![]() |
|
|||
File indexing completed on 2025-02-21 09:58:12
0001 // SPDX-License-Identifier: MIT 0002 // Copyright 2015,2018-2020 Moritz Kiehn 0003 // 0004 // Permission is hereby granted, free of charge, to any person obtaining a copy 0005 // of this software and associated documentation files (the "Software"), to deal 0006 // in the Software without restriction, including without limitation the rights 0007 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 0008 // copies of the Software, and to permit persons to whom the Software is 0009 // furnished to do so, subject to the following conditions: 0010 // 0011 // The above copyright notice and this permission notice shall be included in 0012 // all copies or substantial portions of the Software. 0013 // 0014 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 0015 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 0016 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 0017 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 0018 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 0019 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 0020 // SOFTWARE. 0021 0022 /// \file 0023 /// \brief Allow structs to be accessed like std::tuple 0024 /// \author Moritz Kiehn <msmk@cern.ch> 0025 /// \date 2015-06-00, Initial version 0026 /// \date 2018-02-09, Major rework 0027 /// \date 2019-09-09, Split i/o components into separate libraries 0028 /// \date 2020-10-13, Add support for direct use of `get<I>(named_tuple)` 0029 0030 #pragma once 0031 0032 #include <array> 0033 #include <cassert> 0034 #include <ostream> 0035 #include <string> 0036 #include <tuple> 0037 #include <utility> 0038 0039 /// Enable tuple-like access and conversion for selected class/struct members. 0040 /// 0041 /// This allows access to the selected members via `.get<I>()` or `get<I>(...)`, 0042 /// conversion to equivalent `std::tuple<...>` via implicit conversion or 0043 /// explicitely via `.tuple()`, and assignment from equivalent tuples. 0044 /// The names can be accessed via `::names()`. 0045 #define DFE_NAMEDTUPLE(name, ...) \ 0046 using Tuple = decltype(::std::make_tuple(__VA_ARGS__)); \ 0047 static ::std::array<::std::string, ::std::tuple_size<Tuple>::value> \ 0048 names() { \ 0049 return ::dfe::namedtuple_impl::unstringify< \ 0050 ::std::tuple_size<Tuple>::value>((#__VA_ARGS__)); \ 0051 } \ 0052 template<typename... U> \ 0053 name& operator=(const ::std::tuple<U...>& other) { \ 0054 ::std::tie(__VA_ARGS__) = other; \ 0055 return *this; \ 0056 } \ 0057 template<typename... U> \ 0058 name& operator=(::std::tuple<U...>&& other) { \ 0059 ::std::tie(__VA_ARGS__) = ::std::forward<std::tuple<U...>>(other); \ 0060 return *this; \ 0061 } \ 0062 operator Tuple() const { return ::std::make_tuple(__VA_ARGS__); } \ 0063 Tuple tuple() const { return ::std::make_tuple(__VA_ARGS__); } \ 0064 template<std::size_t I> \ 0065 constexpr ::std::tuple_element_t<I, Tuple>& get() { \ 0066 return ::std::get<I>(std::tie(__VA_ARGS__)); \ 0067 } \ 0068 template<::std::size_t I> \ 0069 constexpr const ::std::tuple_element_t<I, Tuple>& get() const { \ 0070 return ::std::get<I>(std::tie(__VA_ARGS__)); \ 0071 } \ 0072 template<::std::size_t I> \ 0073 friend constexpr ::std::tuple_element_t<I, Tuple>& get(name& nt) { \ 0074 return nt.template get<I>(); \ 0075 } \ 0076 template<::std::size_t I> \ 0077 friend constexpr const ::std::tuple_element_t<I, Tuple>& get( \ 0078 const name& nt) { \ 0079 return nt.template get<I>(); \ 0080 } \ 0081 friend inline ::std::ostream& operator<<(::std::ostream& os, const name& nt) \ 0082 __attribute__((unused)) { \ 0083 return ::dfe::namedtuple_impl::print_tuple( \ 0084 os, nt.names(), nt.tuple(), \ 0085 ::std::make_index_sequence<::std::tuple_size<Tuple>::value>{}); \ 0086 } 0087 0088 // implementation helpers 0089 namespace dfe { 0090 namespace namedtuple_impl { 0091 0092 // Reverse macro stringification. 0093 // 0094 // Splits a string of the form `a, b, c` into components a, b, and c. 0095 template<std::size_t N> 0096 constexpr std::array<std::string, N> 0097 unstringify(const char* str) { 0098 assert(str and "Input string must be non-null"); 0099 0100 std::array<std::string, N> out; 0101 0102 for (std::size_t idx = 0; idx < N; ++idx) { 0103 // skip leading whitespace 0104 while ((*str != '\0') and (*str == ' ')) { 0105 ++str; 0106 } 0107 // find the next separator or end-of-string 0108 const char* sep = str; 0109 while ((*sep != '\0') and (*sep != ',')) { 0110 ++sep; 0111 } 0112 // store component w/o the separator 0113 out[idx].assign(str, sep - str); 0114 // we can quit as soon as we reached the end of the input 0115 if (*sep == '\0') { 0116 break; 0117 } 0118 // start search for next component after the separator 0119 str = ++sep; 0120 } 0121 // TODO handle inconsistent number of entries? can it occur in expected use? 0122 return out; 0123 } 0124 0125 // modified from http://stackoverflow.com/a/6245777 0126 template<typename Names, typename Values, std::size_t... I> 0127 inline std::ostream& 0128 print_tuple( 0129 std::ostream& os, const Names& n, const Values& v, 0130 std::index_sequence<I...>) { 0131 // we want to execute some expression for every entry in the index pack. this 0132 // requires a construction that can take a variable number of arguments into 0133 // which we can unpack the indices. inside a function, constructing an 0134 // array with an initializer list will do the job, i.e. we will effectively 0135 // create the following statement 0136 // 0137 // int x[] = {...}; 0138 // 0139 // since we do not care about the actual values within the array, the 0140 // initializer list is cast twice: once to the array type and then to void. 0141 // this ignores the actual values and silences warnings about unused 0142 // variables. to get the correct initializer list syntax, the array type 0143 // must be typedef'd as a single type. what we get is 0144 // 0145 // using Vacuum = int[]; 0146 // (void)Vacuum{...}; 0147 // 0148 // in order for this to work, the expression that we want to instantiate 0149 // needs to evaluate to the element type of the array (here: `int`). this can 0150 // be done with the comma operator (yep, `,` is a weird but helpful operator) 0151 // for arbitrary expressions. `(<expr1>, <expr2>)` executes both expressions 0152 // but evaluates only to the return value of the second expression. thus, 0153 // `(<expr>, 0)` executes `<expr>` but always evalutes to an integer of value 0154 // zero. if <expr> uses the index pack variable `I` in the following setup 0155 // 0156 // (void)Vacuum{(<expr>, 0)...}; 0157 // 0158 // it is instantiatied for each element within the pack (with appropriate , 0159 // placements). thus, effectively looping over every entry in the pack and 0160 // calling <expr> for each (here: printing to os); 0161 using std::get; 0162 using Vacuum = int[]; 0163 (void)Vacuum{ 0164 (os << ((0 < I) ? " " : "") << get<I>(n) << "=" << get<I>(v), 0)...}; 0165 return os; 0166 } 0167 0168 } // namespace namedtuple_impl 0169 } // namespace dfe
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |