|
||||
File indexing completed on 2025-01-17 09:55:13
0001 /* CTF format description. 0002 Copyright (C) 2019-2024 Free Software Foundation, Inc. 0003 0004 This file is part of libctf. 0005 0006 libctf is free software; you can redistribute it and/or modify it under 0007 the terms of the GNU General Public License as published by the Free 0008 Software Foundation; either version 3, or (at your option) any later 0009 version. 0010 0011 This program is distributed in the hope that it will be useful, but 0012 WITHOUT ANY WARRANTY; without even the implied warranty of 0013 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 0014 See the GNU General Public License for more details. 0015 0016 You should have received a copy of the GNU General Public License 0017 along with this program; see the file COPYING. If not see 0018 <http://www.gnu.org/licenses/>. */ 0019 0020 #ifndef _CTF_H 0021 #define _CTF_H 0022 0023 #include <sys/types.h> 0024 #include <limits.h> 0025 #include <stdint.h> 0026 0027 0028 #ifdef __cplusplus 0029 extern "C" 0030 { 0031 #endif 0032 0033 /* CTF - Compact ANSI-C Type Format 0034 0035 This file format can be used to compactly represent the information needed 0036 by a debugger to interpret the ANSI-C types used by a given program. 0037 Traditionally, this kind of information is generated by the compiler when 0038 invoked with the -g flag and is stored in "stabs" strings or in the more 0039 modern DWARF format. CTF provides a representation of only the information 0040 that is relevant to debugging a complex, optimized C program such as the 0041 operating system kernel in a form that is significantly more compact than 0042 the equivalent stabs or DWARF representation. The format is data-model 0043 independent, so consumers do not need different code depending on whether 0044 they are 32-bit or 64-bit programs; libctf automatically compensates for 0045 endianness variations. CTF assumes that a standard ELF symbol table is 0046 available for use in the debugger, and uses the structure and data of the 0047 symbol table to avoid storing redundant information. The CTF data may be 0048 compressed on disk or in memory, indicated by a bit in the header. CTF may 0049 be interpreted in a raw disk file, or it may be stored in an ELF section, 0050 typically named .ctf. Data structures are aligned so that a raw CTF file or 0051 CTF ELF section may be manipulated using mmap(2). 0052 0053 The CTF file or section itself has the following structure: 0054 0055 +--------+--------+---------+----------+--------+----------+... 0056 | file | type | data | function | object | function |... 0057 | header | labels | objects | info | index | index |... 0058 +--------+--------+---------+----------+--------+----------+... 0059 0060 ...+----------+-------+--------+ 0061 ...| variable | data | string | 0062 ...| info | types | table | 0063 +----------+-------+--------+ 0064 0065 The file header stores a magic number and version information, encoding 0066 flags, and the byte offset of each of the sections relative to the end of the 0067 header itself. If the CTF data has been uniquified against another set of 0068 CTF data, a reference to that data also appears in the the header. This 0069 reference is the name of the label corresponding to the types uniquified 0070 against. 0071 0072 Following the header is a list of labels, used to group the types included in 0073 the data types section. Each label is accompanied by a type ID i. A given 0074 label refers to the group of types whose IDs are in the range [0, i]. 0075 0076 Data object and function records (collectively, "symtypetabs") are stored in 0077 the same order as they appear in the corresponding symbol table, except that 0078 symbols marked SHN_UNDEF are not stored and symbols that have no type data 0079 are padded out with zeroes. For each entry in these tables, the type ID (a 0080 small integer) is recorded. (Functions get CTF_K_FUNCTION types, just like 0081 data objects that are function pointers.) 0082 0083 For situations in which the order of the symbols in the symtab is not known, 0084 or most symbols have no type in this dict and most entries would be 0085 zero-pads, a pair of optional indexes follow the data object and function 0086 info sections: each of these is an array of strtab indexes, mapped 1:1 to the 0087 corresponding data object / function info section, giving each entry in those 0088 sections a name so that the linker can correlate them with final symtab 0089 entries and reorder them accordingly (dropping the indexes in the process). 0090 0091 Variable records (as distinct from data objects) provide a modicum of support 0092 for non-ELF systems, mapping a variable or function name to a CTF type ID. 0093 The names are sorted into ASCIIbetical order, permitting binary searching. 0094 We do not define how the consumer maps these variable names to addresses or 0095 anything else, or indeed what these names represent: they might be names 0096 looked up at runtime via dlsym() or names extracted at runtime by a debugger 0097 or anything else the consumer likes. Variable records with identically- 0098 named entries in the data object or function index section are removed. 0099 0100 The data types section is a list of variable size records that represent each 0101 type, in order by their ID. The types themselves form a directed graph, 0102 where each node may contain one or more outgoing edges to other type nodes, 0103 denoted by their ID. Most type nodes are standalone or point backwards to 0104 earlier nodes, but this is not required: nodes can point to later nodes, 0105 particularly structure and union members. 0106 0107 Strings are recorded as a string table ID (0 or 1) and a byte offset into the 0108 string table. String table 0 is the internal CTF string table. String table 0109 1 is the external string table, which is the string table associated with the 0110 ELF dynamic symbol table for this object. CTF does not record any strings 0111 that are already in the symbol table, and the CTF string table does not 0112 contain any duplicated strings. 0113 0114 If the CTF data has been merged with another parent CTF object, some outgoing 0115 edges may refer to type nodes that exist in another CTF object. The debugger 0116 and libctf library are responsible for connecting the appropriate objects 0117 together so that the full set of types can be explored and manipulated. 