Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:55:27

0001 // Copyright 2012 the V8 project authors. All rights reserved.
0002 // Redistribution and use in source and binary forms, with or without
0003 // modification, are permitted provided that the following conditions are
0004 // met:
0005 //
0006 //     * Redistributions of source code must retain the above copyright
0007 //       notice, this list of conditions and the following disclaimer.
0008 //     * Redistributions in binary form must reproduce the above
0009 //       copyright notice, this list of conditions and the following
0010 //       disclaimer in the documentation and/or other materials provided
0011 //       with the distribution.
0012 //     * Neither the name of Google Inc. nor the names of its
0013 //       contributors may be used to endorse or promote products derived
0014 //       from this software without specific prior written permission.
0015 //
0016 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
0017 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
0018 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
0019 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
0020 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
0021 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
0022 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
0023 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
0024 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
0025 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
0026 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0027 
0028 #ifndef DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
0029 #define DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
0030 
0031 #include "utils.h"
0032 
0033 namespace double_conversion {
0034 
0035 class DoubleToStringConverter {
0036  public:
0037   // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
0038   // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
0039   // function returns false.
0040   static const int kMaxFixedDigitsBeforePoint = 60;
0041   static const int kMaxFixedDigitsAfterPoint = 100;
0042 
0043   // When calling ToExponential with a requested_digits
0044   // parameter > kMaxExponentialDigits then the function returns false.
0045   static const int kMaxExponentialDigits = 120;
0046 
0047   // When calling ToPrecision with a requested_digits
0048   // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
0049   // then the function returns false.
0050   static const int kMinPrecisionDigits = 1;
0051   static const int kMaxPrecisionDigits = 120;
0052 
0053   // The maximal number of digits that are needed to emit a double in base 10.
0054   // A higher precision can be achieved by using more digits, but the shortest
0055   // accurate representation of any double will never use more digits than
0056   // kBase10MaximalLength.
0057   // Note that DoubleToAscii null-terminates its input. So the given buffer
0058   // should be at least kBase10MaximalLength + 1 characters long.
0059   static const int kBase10MaximalLength = 17;
0060 
0061   // The maximal number of digits that are needed to emit a single in base 10.
0062   // A higher precision can be achieved by using more digits, but the shortest
0063   // accurate representation of any single will never use more digits than
0064   // kBase10MaximalLengthSingle.
0065   static const int kBase10MaximalLengthSingle = 9;
0066 
0067   // The length of the longest string that 'ToShortest' can produce when the
0068   // converter is instantiated with EcmaScript defaults (see
0069   // 'EcmaScriptConverter')
0070   // This value does not include the trailing '\0' character.
0071   // This amount of characters is needed for negative values that hit the
0072   // 'decimal_in_shortest_low' limit. For example: "-0.0000033333333333333333"
0073   static const int kMaxCharsEcmaScriptShortest = 25;
0074 
0075   enum Flags {
0076     NO_FLAGS = 0,
0077     EMIT_POSITIVE_EXPONENT_SIGN = 1,
0078     EMIT_TRAILING_DECIMAL_POINT = 2,
0079     EMIT_TRAILING_ZERO_AFTER_POINT = 4,
0080     UNIQUE_ZERO = 8,
0081     NO_TRAILING_ZERO = 16,
0082     EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL = 32,
0083     EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL = 64
0084   };
0085 
0086   // Flags should be a bit-or combination of the possible Flags-enum.
0087   //  - NO_FLAGS: no special flags.
0088   //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
0089   //    form, emits a '+' for positive exponents. Example: 1.2e+2.
0090   //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
0091   //    converted into decimal format then a trailing decimal point is appended.
0092   //    Example: 2345.0 is converted to "2345.".
0093   //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
0094   //    emits a trailing '0'-character. This flag requires the
0095   //    EMIT_TRAILING_DECIMAL_POINT flag.
0096   //    Example: 2345.0 is converted to "2345.0".
0097   //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
0098   //  - NO_TRAILING_ZERO: Trailing zeros are removed from the fractional portion
0099   //    of the result in precision mode. Matches printf's %g.
