits<Scalar>::Real RealScalar;
0292 EIGEN_DEVICE_FUNC
0293 static inline RealScalar run(const Scalar& x)
0294 {
0295 return x.real()*x.real() + x.imag()*x.imag();
0296 }
0297 };
0298
0299 template<typename Scalar>
0300 struct abs2_impl
0301 {
0302 typedef typename NumTraits<Scalar>::Real RealScalar;
0303 EIGEN_DEVICE_FUNC
0304 static inline RealScalar run(const Scalar& x)
0305 {
0306 return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
0307 }
0308 };
0309
0310 template<typename Scalar>
0311 struct abs2_retval
0312 {
0313 typedef typename NumTraits<Scalar>::Real type;
0314 };
0315
0316
0317
0318
0319
0320 template<typename Scalar>
0321 struct sqrt_impl
0322 {
0323 EIGEN_DEVICE_FUNC
0324 static EIGEN_ALWAYS_INLINE Scalar run(const Scalar& x)
0325 {
0326 EIGEN_USING_STD(sqrt);
0327 return sqrt(x);
0328 }
0329 };
0330
0331
0332 template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& a_x);
0333
0334
0335
0336 template<typename T>
0337 struct sqrt_impl<std::complex<T> >
0338 {
0339 EIGEN_DEVICE_FUNC
0340 static EIGEN_ALWAYS_INLINE std::complex<T> run(const std::complex<T>& x)
0341 {
0342 return complex_sqrt<T>(x);
0343 }
0344 };
0345
0346 template<typename Scalar>
0347 struct sqrt_retval
0348 {
0349 typedef Scalar type;
0350 };
0351
0352
0353 template<typename T>
0354 struct rsqrt_impl;
0355
0356
0357 template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& a_x);
0358
0359 template<typename T>
0360 struct rsqrt_impl<std::complex<T> >
0361 {
0362 EIGEN_DEVICE_FUNC
0363 static EIGEN_ALWAYS_INLINE std::complex<T> run(const std::complex<T>& x)
0364 {
0365 return complex_rsqrt<T>(x);
0366 }
0367 };
0368
0369 template<typename Scalar>
0370 struct rsqrt_retval
0371 {
0372 typedef Scalar type;
0373 };
0374
0375
0376
0377
0378
0379 template<typename Scalar, bool IsComplex>
0380 struct norm1_default_impl;
0381
0382 template<typename Scalar>
0383 struct norm1_default_impl<Scalar,true>
0384 {
0385 typedef typename NumTraits<Scalar>::Real RealScalar;
0386 EIGEN_DEVICE_FUNC
0387 static inline RealScalar run(const Scalar& x)
0388 {
0389 EIGEN_USING_STD(abs);
0390 return abs(x.real()) + abs(x.imag());
0391 }
0392 };
0393
0394 template<typename Scalar>
0395 struct norm1_default_impl<Scalar, false>
0396 {
0397 EIGEN_DEVICE_FUNC
0398 static inline Scalar run(const Scalar& x)
0399 {
0400 EIGEN_USING_STD(abs);
0401 return abs(x);
0402 }
0403 };
0404
0405 template<typename Scalar>
0406 struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
0407
0408 template<typename Scalar>
0409 struct norm1_retval
0410 {
0411 typedef typename NumTraits<Scalar>::Real type;
0412 };
0413
0414
0415
0416
0417
0418 template<typename Scalar> struct hypot_impl;
0419
0420 template<typename Scalar>
0421 struct hypot_retval
0422 {
0423 typedef typename NumTraits<Scalar>::Real type;
0424 };
0425
0426
0427
0428
0429
0430 template<typename OldType, typename NewType, typename EnableIf = void>
0431 struct cast_impl
0432 {
0433 EIGEN_DEVICE_FUNC
0434 static inline NewType run(const OldType& x)
0435 {
0436 return static_cast<NewType>(x);
0437 }
0438 };
0439
0440
0441
0442 template<typename OldType, typename NewType>
0443 struct cast_impl<OldType, NewType,
0444 typename internal::enable_if<
0445 !NumTraits<OldType>::IsComplex && NumTraits<NewType>::IsComplex
0446 >::type>
0447 {
0448 EIGEN_DEVICE_FUNC
0449 static inline NewType run(const OldType& x)
0450 {
0451 typedef typename NumTraits<NewType>::Real NewReal;
0452 return static_cast<NewType>(static_cast<NewReal>(x));
0453 }
0454 };
0455
0456
0457
0458 template<typename OldType, typename NewType>
0459 EIGEN_DEVICE_FUNC
0460 inline NewType cast(const OldType& x)
0461 {
0462 return cast_impl<OldType, NewType>::run(x);
0463 }
0464
0465
0466
0467
0468
0469 template<typename Scalar>
0470 struct round_impl
0471 {
0472 EIGEN_DEVICE_FUNC
0473 static inline Scalar run(const Scalar& x)
0474 {
0475 EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
0476 #if EIGEN_HAS_CXX11_MATH
0477 EIGEN_USING_STD(round);
0478 #endif
0479 return Scalar(round(x));
0480 }
0481 };
0482
0483 #if !EIGEN_HAS_CXX11_MATH
0484 #if EIGEN_HAS_C99_MATH
0485
0486 template<>
0487 struct round_impl<float> {
0488 EIGEN_DEVICE_FUNC
0489 static inline float run(const float& x)
0490 {
0491 return ::roundf(x);
0492 }
0493 };
0494 #else
0495 template<typename Scalar>
0496 struct round_using_floor_ceil_impl
0497 {
0498 EIGEN_DEVICE_FUNC
0499 static inline Scalar run(const Scalar& x)
0500 {
0501 EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
0502
0503 EIGEN_USING_STD(floor);
0504 EIGEN_USING_STD(ceil);
0505
0506
0507 const Scalar limit = Scalar(1ull << (NumTraits<Scalar>::digits() - 1));
0508 if (x >= limit || x <= -limit) {
0509 return x;
0510 }
0511 return (x > Scalar(0)) ? Scalar(floor(x + Scalar(0.5))) : Scalar(ceil(x - Scalar(0.5)));
0512 }
0513 };
0514
0515 template<>
0516 struct round_impl<float> : round_using_floor_ceil_impl<float> {};
0517
0518 template<>
0519 struct round_impl<double> : round_using_floor_ceil_impl<double> {};
0520 #endif
0521 #endif
0522
0523 template<typename Scalar>
0524 struct round_retval
0525 {
0526 typedef Scalar type;
0527 };
0528
0529
0530
0531
0532
0533 template<typename Scalar>
0534 struct rint_impl {
0535 EIGEN_DEVICE_FUNC
0536 static inline Scalar run(const Scalar& x)
0537 {
0538 EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
0539 #if EIGEN_HAS_CXX11_MATH
0540 EIGEN_USING_STD(rint);
0541 #endif
0542 return rint(x);
0543 }
0544 };
0545
0546 #if !EIGEN_HAS_CXX11_MATH
0547 template<>
0548 struct rint_impl<double> {
0549 EIGEN_DEVICE_FUNC
0550 static inline double run(const double& x)
0551 {
0552 return ::rint(x);
0553 }
0554 };
0555 template<>
0556 struct rint_impl<float> {
0557 EIGEN_DEVICE_FUNC
0558 static inline float run(const float& x)
0559 {
0560 return ::rintf(x);
0561 }
0562 };
0563 #endif
0564
0565 template<typename Scalar>
0566 struct rint_retval
0567 {
0568 typedef Scalar type;
0569 };
0570
0571
0572
0573
0574
0575
0576
0577 #if EIGEN_HAS_CXX11_MATH && (!EIGEN_COMP_MSVC || EIGEN_COMP_MSVC >= 1920)
0578
0579 template<typename Scalar,
0580 bool HasStdImpl = NumTraits<Scalar>::IsComplex || is_integral<Scalar>::value
0581 || is_same<Scalar, float>::value || is_same<Scalar, double>::value
0582 || is_same<Scalar, long double>::value >
0583 struct arg_default_impl;
0584
0585 template<typename Scalar>
0586 struct arg_default_impl<Scalar, true> {
0587 typedef typename NumTraits<Scalar>::Real RealScalar;
0588 EIGEN_DEVICE_FUNC
0589 static inline RealScalar run(const Scalar& x)
0590 {
0591 #if defined(EIGEN_HIP_DEVICE_COMPILE)
0592
0593 using std::arg;
0594 #else
0595 EIGEN_USING_STD(arg);
0596 #endif
0597 return static_cast<RealScalar>(arg(x));
0598 }
0599 };
0600
0601
0602 template<typename Scalar>
0603 struct arg_default_impl<Scalar, false> {
0604 typedef typename NumTraits<Scalar>::Real RealScalar;
0605 EIGEN_DEVICE_FUNC
0606 static inline RealScalar run(const Scalar& x)
0607 {
0608 return (x < Scalar(0)) ? RealScalar(EIGEN_PI) : RealScalar(0);
0609 }
0610 };
0611 #else
0612 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
0613 struct arg_default_impl
0614 {
0615 typedef typename NumTraits<Scalar>::Real RealScalar;
0616 EIGEN_DEVICE_FUNC
0617 static inline RealScalar run(const Scalar& x)
0618 {
0619 return (x < RealScalar(0)) ? RealScalar(EIGEN_PI) : RealScalar(0);
0620 }
0621 };
0622
0623 template<typename Scalar>
0624 struct arg_default_impl<Scalar,true>
0625 {
0626 typedef typename NumTraits<Scalar>::Real RealScalar;
0627 EIGEN_DEVICE_FUNC
0628 static inline RealScalar run(const Scalar& x)
0629 {
0630 EIGEN_USING_STD(arg);
0631 return arg(x);
0632 }
0633 };
0634 #endif
0635 template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
0636
0637 template<typename Scalar>
0638 struct arg_retval
0639 {
0640 typedef typename NumTraits<Scalar>::Real type;
0641 };
0642
0643
0644
0645
0646
0647
0648 namespace std_fallback {
0649
0650
0651
0652 template<typename Scalar>
0653 EIGEN_DEVICE_FUNC inline Scalar expm1(const Scalar& x) {
0654 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
0655 typedef typename NumTraits<Scalar>::Real RealScalar;
0656
0657 EIGEN_USING_STD(exp);
0658 Scalar u = exp(x);
0659 if (numext::equal_strict(u, Scalar(1))) {
0660 return x;
0661 }
0662 Scalar um1 = u - RealScalar(1);
0663 if (numext::equal_strict(um1, Scalar(-1))) {
0664 return RealScalar(-1);
0665 }
0666
0667 EIGEN_USING_STD(log);
0668 Scalar logu = log(u);
0669 return numext::equal_strict(u, logu) ? u : (u - RealScalar(1)) * x / logu;
0670 }
0671 }
0672
0673 template<typename Scalar>
0674 struct expm1_impl {
0675 EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x)
0676 {
0677 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
0678 #if EIGEN_HAS_CXX11_MATH
0679 using std::expm1;
0680 #else
0681 using std_fallback::expm1;
0682 #endif
0683 return expm1(x);
0684 }
0685 };
0686
0687 template<typename Scalar>
0688 struct expm1_retval
0689 {
0690 typedef Scalar type;
0691 };
0692
0693
0694
0695
0696
0697
0698 template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z);
0699
0700 template<typename Scalar>
0701 struct log_impl {
0702 EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x)
0703 {
0704 EIGEN_USING_STD(log);
0705 return static_cast<Scalar>(log(x));
0706 }
0707 };
0708
0709 template<typename Scalar>
0710 struct log_impl<std::complex<Scalar> > {
0711 EIGEN_DEVICE_FUNC static inline std::complex<Scalar> run(const std::complex<Scalar>& z)
0712 {
0713 return complex_log(z);
0714 }
0715 };
0716
0717
0718
0719
0720
0721 namespace std_fallback {
0722
0723
0724 template<typename Scalar>
0725 EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) {
0726 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
0727 typedef typename NumTraits<Scalar>::Real RealScalar;
0728 EIGEN_USING_STD(log);
0729 Scalar x1p = RealScalar(1) + x;
0730 Scalar log_1p = log_impl<Scalar>::run(x1p);
0731 const bool is_small = numext::equal_strict(x1p, Scalar(1));
0732 const bool is_inf = numext::equal_strict(x1p, log_1p);
0733 return (is_small || is_inf) ? x : x * (log_1p / (x1p - RealScalar(1)));
0734 }
0735 }
0736
0737 template<typename Scalar>
0738 struct log1p_impl {
0739 EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x)
0740 {
0741 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
0742 #if EIGEN_HAS_CXX11_MATH
0743 using std::log1p;
0744 #else
0745 using std_fallback::log1p;
0746 #endif
0747 return log1p(x);
0748 }
0749 };
0750
0751
0752 template <typename RealScalar>
0753 struct log1p_impl<std::complex<RealScalar> > {
0754 EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(
0755 const std::complex<RealScalar>& x) {
0756 EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar)
0757 return std_fallback::log1p(x);
0758 }
0759 };
0760
0761 template<typename Scalar>
0762 struct log1p_retval
0763 {
0764 typedef Scalar type;
0765 };
0766
0767
0768
0769
0770
0771 template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger>
0772 struct pow_impl
0773 {
0774
0775 typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type;
0776 static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y)
0777 {
0778 EIGEN_USING_STD(pow);
0779 return pow(x, y);
0780 }
0781 };
0782
0783 template<typename ScalarX,typename ScalarY>
0784 struct pow_impl<ScalarX,ScalarY, true>
0785 {
0786 typedef ScalarX result_type;
0787 static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y)
0788 {
0789 ScalarX res(1);
0790 eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0);
0791 if(y & 1) res *= x;
0792 y >>= 1;
0793 while(y)
0794 {
0795 x *= x;
0796 if(y&1) res *= x;
0797 y >>= 1;
0798 }
0799 return res;
0800 }
0801 };
0802
0803
0804
0805
0806
0807 template<typename Scalar,
0808 bool IsComplex,
0809 bool IsInteger>
0810 struct random_default_impl {};
0811
0812 template<typename Scalar>
0813 struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
0814
0815 template<typename Scalar>
0816 struct random_retval
0817 {
0818 typedef Scalar type;
0819 };
0820
0821 template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
0822 template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
0823
0824 template<typename Scalar>
0825 struct random_default_impl<Scalar, false, false>
0826 {
0827 static inline Scalar run(const Scalar& x, const Scalar& y)
0828 {