0118 0119 This connection is done purely using the ctf_import() function. The 0120 ctf_archive machinery (and thus ctf_open et al) automatically imports archive 0121 members named ".ctf" into child dicts if available in the same archive, to 0122 match the relationship set up by the linker, but callers can call ctf_import 0123 themselves as well if need be, if they know a different relationship is in 0124 force. */ 0125 0126 #define CTF_MAX_TYPE 0xfffffffe /* Max type identifier value. */ 0127 #define CTF_MAX_PTYPE 0x7fffffff /* Max parent type identifier value. */ 0128 #define CTF_MAX_NAME 0x7fffffff /* Max offset into a string table. */ 0129 #define CTF_MAX_VLEN 0xffffff /* Max struct, union, enum members or args. */ 0130 0131 /* See ctf_type_t */ 0132 #define CTF_MAX_SIZE 0xfffffffe /* Max size of a v2 type in bytes. */ 0133 #define CTF_LSIZE_SENT 0xffffffff /* Sentinel for v2 ctt_size. */ 0134 0135 # define CTF_MAX_TYPE_V1 0xffff /* Max type identifier value. */ 0136 # define CTF_MAX_PTYPE_V1 0x7fff /* Max parent type identifier value. */ 0137 # define CTF_MAX_VLEN_V1 0x3ff /* Max struct, union, enums or args. */ 0138 # define CTF_MAX_SIZE_V1 0xfffe /* Max size of a type in bytes. */ 0139 # define CTF_LSIZE_SENT_V1 0xffff /* Sentinel for v1 ctt_size. */ 0140 0141 /* Start of actual data structure definitions. 0142 0143 Every field in these structures must have corresponding code in the 0144 endianness-swapping machinery in libctf/ctf-open.c. */ 0145 0146 typedef struct ctf_preamble 0147 { 0148 unsigned short ctp_magic; /* Magic number (CTF_MAGIC). */ 0149 unsigned char ctp_version; /* Data format version number (CTF_VERSION). */ 0150 unsigned char ctp_flags; /* Flags (see below). */ 0151 } ctf_preamble_t; 0152 0153 typedef struct ctf_header_v2 0154 { 0155 ctf_preamble_t cth_preamble; 0156 uint32_t cth_parlabel; /* Ref to name of parent lbl uniq'd against. */ 0157 uint32_t cth_parname; /* Ref to basename of parent. */ 0158 uint32_t cth_lbloff; /* Offset of label section. */ 0159 uint32_t cth_objtoff; /* Offset of object section. */ 0160 uint32_t cth_funcoff; /* Offset of function section. */ 0161 uint32_t cth_varoff; /* Offset of variable section. */ 0162 uint32_t cth_typeoff; /* Offset of type section. */ 0163 uint32_t cth_stroff; /* Offset of string section. */ 0164 uint32_t cth_strlen; /* Length of string section in bytes. */ 0165 } ctf_header_v2_t; 0166 0167 typedef struct ctf_header 0168 { 0169 ctf_preamble_t cth_preamble; 0170 uint32_t cth_parlabel; /* Ref to name of parent lbl uniq'd against. */ 0171 uint32_t cth_parname; /* Ref to basename of parent. */ 0172 uint32_t cth_cuname; /* Ref to CU name (may be 0). */ 0173 uint32_t cth_lbloff; /* Offset of label section. */ 0174 uint32_t cth_objtoff; /* Offset of object section. */ 0175 uint32_t cth_funcoff; /* Offset of function section. */ 0176 uint32_t cth_objtidxoff; /* Offset of object index section. */ 0177 uint32_t cth_funcidxoff; /* Offset of function index section. */ 0178 uint32_t cth_varoff; /* Offset of variable section. */ 0179 uint32_t cth_typeoff; /* Offset of type section. */ 0180 uint32_t cth_stroff; /* Offset of string section. */ 0181 uint32_t cth_strlen; /* Length of string section in bytes. */ 0182 } ctf_header_t; 0183 0184 #define cth_magic cth_preamble.ctp_magic 0185 #define cth_version cth_preamble.ctp_version 0186 #define cth_flags cth_preamble.ctp_flags 0187 0188 #define CTF_MAGIC 0xdff2 /* Magic number identifying header. */ 0189 0190 /* Data format version number. */ 0191 0192 /* v1 upgraded to a later version is not quite the same as the native form, 0193 because the boundary between parent and child types is different but not 0194 recorded anywhere, and you can write it out again via ctf_compress_write(), 0195 so we must track whether the thing was originally v1 or not. If we were 0196 writing the