0100   //    When EMIT_TRAILING_ZERO_AFTER_POINT is also given, one trailing zero is
0101   //    preserved.
0102   //  - EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL: when the input number has
0103   //    exactly one significant digit and is converted into exponent form then a
0104   //    trailing decimal point is appended to the significand in shortest mode
0105   //    or in precision mode with one requested digit.
0106   //  - EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL: in addition to a trailing
0107   //    decimal point emits a trailing '0'-character. This flag requires the
0108   //    EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag.
0109   //
0110   // Infinity symbol and nan_symbol provide the string representation for these
0111   // special values. If the string is NULL and the special value is encountered
0112   // then the conversion functions return false.
0113   //
0114   // The exponent_character is used in exponential representations. It is
0115   // usually 'e' or 'E'.
0116   //
0117   // When converting to the shortest representation the converter will
0118   // represent input numbers in decimal format if they are in the interval
0119   // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
0120   //    (lower boundary included, greater boundary excluded).
0121   // Example: with decimal_in_shortest_low = -6 and
0122   //               decimal_in_shortest_high = 21:
0123   //   ToShortest(0.000001)  -> "0.000001"
0124   //   ToShortest(0.0000001) -> "1e-7"
0125   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
0126   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
0127   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
0128   //
0129   // When converting to precision mode the converter may add
0130   // max_leading_padding_zeroes before returning the number in exponential
0131   // format.
0132   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
0133   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
0134   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
0135   // Similarly the converter may add up to
0136   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
0137   // returning an exponential representation. A zero added by the
0138   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
0139   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
0140   //   ToPrecision(230.0, 2) -> "230"
0141   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
0142   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
0143   //
0144   // When converting numbers with exactly one significant digit to exponent
0145   // form in shortest mode or in precision mode with one requested digit, the
0146   // EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT flags have
0147   // no effect. Use the EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag to
0148   // append a decimal point in this case and the
0149   // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL flag to also append a
0150   // '0'-character in this case.
0151   // Example with decimal_in_shortest_low = 0:
0152   //   ToShortest(0.0009) -> "9e-4"
0153   //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL deactivated.
0154   //   ToShortest(0.0009) -> "9.e-4"
0155   //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated.
0156   //   ToShortest(0.0009) -> "9.0e-4"
0157   //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated and
0158   //     EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL activated.
0159   //
0160   // The min_exponent_width is used for exponential representations.
0161   // The converter adds leading '0's to the exponent until the exponent
0162   // is at least min_exponent_width digits long.
0163   // The min_exponent_width is clamped to 5.
0164   // As such, the exponent may never have more than 5 digits in total.
0165   DoubleToStringConverter(int flags,
0166                           const char* infinity_symbol,
0167                           const char* nan_symbol,
0168                           char exponent_character,
0169                           int decimal_in_shortest_low,
0170                           int decimal_in_shortest_high,
0171                           int max_leading_padding_zeroes_in_precision_mode,
0172                           int max_trailing_padding_zeroes_in_precision_mode,
0173                           int min_exponent_width = 0)
0174       : flags_(flags),
0175         infinity_symbol_(infinity_symbol),
0176         nan_symbol_(nan_symbol),
0177         exponent_character_(exponent_character),
0178         decimal_in_shortest_low_(decimal_in_shortest_low),
0179         decimal_in_shortest_high_(decimal_in_shortest_high),
0180         max_leading_padding_zeroes_in_precision_mode_(
0181             max_leading_padding_zeroes_in_precision_mode),
0182         max_trailing_padding_zeroes_in_precision_mode_(
0183             max_trailing_padding_zeroes_in_precision_mode),
0184         min_exponent_width_(min_exponent_width) {
0185     // When 'trailing zero after the point' is set, then 'trailing point'
0186     // must be set too.
0187     DOUBLE_CONVERSION_ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
0188         !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
0189   }
0190 
0191   // Returns a converter following the EcmaScript specification.
0192   //
0193   // Flags: UNIQUE_ZERO and EMIT_POSITIVE_EXPONENT_SIGN.
0194   // Special values: "Infinity" and "NaN".