0829 return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
0830 }
0831 static inline Scalar run()
0832 {
0833 return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
0834 }
0835 };
0836
0837 enum {
0838 meta_floor_log2_terminate,
0839 meta_floor_log2_move_up,
0840 meta_floor_log2_move_down,
0841 meta_floor_log2_bogus
0842 };
0843
0844 template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
0845 {
0846 enum { middle = (lower + upper) / 2,
0847 value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
0848 : (n < (1 << middle)) ? int(meta_floor_log2_move_down)
0849 : (n==0) ? int(meta_floor_log2_bogus)
0850 : int(meta_floor_log2_move_up)
0851 };
0852 };
0853
0854 template<unsigned int n,
0855 int lower = 0,
0856 int upper = sizeof(unsigned int) * CHAR_BIT - 1,
0857 int selector = meta_floor_log2_selector<n, lower, upper>::value>
0858 struct meta_floor_log2 {};
0859
0860 template<unsigned int n, int lower, int upper>
0861 struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
0862 {
0863 enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
0864 };
0865
0866 template<unsigned int n, int lower, int upper>
0867 struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
0868 {
0869 enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
0870 };
0871
0872 template<unsigned int n, int lower, int upper>
0873 struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
0874 {
0875 enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
0876 };
0877
0878 template<unsigned int n, int lower, int upper>
0879 struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
0880 {
0881
0882 };
0883
0884 template<typename Scalar>
0885 struct random_default_impl<Scalar, false, true>
0886 {
0887 static inline Scalar run(const Scalar& x, const Scalar& y)
0888 {
0889 if (y <= x)
0890 return x;
0891
0892 typedef typename make_unsigned<Scalar>::type ScalarU;
0893
0894
0895
0896 typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX;
0897
0898
0899
0900 ScalarX range = ScalarX(y) - ScalarX(x);
0901 ScalarX offset = 0;
0902 ScalarX divisor = 1;
0903 ScalarX multiplier = 1;
0904 const unsigned rand_max = RAND_MAX;
0905 if (range <= rand_max) divisor = (rand_max + 1) / (range + 1);
0906 else multiplier = 1 + range / (rand_max + 1);
0907
0908 do {
0909 offset = (unsigned(std::rand()) * multiplier) / divisor;
0910 } while (offset > range);
0911 return Scalar(ScalarX(x) + offset);
0912 }
0913
0914 static inline Scalar run()
0915 {
0916 #ifdef EIGEN_MAKING_DOCS
0917 return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
0918 #else
0919 enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
0920 scalar_bits = sizeof(Scalar) * CHAR_BIT,
0921 shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
0922 offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
0923 };
0924 return Scalar((std::rand() >> shift) - offset);
0925 #endif
0926 }
0927 };
0928
0929 template<typename Scalar>
0930 struct random_default_impl<Scalar, true, false>
0931 {
0932 static inline Scalar run(const Scalar& x, const Scalar& y)
0933 {
0934 return Scalar(random(x.real(), y.real()),
0935 random(x.imag(), y.imag()));
0936 }
0937 static inline Scalar run()
0938 {
0939 typedef typename NumTraits<Scalar>::Real RealScalar;
0940 return Scalar(random<RealScalar>(), random<RealScalar>());
0941 }
0942 };
0943
0944 template<typename Scalar>
0945 inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
0946 {
0947 return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
0948 }
0949
0950 template<typename Scalar>
0951 inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
0952 {
0953 return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
0954 }
0955
0956
0957
0958
0959 #if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
0960 #define EIGEN_USE_STD_FPCLASSIFY 1
0961 #else
0962 #define EIGEN_USE_STD_FPCLASSIFY 0
0963 #endif
0964
0965 template<typename T>
0966 EIGEN_DEVICE_FUNC
0967 typename internal::enable_if<internal::is_integral<T>::value,bool>::type
0968 isnan_impl(const T&) { return false; }
0969
0970 template<typename T>
0971 EIGEN_DEVICE_FUNC
0972 typename internal::enable_if<internal::is_integral<T>::value,bool>::type
0973 isinf_impl(const T&) { return false; }
0974
0975 template<typename T>
0976 EIGEN_DEVICE_FUNC
0977 typename internal::enable_if<internal::is_integral<T>::value,bool>::type
0978 isfinite_impl(const T&) { return true; }
0979
0980 template<typename T>
0981 EIGEN_DEVICE_FUNC
0982 typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
0983 isfinite_impl(const T& x)
0984 {
0985 #if defined(EIGEN_GPU_COMPILE_PHASE)
0986 return (::isfinite)(x);
0987 #elif EIGEN_USE_STD_FPCLASSIFY
0988 using std::isfinite;
0989 return isfinite EIGEN_NOT_A_MACRO (x);
0990 #else
0991 return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
0992 #endif
0993 }
0994
0995 template<typename T>
0996 EIGEN_DEVICE_FUNC
0997 typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
0998 isinf_impl(const T& x)
0999 {
1000 #if defined(EIGEN_GPU_COMPILE_PHASE)
1001 return (::isinf)(x);
1002 #elif EIGEN_USE_STD_FPCLASSIFY
1003 using std::isinf;
1004 return isinf EIGEN_NOT_A_MACRO (x);
1005 #else
1006 return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
1007 #endif
1008 }
1009
1010 template<typename T>
1011 EIGEN_DEVICE_FUNC
1012 typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
1013 isnan_impl(const T& x)
1014 {
1015 #if defined(EIGEN_GPU_COMPILE_PHASE)
1016 return (::isnan)(x);
1017 #elif EIGEN_USE_STD_FPCLASSIFY
1018 using std::isnan;
1019 return isnan EIGEN_NOT_A_MACRO (x);
1020 #else
1021 return x != x;
1022 #endif
1023 }
1024
1025 #if (!EIGEN_USE_STD_FPCLASSIFY)
1026
1027 #if EIGEN_COMP_MSVC
1028
1029 template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x)
1030 {
1031 return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
1032 }
1033
1034
1035 EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; }
1036 EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; }
1037 EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; }
1038
1039 EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); }
1040 EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); }