header from scratch, we would add a *pair* of version number 0197 fields to allow for this, but this will do for now. (A flag will not do, 0198 because we need to encode both the version we came from and the version we 0199 went to, not just "we were upgraded".) */ 0200 0201 # define CTF_VERSION_1 1 0202 # define CTF_VERSION_1_UPGRADED_3 2 0203 # define CTF_VERSION_2 3 0204 0205 #define CTF_VERSION_3 4 0206 #define CTF_VERSION CTF_VERSION_3 /* Current version. */ 0207 0208 /* All of these flags bar CTF_F_COMPRESS and CTF_F_IDXSORTED are bug-workaround 0209 flags and are valid only in format v3: in v2 and below they cannot occur and 0210 in v4 and later, they will be recycled for other purposes. */ 0211 0212 #define CTF_F_COMPRESS 0x1 /* Data buffer is compressed by libctf. */ 0213 #define CTF_F_NEWFUNCINFO 0x2 /* New v3 func info section format. */ 0214 #define CTF_F_IDXSORTED 0x4 /* Index sections already sorted. */ 0215 #define CTF_F_DYNSTR 0x8 /* Strings come from .dynstr. */ 0216 #define CTF_F_MAX (CTF_F_COMPRESS | CTF_F_NEWFUNCINFO | CTF_F_IDXSORTED \ 0217 | CTF_F_DYNSTR) 0218 0219 typedef struct ctf_lblent 0220 { 0221 uint32_t ctl_label; /* Ref to name of label. */ 0222 uint32_t ctl_type; /* Last type associated with this label. */ 0223 } ctf_lblent_t; 0224 0225 typedef struct ctf_varent 0226 { 0227 uint32_t ctv_name; /* Reference to name in string table. */ 0228 uint32_t ctv_type; /* Index of type of this variable. */ 0229 } ctf_varent_t; 0230 0231 /* In format v2, type sizes, measured in bytes, come in two flavours. Nearly 0232 all of them fit into a (UINT_MAX - 1), and thus can be stored in the ctt_size 0233 member of a ctf_stype_t. The maximum value for these sizes is CTF_MAX_SIZE. 0234 Types larger than this must be stored in the ctf_lsize member of a 0235 ctf_type_t. Use of this member is indicated by the presence of 0236 CTF_LSIZE_SENT in ctt_size. */ 0237 0238 /* In v1, the same applies, only the limit is (USHRT_MAX - 1) and 0239 CTF_MAX_SIZE_V1, and CTF_LSIZE_SENT_V1 is the sentinel. */ 0240 0241 typedef struct ctf_stype_v1 0242 { 0243 uint32_t ctt_name; /* Reference to name in string table. */ 0244 unsigned short ctt_info; /* Encoded kind, variant length (see below). */ 0245 #ifndef __GNUC__ 0246 union 0247 { 0248 unsigned short _size; /* Size of entire type in bytes. */ 0249 unsigned short _type; /* Reference to another type. */ 0250 } _u; 0251 #else 0252 __extension__ 0253 union 0254 { 0255 unsigned short ctt_size; /* Size of entire type in bytes. */ 0256 unsigned short ctt_type; /* Reference to another type. */ 0257 }; 0258 #endif 0259 } ctf_stype_v1_t; 0260 0261 typedef struct ctf_type_v1 0262 { 0263 uint32_t ctt_name; /* Reference to name in string table. */ 0264 unsigned short ctt_info; /* Encoded kind, variant length (see below). */ 0265 #ifndef __GNUC__ 0266 union 0267 { 0268 unsigned short _size; /* Always CTF_LSIZE_SENT_V1. */ 0269 unsigned short _type; /* Do not use. */ 0270 } _u; 0271 #else 0272 __extension__ 0273 union 0274 { 0275 unsigned short ctt_size; /* Always CTF_LSIZE_SENT_V1. */ 0276 unsigned short ctt_type; /* Do not use. */ 0277 }; 0278 #endif 0279 uint32_t ctt_lsizehi; /* High 32 bits of type size in bytes. */ 0280 uint32_t ctt_lsizelo; /* Low 32 bits of type size in bytes. */ 0281 } ctf_type_v1_t; 0282 0283 0284 typedef struct ctf_stype 0285 { 0286 uint32_t ctt_name; /* Reference to name in string table. */ 0287 uint32_t ctt_info; /* Encoded