0195   // Lower case 'e' for exponential values.
0196   // decimal_in_shortest_low: -6
0197   // decimal_in_shortest_high: 21
0198   // max_leading_padding_zeroes_in_precision_mode: 6
0199   // max_trailing_padding_zeroes_in_precision_mode: 0
0200   static const DoubleToStringConverter& EcmaScriptConverter();
0201 
0202   // Computes the shortest string of digits that correctly represent the input
0203   // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
0204   // (see constructor) it then either returns a decimal representation, or an
0205   // exponential representation.
0206   // Example with decimal_in_shortest_low = -6,
0207   //              decimal_in_shortest_high = 21,
0208   //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
0209   //              EMIT_TRAILING_DECIMAL_POINT deactivated:
0210   //   ToShortest(0.000001)  -> "0.000001"
0211   //   ToShortest(0.0000001) -> "1e-7"
0212   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
0213   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
0214   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
0215   //
0216   // Note: the conversion may round the output if the returned string
0217   // is accurate enough to uniquely identify the input-number.
0218   // For example the most precise representation of the double 9e59 equals
0219   // "899999999999999918767229449717619953810131273674690656206848", but
0220   // the converter will return the shorter (but still correct) "9e59".
0221   //
0222   // Returns true if the conversion succeeds. The conversion always succeeds
0223   // except when the input value is special and no infinity_symbol or
0224   // nan_symbol has been given to the constructor.
0225   //
0226   // The length of the longest result is the maximum of the length of the
0227   // following string representations (each with possible examples):
0228   // - NaN and negative infinity: "NaN", "-Infinity", "-inf".
0229   // - -10^(decimal_in_shortest_high - 1):
0230   //      "-100000000000000000000", "-1000000000000000.0"
0231   // - the longest string in range [0; -10^decimal_in_shortest_low]. Generally,
0232   //   this string is 3 + kBase10MaximalLength - decimal_in_shortest_low.
0233   //   (Sign, '0', decimal point, padding zeroes for decimal_in_shortest_low,
0234   //   and the significant digits).
0235   //      "-0.0000033333333333333333", "-0.0012345678901234567"
0236   // - the longest exponential representation. (A negative number with
0237   //   kBase10MaximalLength significant digits).
0238   //      "-1.7976931348623157e+308", "-1.7976931348623157E308"
0239   // In addition, the buffer must be able to hold the trailing '\0' character.
0240   bool ToShortest(double value, StringBuilder* result_builder) const {
0241     return ToShortestIeeeNumber(value, result_builder, SHORTEST);
0242   }
0243 
0244   // Same as ToShortest, but for single-precision floats.
0245   bool ToShortestSingle(float value, StringBuilder* result_builder) const {
0246     return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
0247   }
0248 
0249 
0250   // Computes a decimal representation with a fixed number of digits after the
0251   // decimal point. The last emitted digit is rounded.
0252   //
0253   // Examples:
0254   //   ToFixed(3.12, 1) -> "3.1"
0255   //   ToFixed(3.1415, 3) -> "3.142"
0256   //   ToFixed(1234.56789, 4) -> "1234.5679"
0257   //   ToFixed(1.23, 5) -> "1.23000"
0258   //   ToFixed(0.1, 4) -> "0.1000"
0259   //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
0260   //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
0261   //   ToFixed(0.1, 17) -> "0.10000000000000001"
0262   //
0263   // If requested_digits equals 0, then the tail of the result depends on
0264   // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
0265   // Examples, for requested_digits == 0,
0266   //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
0267   //    - false and false: then 123.45 -> 123
0268   //                             0.678 -> 1
0269   //    - true and false: then 123.45 -> 123.
0270   //                            0.678 -> 1.
0271   //    - true and true: then 123.45 -> 123.0
0272   //                           0.678 -> 1.0
0273   //
0274   // Returns true if the conversion succeeds. The conversion always succeeds
0275   // except for the following cases:
0276   //   - the input value is special and no infinity_symbol or nan_symbol has
0277   //     been provided to the constructor,
0278   //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
0279   //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
0280   // The last two conditions imply that the result for non-special values never
0281   // contains more than
0282   //  1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
0283   // (one additional character for the sign, and one for the decimal point).