1041 EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); }
1042
1043 #elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
1044
1045 #if EIGEN_GNUC_AT_LEAST(5,0)
1046 #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
1047 #else
1048
1049
1050 #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only")))
1051 #endif
1052
1053 template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); }
1054 template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); }
1055 template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); }
1056 template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); }
1057 template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); }
1058 template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); }
1059
1060 #undef EIGEN_TMP_NOOPT_ATTRIB
1061
1062 #endif
1063
1064 #endif
1065
1066
1067 template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
1068 template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
1069 template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
1070
1071 template<typename T> T generic_fast_tanh_float(const T& a_x);
1072 }
1073
1074
1075
1076
1077
1078 namespace numext {
1079
1080 #if (!defined(EIGEN_GPUCC) || defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC))
1081 template<typename T>
1082 EIGEN_DEVICE_FUNC
1083 EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
1084 {
1085 EIGEN_USING_STD(min)
1086 return min EIGEN_NOT_A_MACRO (x,y);
1087 }
1088
1089 template<typename T>
1090 EIGEN_DEVICE_FUNC
1091 EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
1092 {
1093 EIGEN_USING_STD(max)
1094 return max EIGEN_NOT_A_MACRO (x,y);
1095 }
1096 #else
1097 template<typename T>
1098 EIGEN_DEVICE_FUNC
1099 EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
1100 {
1101 return y < x ? y : x;
1102 }
1103 template<>
1104 EIGEN_DEVICE_FUNC
1105 EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
1106 {
1107 return fminf(x, y);
1108 }
1109 template<>
1110 EIGEN_DEVICE_FUNC
1111 EIGEN_ALWAYS_INLINE double mini(const double& x, const double& y)
1112 {
1113 return fmin(x, y);
1114 }
1115 template<>
1116 EIGEN_DEVICE_FUNC
1117 EIGEN_ALWAYS_INLINE long double mini(const long double& x, const long double& y)
1118 {
1119 #if defined(EIGEN_HIPCC)
1120
1121 return (x < y) ? x : y;
1122 #else
1123 return fminl(x, y);
1124 #endif
1125 }
1126
1127 template<typename T>
1128 EIGEN_DEVICE_FUNC
1129 EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
1130 {
1131 return x < y ? y : x;
1132 }
1133 template<>
1134 EIGEN_DEVICE_FUNC
1135 EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
1136 {
1137 return fmaxf(x, y);
1138 }
1139 template<>
1140 EIGEN_DEVICE_FUNC
1141 EIGEN_ALWAYS_INLINE double maxi(const double& x, const double& y)
1142 {
1143 return fmax(x, y);
1144 }
1145 template<>
1146 EIGEN_DEVICE_FUNC
1147 EIGEN_ALWAYS_INLINE long double maxi(const long double& x, const long double& y)
1148 {
1149 #if defined(EIGEN_HIPCC)
1150
1151 return (x > y) ? x : y;
1152 #else
1153 return fmaxl(x, y);
1154 #endif
1155 }
1156 #endif
1157
1158 #if defined(SYCL_DEVICE_ONLY)
1159
1160
1161 #define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
1162 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_char) \
1163 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_short) \
1164 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_int) \
1165 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_long)
1166 #define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
1167 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_char) \
1168 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_short) \
1169 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_int) \
1170 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_long)
1171 #define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
1172 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar) \
1173 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort) \
1174 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uint) \
1175 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong)
1176 #define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
1177 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar) \
1178 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort) \
1179 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uint) \
1180 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong)
1181 #define SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(NAME, FUNC) \
1182 SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
1183 SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC)
1184 #define SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(NAME, FUNC) \
1185 SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
1186 SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC)
1187 #define SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(NAME, FUNC) \
1188 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \
1189 SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC,cl::sycl::cl_double)
1190 #define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(NAME, FUNC) \
1191 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \
1192 SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC,cl::sycl::cl_double)
1193 #define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(NAME, FUNC, RET_TYPE) \
1194 SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_float) \
1195 SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_double)
1196
1197 #define SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \
1198 template<> \
1199 EIGEN_DEVICE_FUNC \
1200 EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE& x) { \
1201 return cl::sycl::FUNC(x); \
1202 }
1203
1204 #define SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, TYPE) \
1205 SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, TYPE, TYPE)
1206
1207 #define SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE1, ARG_TYPE2) \
1208 template<> \
1209 EIGEN_DEVICE_FUNC \
1210 EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE1& x, const ARG_TYPE2& y) { \
1211 return cl::sycl::FUNC(x, y); \
1212 }
1213