kind, variant length (see below). */ 0288 #ifndef __GNUC__ 0289 union 0290 { 0291 uint32_t _size; /* Size of entire type in bytes. */ 0292 uint32_t _type; /* Reference to another type. */ 0293 } _u; 0294 #else 0295 __extension__ 0296 union 0297 { 0298 uint32_t ctt_size; /* Size of entire type in bytes. */ 0299 uint32_t ctt_type; /* Reference to another type. */ 0300 }; 0301 #endif 0302 } ctf_stype_t; 0303 0304 typedef struct ctf_type 0305 { 0306 uint32_t ctt_name; /* Reference to name in string table. */ 0307 uint32_t ctt_info; /* Encoded kind, variant length (see below). */ 0308 #ifndef __GNUC__ 0309 union 0310 { 0311 uint32_t _size; /* Always CTF_LSIZE_SENT. */ 0312 uint32_t _type; /* Do not use. */ 0313 } _u; 0314 #else 0315 __extension__ 0316 union 0317 { 0318 uint32_t ctt_size; /* Always CTF_LSIZE_SENT. */ 0319 uint32_t ctt_type; /* Do not use. */ 0320 }; 0321 #endif 0322 uint32_t ctt_lsizehi; /* High 32 bits of type size in bytes. */ 0323 uint32_t ctt_lsizelo; /* Low 32 bits of type size in bytes. */ 0324 } ctf_type_t; 0325 0326 #ifndef __GNUC__ 0327 #define ctt_size _u._size /* For fundamental types that have a size. */ 0328 #define ctt_type _u._type /* For types that reference another type. */ 0329 #endif 0330 0331 /* The following macros and inline functions compose and decompose values for 0332 ctt_info and ctt_name, as well as other structures that contain name 0333 references. Use outside libdtrace-ctf itself is explicitly for access to CTF 0334 files directly: types returned from the library will always appear to be 0335 CTF_V2. 0336 0337 v1: (transparently upgraded to v2 at open time: may be compiled out of the 0338 library) 0339 ------------------------ 0340 ctt_info: | kind | isroot | vlen | 0341 ------------------------ 0342 15 11 10 9 0 0343 0344 v2: 0345 ------------------------ 0346 ctt_info: | kind | isroot | vlen | 0347 ------------------------ 0348 31 26 25 24 0 0349 0350 CTF_V1 and V2 _INFO_VLEN have the same interface: 0351 0352 kind = CTF_*_INFO_KIND(c.ctt_info); <-- CTF_K_* value (see below) 0353 vlen = CTF_*_INFO_VLEN(fp, c.ctt_info); <-- length of variable data list 0354 0355 stid = CTF_NAME_STID(c.ctt_name); <-- string table id number (0 or 1) 0356 offset = CTF_NAME_OFFSET(c.ctt_name); <-- string table byte offset 0357 0358 c.ctt_info = CTF_TYPE_INFO(kind, vlen); 0359 c.ctt_name = CTF_TYPE_NAME(stid, offset); */ 0360 0361 #define CTF_V1_INFO_KIND(info) (((info) & 0xf800) >> 11) 0362 #define CTF_V1_INFO_ISROOT(info) (((info) & 0x0400) >> 10) 0363 #define CTF_V1_INFO_VLEN(info) (((info) & CTF_MAX_VLEN_V1)) 0364 0365 #define CTF_V2_INFO_KIND(info) (((info) & 0xfc000000) >> 26) 0366 #define CTF_V2_INFO_ISROOT(info) (((info) & 0x2000000) >> 25) 0367 #define CTF_V2_INFO_VLEN(info) (((info) & CTF_MAX_VLEN)) 0368 0369 #define CTF_NAME_STID(name) ((name) >> 31) 0370 #define CTF_NAME_OFFSET(name) ((name) & CTF_MAX_NAME) 0371 #define CTF_SET_STID(name, stid) ((name) | ((unsigned int) stid) << 31) 0372 0373 /* V2 only. */ 0374 #define CTF_TYPE_INFO(kind, isroot, vlen) \ 0375 (((kind) << 26) | (((isroot) ? 