0284   // In addition, the buffer must be able to hold the trailing '\0' character.
0285   bool ToFixed(double value,
0286                int requested_digits,
0287                StringBuilder* result_builder) const;
0288 
0289   // Computes a representation in exponential format with requested_digits
0290   // after the decimal point. The last emitted digit is rounded.
0291   // If requested_digits equals -1, then the shortest exponential representation
0292   // is computed.
0293   //
0294   // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
0295   //               exponent_character set to 'e'.
0296   //   ToExponential(3.12, 1) -> "3.1e0"
0297   //   ToExponential(5.0, 3) -> "5.000e0"
0298   //   ToExponential(0.001, 2) -> "1.00e-3"
0299   //   ToExponential(3.1415, -1) -> "3.1415e0"
0300   //   ToExponential(3.1415, 4) -> "3.1415e0"
0301   //   ToExponential(3.1415, 3) -> "3.142e0"
0302   //   ToExponential(123456789000000, 3) -> "1.235e14"
0303   //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
0304   //   ToExponential(1000000000000000019884624838656.0, 32) ->
0305   //                     "1.00000000000000001988462483865600e30"
0306   //   ToExponential(1234, 0) -> "1e3"
0307   //
0308   // Returns true if the conversion succeeds. The conversion always succeeds
0309   // except for the following cases:
0310   //   - the input value is special and no infinity_symbol or nan_symbol has
0311   //     been provided to the constructor,
0312   //   - 'requested_digits' > kMaxExponentialDigits.
0313   //
0314   // The last condition implies that the result never contains more than
0315   // kMaxExponentialDigits + 8 characters (the sign, the digit before the
0316   // decimal point, the decimal point, the exponent character, the
0317   // exponent's sign, and at most 3 exponent digits).
0318   // In addition, the buffer must be able to hold the trailing '\0' character.
0319   bool ToExponential(double value,
0320                      int requested_digits,
0321                      StringBuilder* result_builder) const;
0322 
0323 
0324   // Computes 'precision' leading digits of the given 'value' and returns them
0325   // either in exponential or decimal format, depending on
0326   // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
0327   // constructor).
0328   // The last computed digit is rounded.
0329   //
0330   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
0331   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
0332   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
0333   // Similarly the converter may add up to
0334   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
0335   // returning an exponential representation. A zero added by the
0336   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
0337   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
0338   //   ToPrecision(230.0, 2) -> "230"
0339   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
0340   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
0341   // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
0342   //    EMIT_TRAILING_ZERO_AFTER_POINT:
0343   //   ToPrecision(123450.0, 6) -> "123450"
0344   //   ToPrecision(123450.0, 5) -> "123450"
0345   //   ToPrecision(123450.0, 4) -> "123500"
0346   //   ToPrecision(123450.0, 3) -> "123000"
0347   //   ToPrecision(123450.0, 2) -> "1.2e5"
0348   //
0349   // Returns true if the conversion succeeds. The conversion always succeeds
0350   // except for the following cases:
0351   //   - the input value is special and no infinity_symbol or nan_symbol has
0352   //     been provided to the constructor,
0353   //   - precision < kMinPericisionDigits
0354   //   - precision > kMaxPrecisionDigits
0355   //
0356   // The last condition implies that the result never contains more than
0357   // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
0358   // exponent character, the exponent's sign, and at most 3 exponent digits).
0359   // In addition, the buffer must be able to hold the trailing '\0' character.
0360   bool ToPrecision(double value,
0361                    int precision,
0362                    StringBuilder* result_builder) const;
0363 
0364   enum DtoaMode {
0365     // Produce the shortest correct representation.
0366     // For example the output of 0.299999999999999988897 is (the less accurate
0367     // but correct) 0.3.
0368     SHORTEST,
0369     // Same as SHORTEST, but for single-precision floats.
0370     SHORTEST_SINGLE,
0371     // Produce a fixed number of digits after the decimal point.
0372     // For instance fixed(0.1, 4) becomes 0.1000
0373     // If the input number is big, the output will be big.