1214 #define SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \
1215 SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE, ARG_TYPE)
1216
1217 #define SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, TYPE) \
1218 SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, TYPE, TYPE)
1219
1220 SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(mini, min)
1221 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(mini, fmin)
1222 SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(maxi, max)
1223 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(maxi, fmax)
1224
1225 #endif
1226
1227
1228 template<typename Scalar>
1229 EIGEN_DEVICE_FUNC
1230 inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
1231 {
1232 return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
1233 }
1234
1235 template<typename Scalar>
1236 EIGEN_DEVICE_FUNC
1237 inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
1238 {
1239 return internal::real_ref_impl<Scalar>::run(x);
1240 }
1241
1242 template<typename Scalar>
1243 EIGEN_DEVICE_FUNC
1244 inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
1245 {
1246 return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
1247 }
1248
1249 template<typename Scalar>
1250 EIGEN_DEVICE_FUNC
1251 inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
1252 {
1253 return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
1254 }
1255
1256 template<typename Scalar>
1257 EIGEN_DEVICE_FUNC
1258 inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
1259 {
1260 return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
1261 }
1262
1263 template<typename Scalar>
1264 EIGEN_DEVICE_FUNC
1265 inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
1266 {
1267 return internal::imag_ref_impl<Scalar>::run(x);
1268 }
1269
1270 template<typename Scalar>
1271 EIGEN_DEVICE_FUNC
1272 inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
1273 {
1274 return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
1275 }
1276
1277 template<typename Scalar>
1278 EIGEN_DEVICE_FUNC
1279 inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
1280 {
1281 return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
1282 }
1283
1284 template<typename Scalar>
1285 EIGEN_DEVICE_FUNC
1286 inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
1287 {
1288 return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
1289 }
1290
1291 EIGEN_DEVICE_FUNC
1292 inline bool abs2(bool x) { return x; }
1293
1294 template<typename T>
1295 EIGEN_DEVICE_FUNC
1296 EIGEN_ALWAYS_INLINE T absdiff(const T& x, const T& y)
1297 {
1298 return x > y ? x - y : y - x;
1299 }
1300 template<>
1301 EIGEN_DEVICE_FUNC
1302 EIGEN_ALWAYS_INLINE float absdiff(const float& x, const float& y)
1303 {
1304 return fabsf(x - y);
1305 }
1306 template<>
1307 EIGEN_DEVICE_FUNC
1308 EIGEN_ALWAYS_INLINE double absdiff(const double& x, const double& y)
1309 {
1310 return fabs(x - y);
1311 }
1312
1313 #if !defined(EIGEN_GPUCC)
1314
1315 template<>
1316 EIGEN_DEVICE_FUNC
1317 EIGEN_ALWAYS_INLINE long double absdiff(const long double& x, const long double& y) {
1318 return fabsl(x - y);
1319 }
1320 #endif
1321
1322 template<typename Scalar>
1323 EIGEN_DEVICE_FUNC
1324 inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
1325 {
1326 return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
1327 }
1328
1329 template<typename Scalar>
1330 EIGEN_DEVICE_FUNC
1331 inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
1332 {
1333 return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
1334 }
1335
1336 #if defined(SYCL_DEVICE_ONLY)
1337 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(hypot, hypot)
1338 #endif
1339
1340 template<typename Scalar>
1341 EIGEN_DEVICE_FUNC
1342 inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
1343 {
1344 return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
1345 }
1346
1347 #if defined(SYCL_DEVICE_ONLY)
1348 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log1p, log1p)
1349 #endif
1350
1351 #if defined(EIGEN_GPUCC)
1352 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1353 float log1p(const float &x) { return ::log1pf(x); }
1354
1355 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1356 double log1p(const double &x) { return ::log1p(x); }
1357 #endif
1358
1359 template<typename ScalarX,typename ScalarY>
1360 EIGEN_DEVICE_FUNC
1361 inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y)
1362 {
1363 return internal::pow_impl<ScalarX,ScalarY>::run(x, y);
1364 }
1365
1366 #if defined(SYCL_DEVICE_ONLY)
1367 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(pow, pow)
1368 #endif
1369
1370 template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
1371 template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
1372 template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
1373
1374 #if defined(SYCL_DEVICE_ONLY)
1375 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isnan, isnan, bool)
1376 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isinf, isinf, bool)
1377 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isfinite, isfinite, bool)
1378 #endif
1379
1380 template<typename Scalar>
1381 EIGEN_DEVICE_FUNC
1382 inline EIGEN_MATHFUNC_RETVAL(rint, Scalar) rint(const Scalar& x)
1383 {
1384 return EIGEN_MATHFUNC_IMPL(rint, Scalar)::run(x);
1385 }
1386
1387 template<typename Scalar>
1388 EIGEN_DEVICE_FUNC
1389 inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
1390 {
1391 return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
1392 }
1393
1394 #if defined(SYCL_DEVICE_ONLY)
1395 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(round, round)
1396 #endif
1397
1398 template<typename T>
1399 EIGEN_DEVICE_FUNC
1400 T (floor)(const T& x)
1401 {
1402 EIGEN_USING_STD(floor)
1403 return floor(x);
1404 }
1405
1406 #if defined(SYCL_DEVICE_ONLY)
1407 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(floor, floor)
1408 #endif
1409
1410 #if defined(EIGEN_GPUCC)
1411 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1412 float floor(const float &x) { return ::floorf(x); }
1413
1414 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1415 double floor(const double &x) { return ::floor(x); }
1416 #endif