1 : 0) << 25) | ((vlen) & CTF_MAX_VLEN)) 0376 0377 #define CTF_TYPE_NAME(stid, offset) \ 0378 (((stid) << 31) | ((offset) & CTF_MAX_NAME)) 0379 0380 /* The next set of macros are for public consumption only. Not used internally, 0381 since the relevant type boundary is dependent upon the version of the file at 0382 *opening* time, not the version after transparent upgrade. Use 0383 ctf_type_isparent() / ctf_type_ischild() for that. */ 0384 0385 #define CTF_V2_TYPE_ISPARENT(fp, id) ((id) <= CTF_MAX_PTYPE) 0386 #define CTF_V2_TYPE_ISCHILD(fp, id) ((id) > CTF_MAX_PTYPE) 0387 #define CTF_V2_TYPE_TO_INDEX(id) ((id) & CTF_MAX_PTYPE) 0388 #define CTF_V2_INDEX_TO_TYPE(id, child) ((child) ? ((id) | (CTF_MAX_PTYPE+1)) : (id)) 0389 0390 #define CTF_V1_TYPE_ISPARENT(fp, id) ((id) <= CTF_MAX_PTYPE_V1) 0391 #define CTF_V1_TYPE_ISCHILD(fp, id) ((id) > CTF_MAX_PTYPE_V1) 0392 #define CTF_V1_TYPE_TO_INDEX(id) ((id) & CTF_MAX_PTYPE_V1) 0393 #define CTF_V1_INDEX_TO_TYPE(id, child) ((child) ? ((id) | (CTF_MAX_PTYPE_V1+1)) : (id)) 0394 0395 /* Valid for both V1 and V2. */ 0396 #define CTF_TYPE_LSIZE(cttp) \ 0397 (((uint64_t)(cttp)->ctt_lsizehi) << 32 | (cttp)->ctt_lsizelo) 0398 #define CTF_SIZE_TO_LSIZE_HI(size) ((uint32_t)((uint64_t)(size) >> 32)) 0399 #define CTF_SIZE_TO_LSIZE_LO(size) ((uint32_t)(size)) 0400 0401 #define CTF_STRTAB_0 0 /* String table id 0 (in-CTF). */ 0402 #define CTF_STRTAB_1 1 /* String table id 1 (ELF strtab). */ 0403 0404 /* Values for CTF_TYPE_KIND(). If the kind has an associated data list, 0405 CTF_INFO_VLEN() will extract the number of elements in the list, and 0406 the type of each element is shown in the comments below. */ 0407 0408 #define CTF_K_UNKNOWN 0 /* Unknown type (used for padding and 0409 unrepresentable types). */ 0410 #define CTF_K_INTEGER 1 /* Variant data is CTF_INT_DATA (see below). */ 0411 #define CTF_K_FLOAT 2 /* Variant data is CTF_FP_DATA (see below). */ 0412 #define CTF_K_POINTER 3 /* ctt_type is referenced type. */ 0413 #define CTF_K_ARRAY 4 /* Variant data is single ctf_array_t. */ 0414 #define CTF_K_FUNCTION 5 /* ctt_type is return type, variant data is 0415 list of argument types (unsigned short's for v1, 0416 uint32_t's for v2). */ 0417 #define CTF_K_STRUCT 6 /* Variant data is list of ctf_member_t's. */ 0418 #define CTF_K_UNION 7 /* Variant data is list of ctf_member_t's. */ 0419 #define CTF_K_ENUM 8 /* Variant data is list of ctf_enum_t's. */ 0420 #define CTF_K_FORWARD 9 /* No additional data; ctt_name is tag. */ 0421 #define CTF_K_TYPEDEF 10 /* ctt_type is referenced type. */ 0422 #define CTF_K_VOLATILE 11 /* ctt_type is base type. */ 0423 #define CTF_K_CONST 12 /* ctt_type is base type. */ 0424 #define CTF_K_RESTRICT 13 /* ctt_type is base type. */ 0425 #define CTF_K_SLICE 14 /* Variant data is a ctf_slice_t. */ 0426 0427 #define CTF_K_MAX 63 /* Maximum possible (V2) CTF_K_* value. */ 0428 0429 /* Values for ctt_type when kind is CTF_K_INTEGER. The flags, offset in bits, 0430 and size in bits are encoded as a single word using the following macros. 0431 (However, you can also encode the offset and bitness in a slice.) */ 0432 0433 #define CTF_INT_ENCODING(data) (((data) & 0xff000000) >> 24) 0434 #define CTF_INT_OFFSET(data) (((data) & 0x00ff0000) >> 16) 0435 #define CTF_INT_BITS(data) (((data) & 0x0000ffff)) 0436 0437 #define CTF_INT_DATA(encoding, offset, bits) \ 0438 (((encoding) << 24) | ((offset) << 16) | (bits)) 0439 0440 #define CTF_INT_SIGNED 0x01 /* Integer is signed (otherwise unsigned). */ 0441 #define CTF_INT_CHAR 0x02 /* Character display format. */ 0442 #define CTF_INT_BOOL 0x04 /* Boolean display format. */ 0443 #define CTF_INT_VARARGS 0x08 /* Varargs display format. */ 0444 0445 /* Use CTF_CHAR to produce a char that agrees with the system's native 0446 char signedness. */ 0447 #if CHAR_MIN == 0 0448 # define CTF_CHAR (CTF_INT_CHAR) 0449 #else 0450 # define CTF_CHAR (CTF_INT_CHAR | CTF_INT_SIGNED) 0451 #endif 0452 0453 /* Values for ctt_type when kind is CTF_K_FLOAT. The encoding, offset in bits, 0454 and size in bits are encoded as a single word using the following macros. 