0374     FIXED,
0375     // Fixed number of digits (independent of the decimal point).
0376     PRECISION
0377   };
0378 
0379   // Converts the given double 'v' to digit characters. 'v' must not be NaN,
0380   // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
0381   // applies to 'v' after it has been casted to a single-precision float. That
0382   // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or
0383   // -Infinity.
0384   //
0385   // The result should be interpreted as buffer * 10^(point-length).
0386   //
0387   // The digits are written to the buffer in the platform's charset, which is
0388   // often UTF-8 (with ASCII-range digits) but may be another charset, such
0389   // as EBCDIC.
0390   //
0391   // The output depends on the given mode:
0392   //  - SHORTEST: produce the least amount of digits for which the internal
0393   //   identity requirement is still satisfied. If the digits are printed
0394   //   (together with the correct exponent) then reading this number will give
0395   //   'v' again. The buffer will choose the representation that is closest to
0396   //   'v'. If there are two at the same distance, than the one farther away
0397   //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
0398   //   In this mode the 'requested_digits' parameter is ignored.
0399   //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
0400   //  - FIXED: produces digits necessary to print a given number with
0401   //   'requested_digits' digits after the decimal point. The produced digits
0402   //   might be too short in which case the caller has to fill the remainder
0403   //   with '0's.
0404   //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
0405   //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
0406   //   toFixed(0.15, 2) thus returns buffer="2", point=0.
0407   //   The returned buffer may contain digits that would be truncated from the
0408   //   shortest representation of the input.
0409   //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
0410   //   Even though the length of produced digits usually equals
0411   //   'requested_digits', the function is allowed to return fewer digits, in
0412   //   which case the caller has to fill the missing digits with '0's.
0413   //   Halfway cases are again rounded away from 0.
0414   // DoubleToAscii expects the given buffer to be big enough to hold all
0415   // digits and a terminating null-character. In SHORTEST-mode it expects a
0416   // buffer of at least kBase10MaximalLength + 1. In all other modes the
0417   // requested_digits parameter and the padding-zeroes limit the size of the
0418   // output. Don't forget the decimal point, the exponent character and the
0419   // terminating null-character when computing the maximal output size.
0420   // The given length is only used in debug mode to ensure the buffer is big
0421   // enough.
0422   static void DoubleToAscii(double v,
0423                             DtoaMode mode,
0424                             int requested_digits,
0425                             char* buffer,
0426                             int buffer_length,
0427                             bool* sign,
0428                             int* length,
0429                             int* point);
0430 
0431  private:
0432   // Implementation for ToShortest and ToShortestSingle.
0433   bool ToShortestIeeeNumber(double value,
0434                             StringBuilder* result_builder,
0435                             DtoaMode mode) const;
0436 
0437   // If the value is a special value (NaN or Infinity) constructs the
0438   // corresponding string using the configured infinity/nan-symbol.
0439   // If either of them is NULL or the value is not special then the
0440   // function returns false.
0441   bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
0442   // Constructs an exponential representation (i.e. 1.234e56).
0443   // The given exponent assumes a decimal point after the first decimal digit.
0444   void CreateExponentialRepresentation(const char* decimal_digits,
0445                                        int length,
0446                                        int exponent,
0447                                        StringBuilder* result_builder) const;
0448   // Creates a decimal representation (i.e 1234.5678).
0449   void CreateDecimalRepresentation(const char* decimal_digits,
0450                                    int length,
0451                                    int decimal_point,
0452                                    int digits_after_point,
0453                                    StringBuilder* result_builder) const;
0454 
0455   const int flags_;
0456   const char* const infinity_symbol_;
0457   const char* const nan_symbol_;
0458   const char exponent_character_;
0459   const int decimal_in_shortest_low_;
0460   const int decimal_in_shortest_high_;
0461   const int max_leading_padding_zeroes_in_precision_mode_;
0462   const int max_trailing_padding_zeroes_in_precision_mode_;
0463   const int min_exponent_width_;
0464 
0465   DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
0466 };
0467 
0468 }  // namespace double_conversion
0469 
0470 #endif  // DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_