1417
1418 template<typename T>
1419 EIGEN_DEVICE_FUNC
1420 T (ceil)(const T& x)
1421 {
1422 EIGEN_USING_STD(ceil);
1423 return ceil(x);
1424 }
1425
1426 #if defined(SYCL_DEVICE_ONLY)
1427 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(ceil, ceil)
1428 #endif
1429
1430 #if defined(EIGEN_GPUCC)
1431 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1432 float ceil(const float &x) { return ::ceilf(x); }
1433
1434 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1435 double ceil(const double &x) { return ::ceil(x); }
1436 #endif
1437
1438
1439
1440
1441 inline int log2(int x)
1442 {
1443 eigen_assert(x>=0);
1444 unsigned int v(x);
1445 static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
1446 v |= v >> 1;
1447 v |= v >> 2;
1448 v |= v >> 4;
1449 v |= v >> 8;
1450 v |= v >> 16;
1451 return table[(v * 0x07C4ACDDU) >> 27];
1452 }
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463 template<typename Scalar>
1464 EIGEN_DEVICE_FUNC
1465 EIGEN_ALWAYS_INLINE EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x)
1466 {
1467 return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x);
1468 }
1469
1470
1471 template<>
1472 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_DEVICE_FUNC
1473 bool sqrt<bool>(const bool &x) { return x; }
1474
1475 #if defined(SYCL_DEVICE_ONLY)
1476 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sqrt, sqrt)
1477 #endif
1478
1479
1480 template<typename T>
1481 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1482 T rsqrt(const T& x)
1483 {
1484 return internal::rsqrt_impl<T>::run(x);
1485 }
1486
1487 template<typename T>
1488 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1489 T log(const T &x) {
1490 return internal::log_impl<T>::run(x);
1491 }
1492
1493 #if defined(SYCL_DEVICE_ONLY)
1494 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log, log)
1495 #endif
1496
1497
1498 #if defined(EIGEN_GPUCC)
1499 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1500 float log(const float &x) { return ::logf(x); }
1501
1502 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1503 double log(const double &x) { return ::log(x); }
1504 #endif
1505
1506 template<typename T>
1507 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1508 typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
1509 abs(const T &x) {
1510 EIGEN_USING_STD(abs);
1511 return abs(x);
1512 }
1513
1514 template<typename T>
1515 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1516 typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type
1517 abs(const T &x) {
1518 return x;
1519 }
1520
1521 #if defined(SYCL_DEVICE_ONLY)
1522 SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(abs, abs)
1523 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(abs, fabs)
1524 #endif
1525
1526 #if defined(EIGEN_GPUCC)
1527 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1528 float abs(const float &x) { return ::fabsf(x); }
1529
1530 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1531 double abs(const double &x) { return ::fabs(x); }
1532
1533 template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1534 float abs(const std::complex<float>& x) {
1535 return ::hypotf(x.real(), x.imag());
1536 }
1537
1538 template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1539 double abs(const std::complex<double>& x) {
1540 return ::hypot(x.real(), x.imag());
1541 }
1542 #endif
1543
1544 template<typename T>
1545 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1546 T exp(const T &x) {
1547 EIGEN_USING_STD(exp);
1548 return exp(x);
1549 }
1550
1551 #if defined(SYCL_DEVICE_ONLY)
1552 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(exp, exp)
1553 #endif
1554
1555 #if defined(EIGEN_GPUCC)
1556 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1557 float exp(const float &x) { return ::expf(x); }
1558
1559 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1560 double exp(const double &x) { return ::exp(x); }
1561
1562 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1563 std::complex<float> exp(const std::complex<float>& x) {
1564 float com = ::expf(x.real());
1565 float res_real = com * ::cosf(x.imag());
1566 float res_imag = com * ::sinf(x.imag());
1567 return std::complex<float>(res_real, res_imag);
1568 }
1569
1570 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1571 std::complex<double> exp(const std::complex<double>& x) {
1572 double com = ::exp(x.real());
1573 double res_real = com * ::cos(x.imag());
1574 double res_imag = com * ::sin(x.imag());
1575 return std::complex<double>(res_real, res_imag);
1576 }
1577 #endif
1578
1579 template<typename Scalar>
1580 EIGEN_DEVICE_FUNC
1581 inline EIGEN_MATHFUNC_RETVAL(expm1, Scalar) expm1(const Scalar& x)
1582 {
1583 return EIGEN_MATHFUNC_IMPL(expm1, Scalar)::run(x);
1584 }
1585
1586 #if defined(SYCL_DEVICE_ONLY)
1587 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(expm1, expm1)
1588 #endif
1589
1590 #if defined(EIGEN_GPUCC)
1591 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1592 float expm1(const float &x) { return ::expm1f(x); }
1593
1594 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1595 double expm1(const double &x) { return ::expm1(x); }
1596 #endif
1597
1598 template<typename T>
1599 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1600 T cos(const T &x) {
1601 EIGEN_USING_STD(cos);
1602 return cos(x);
1603 }
1604
1605 #if defined(SYCL_DEVICE_ONLY)
1606 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cos,cos)
1607 #endif
1608
1609 #if defined(EIGEN_GPUCC)
1610 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1611 float cos(const float &x) { return ::cosf(x); }
1612
1613 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1614 double cos(const double &x) { return ::cos(x); }
1615 #endif
1616
1617 template<typename T>
1618 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1619 T sin(const T &x) {
1620 EIGEN_USING_STD(sin);
1621 return sin(x);
1622 }
1623
1624 #if defined(SYCL_DEVICE_ONLY)
1625 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sin, sin)
1626 #endif
1627
1628 #if defined(EIGEN_GPUCC)
1629 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1630 float sin(const float &x) { return ::sinf(x); }
1631
1632 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1633 double sin(const double &x) { return ::sin(x); }
1634 #endif
1635
1636 template<typename T>
1637 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1638 T tan(const T &x) {
1639 EIGEN_USING_STD(tan);
1640 return tan(x);
1641 }
1642
1643 #if defined(SYCL_DEVICE_ONLY)
1644 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tan, tan)
1645 #endif
1646
1647 #if defined(EIGEN_GPUCC)
1648 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1649 float tan(const float &x) { return ::tanf(x); }
1650
1651 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1652 double tan(const double &x) { return ::tan(x); }
1653 #endif
1654
1655 template<typename T>
1656 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1657 T acos(const T &x) {
1658 EIGEN_USING_STD(acos);
1659 return acos(x);
1660 }
1661
1662 #if EIGEN_HAS_CXX11_MATH
1663 template<typename T>
1664 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1665 T acosh(const T &x) {
1666 EIGEN_USING_STD(acosh);
1667 return static_cast<T>(acosh(x));
1668 }
1669 #endif
1670
1671 #if defined(SYCL_DEVICE_ONLY)
1672 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acos, acos)
1673 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acosh, acosh)
1674 #endif
1675
1676 #if defined(EIGEN_GPUCC)
1677 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1678 float acos(const float &x) { return ::acosf(x); }
1679
1680 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1681 double acos(const double &x) { return ::acos(x); }
1682 #endif
1683
1684 template<typename T>
1685 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1686 T asin(const T &x) {
1687 EIGEN_USING_STD(asin);
1688 return asin(x);
1689 }
1690
1691 #if EIGEN_HAS_CXX11_MATH
1692 template<typename T>
1693 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1694 T asinh(const T &x) {
1695 EIGEN_USING_STD(asinh);
1696 return static_cast<T>(asinh(x));
1697 }
1698 #endif
1699
1700 #if defined(SYCL_DEVICE_ONLY)
1701 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asin, asin)
1702 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asinh, asinh)
1703 #endif
1704
1705 #if defined(EIGEN_GPUCC)
1706 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1707 float asin(const float &x) { return ::asinf(x); }
1708
1709 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1710 double asin(const double &x) { return ::asin(x); }
1711 #endif
1712
1713 template<typename T>
1714 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1715 T atan(const T &x) {
1716 EIGEN_USING_STD(atan);
1717 return static_cast<T>(atan(x));
1718 }
1719
1720 #if EIGEN_HAS_CXX11_MATH
1721 template<typename T>
1722 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1723 T atanh(const T &x) {
1724 EIGEN_USING_STD(atanh);
1725 return static_cast<T>(atanh(x));
1726 }
1727 #endif
1728
1729 #if defined(SYCL_DEVICE_ONLY)
1730 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atan, atan)
1731 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atanh, atanh)
1732 #endif
1733
1734 #if defined(EIGEN_GPUCC)
1735 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1736 float atan(const float &x) { return ::atanf(x); }
1737
1738 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1739 double atan(const double &x) { return ::atan(x); }
1740 #endif
1741
1742
1743 template<typename T>
1744 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1745 T cosh(const T &x) {
1746 EIGEN_USING_STD(cosh);
1747 return static_cast<T>(cosh(x));
1748 }
1749
1750 #if defined(SYCL_DEVICE_ONLY)
1751 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cosh, cosh)
1752 #endif
1753
1754 #if defined(EIGEN_GPUCC)
1755 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1756 float cosh(const float &x) { return ::coshf(x); }
1757
1758 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1759 double cosh(const double &x) { return ::cosh(x); }
1760 #endif
1761
1762 template<typename T>
1763 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1764 T sinh(const T &x) {
1765 EIGEN_USING_STD(sinh);
1766 return static_cast<T>(sinh(x));
1767 }
1768
1769 #if defined(SYCL_DEVICE_ONLY)
1770 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sinh, sinh)
1771 #endif
1772
1773 #if defined(EIGEN_GPUCC)
1774 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1775 float sinh(const float &x) { return ::sinhf(x); }
1776
1777 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1778 double sinh(const double &x) { return ::sinh(x); }
1779 #endif
1780
1781 template<typename T>
1782 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1783 T tanh(const T &x) {
1784 EIGEN_USING_STD(tanh);
1785 return tanh(x);
1786 }
1787
1788 #if (!defined(EIGEN_GPUCC)) && EIGEN_FAST_MATH && !defined(SYCL_DEVICE_ONLY)
1789 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1790 float tanh(float x) { return internal::generic_fast_tanh_float(x); }
1791 #endif
1792
1793 #if defined(SYCL_DEVICE_ONLY)
1794 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tanh, tanh)
1795 #endif
1796
1797 #if defined(EIGEN_GPUCC)
1798 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1799 float tanh(const float &x) { return ::tanhf(x); }
1800
1801 template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1802 double tanh(const double &x) { return ::tanh(x); }
1803 #endif
1804
1805 template <typename T>
1806 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1807 T fmod(const T& a, const T& b) {
1808 EIGEN_USING_STD(fmod);
1809 return fmod(a, b);
1810 }
1811
1812 #if defined(SYCL_DEVICE_ONLY)
1813 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(fmod, fmod)
1814 #endif
1815
1816 #if defined(EIGEN_GPUCC)
1817 template <>
1818 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1819 float fmod(const float& a, const float& b) {
1820 return ::fmodf(a, b);
1821 }
1822
1823 template <>
1824 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
1825 double fmod(const double& a, const double& b) {
1826 return ::fmod(a, b);
1827 }
1828 #endif
1829
1830 #if defined(SYCL_DEVICE_ONLY)
1831 #undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY
1832 #undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY
1833 #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY
1834 #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY
1835 #undef SYCL_SPECIALIZE_INTEGER_TYPES_BINARY
1836 #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY
1837 #undef SYCL_SPECIALIZE_FLOATING_TYPES_BINARY
1838 #undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY
1839 #undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE
1840 #undef SYCL_SPECIALIZE_GEN_UNARY_FUNC
1841 #undef SYCL_SPECIALIZE_UNARY_FUNC
1842 #undef SYCL_SPECIALIZE_GEN1_BINARY_FUNC
1843 #undef SYCL_SPECIALIZE_GEN2_BINARY_FUNC
1844 #undef SYCL_SPECIALIZE_BINARY_FUNC
1845 #endif
1846
1847 }
1848
1849 namespace internal {
1850
1851 template<typename T>
1852 EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
1853 {
1854 return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
1855 }
1856
1857 template<typename T>
1858 EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
1859 {
1860 return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
1861 }
1862
1863 template<typename T>
1864 EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
1865 {
1866 return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
1867 }
1868
1869
1870
1871
1872
1873 template<typename Scalar,
1874 bool IsComplex,
1875 bool IsInteger>
1876 struct scalar_fuzzy_default_impl {};
1877
1878 template<typename Scalar>
1879 struct scalar_fuzzy_default_impl<Scalar, false, false>
1880 {
1881 typedef typename NumTraits<Scalar>::Real RealScalar;
1882 template<typename OtherScalar> EIGEN_DEVICE_FUNC
1883 static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
1884 {
1885 return numext::abs(x) <= numext::abs(y) * prec;
1886 }
1887 EIGEN_DEVICE_FUNC
1888 static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
1889 {
1890 return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec;
1891 }
1892 EIGEN_DEVICE_FUNC
1893 static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
1894 {
1895 return x <= y || isApprox(x, y, prec);
1896 }
1897 };
1898
1899 template<typename Scalar>
1900 struct scalar_fuzzy_default_impl<Scalar, false, true>
1901 {
1902 typedef typename NumTraits<Scalar>::Real RealScalar;
1903 template<typename OtherScalar> EIGEN_DEVICE_FUNC
1904 static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
1905 {
1906 return x == Scalar(0);
1907 }
1908 EIGEN_DEVICE_FUNC
1909 static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
1910 {
1911 return x == y;
1912 }
1913 EIGEN_DEVICE_FUNC
1914 static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
1915 {
1916 return x <= y;
1917 }
1918 };
1919
1920 template<typename Scalar>
1921 struct scalar_fuzzy_default_impl<Scalar, true, false>
1922 {
1923 typedef typename NumTraits<Scalar>::Real RealScalar;
1924 template<typename OtherScalar> EIGEN_DEVICE_FUNC
1925 static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
1926 {
1927 return numext::abs2(x) <= numext::abs2(y) * prec * prec;
1928 }
1929 EIGEN_DEVICE_FUNC
1930 static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
1931 {
1932 return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
1933 }
1934 };
1935
1936 template<typename Scalar>
1937 struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
1938
1939 template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
1940 inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
1941 const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1942 {
1943 return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
1944 }
1945
1946 template<typename Scalar> EIGEN_DEVICE_FUNC
1947 inline bool isApprox(const Scalar& x, const Scalar& y,
1948 const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1949 {
1950 return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
1951 }
1952
1953 template<typename Scalar> EIGEN_DEVICE_FUNC
1954 inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
1955 const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1956 {
1957 return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
1958 }
1959
1960
1961
1962
1963
1964 template<> struct random_impl<bool>
1965 {
1966 static inline bool run()
1967 {
1968 return random<int>(0,1)==0 ? false : true;
1969 }
1970
1971 static inline bool run(const bool& a, const bool& b)
1972 {
1973 return random<int>(a, b)==0 ? false : true;
1974 }
1975 };
1976
1977 template<> struct scalar_fuzzy_impl<bool>
1978 {
1979 typedef bool RealScalar;
1980
1981 template<typename OtherScalar> EIGEN_DEVICE_FUNC
1982 static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
1983 {
1984 return !x;
1985 }
1986
1987 EIGEN_DEVICE_FUNC
1988 static inline bool isApprox(bool x, bool y, bool)
1989 {
1990 return x == y;
1991 }
1992
1993 EIGEN_DEVICE_FUNC
1994 static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
1995 {
1996 return (!x) || y;
1997 }
1998
1999 };
2000
2001 }
2002
2003
2004 namespace internal {
2005
2006
2007 template <typename RealScalar>
2008 struct expm1_impl<std::complex<RealScalar> > {
2009 EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(
2010 const std::complex<RealScalar>& x) {
2011 EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar)
2012 RealScalar xr = x.real();
2013 RealScalar xi = x.imag();
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023 RealScalar erm1 = numext::expm1<RealScalar>(xr);
2024 RealScalar er = erm1 + RealScalar(1.);
2025 RealScalar sin2 = numext::sin(xi / RealScalar(2.));
2026 sin2 = sin2 * sin2;
2027 RealScalar s = numext::sin(xi);
2028 RealScalar real_part = erm1 - RealScalar(2.) * er * sin2;
2029 return std::complex<RealScalar>(real_part, er * s);
2030 }
2031 };
2032
2033 template<typename T>
2034 struct rsqrt_impl {
2035 EIGEN_DEVICE_FUNC
2036 static EIGEN_ALWAYS_INLINE T run(const T& x) {
2037 return T(1)/numext::sqrt(x);
2038 }
2039 };
2040
2041 #if defined(EIGEN_GPU_COMPILE_PHASE)
2042 template<typename T>
2043 struct conj_impl<std::complex<T>, true>
2044 {
2045 EIGEN_DEVICE_FUNC
2046 static inline std::complex<T> run(const std::complex<T>& x)
2047 {
2048 return std::complex<T>(numext::real(x), -numext::imag(x));
2049 }
2050 };
2051 #endif
2052
2053 }
2054
2055 }
2056
2057 #endif