0455 (However, you can also encode the offset and bitness in a slice.) */ 0456 0457 #define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24) 0458 #define CTF_FP_OFFSET(data) (((data) & 0x00ff0000) >> 16) 0459 #define CTF_FP_BITS(data) (((data) & 0x0000ffff)) 0460 0461 #define CTF_FP_DATA(encoding, offset, bits) \ 0462 (((encoding) << 24) | ((offset) << 16) | (bits)) 0463 0464 /* Variant data when kind is CTF_K_FLOAT is an encoding in the top eight bits. */ 0465 #define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24) 0466 0467 #define CTF_FP_SINGLE 1 /* IEEE 32-bit float encoding. */ 0468 #define CTF_FP_DOUBLE 2 /* IEEE 64-bit float encoding. */ 0469 #define CTF_FP_CPLX 3 /* Complex encoding. */ 0470 #define CTF_FP_DCPLX 4 /* Double complex encoding. */ 0471 #define CTF_FP_LDCPLX 5 /* Long double complex encoding. */ 0472 #define CTF_FP_LDOUBLE 6 /* Long double encoding. */ 0473 #define CTF_FP_INTRVL 7 /* Interval (2x32-bit) encoding. */ 0474 #define CTF_FP_DINTRVL 8 /* Double interval (2x64-bit) encoding. */ 0475 #define CTF_FP_LDINTRVL 9 /* Long double interval (2x128-bit) encoding. */ 0476 #define CTF_FP_IMAGRY 10 /* Imaginary (32-bit) encoding. */ 0477 #define CTF_FP_DIMAGRY 11 /* Long imaginary (64-bit) encoding. */ 0478 #define CTF_FP_LDIMAGRY 12 /* Long double imaginary (128-bit) encoding. */ 0479 0480 #define CTF_FP_MAX 12 /* Maximum possible CTF_FP_* value */ 0481 0482 /* A slice increases the offset and reduces the bitness of the referenced 0483 ctt_type, which must be a type which has an encoding (fp, int, or enum). We 0484 also store the referenced type in here, because it is easier to keep the 0485 ctt_size correct for the slice than to shuffle the size into here and keep 0486 the ctt_type where it is for other types. 0487 0488 In a future version, where we loosen requirements on alignment in the CTF 0489 file, the cts_offset and cts_bits will be chars: but for now they must be 0490 shorts or everything after a slice will become unaligned. */ 0491 0492 typedef struct ctf_slice 0493 { 0494 uint32_t cts_type; 0495 unsigned short cts_offset; 0496 unsigned short cts_bits; 0497 } ctf_slice_t; 0498 0499 typedef struct ctf_array_v1 0500 { 0501 unsigned short cta_contents; /* Reference to type of array contents. */ 0502 unsigned short cta_index; /* Reference to type of array index. */ 0503 uint32_t cta_nelems; /* Number of elements. */ 0504 } ctf_array_v1_t; 0505 0506 typedef struct ctf_array 0507 { 0508 uint32_t cta_contents; /* Reference to type of array contents. */ 0509 uint32_t cta_index; /* Reference to type of array index. */ 0510 uint32_t cta_nelems; /* Number of elements. */ 0511 } ctf_array_t; 0512 0513 /* Most structure members have bit offsets that can be expressed using a short. 0514 Some don't. ctf_member_t is used for structs which cannot contain any of 0515 these large offsets, whereas ctf_lmember_t is used in the latter case. If 0516 any member of a given struct has an offset that cannot be expressed using a 0517 uint32_t, all members will be stored as type ctf_lmember_t. This is expected 0518 to be very rare (but nonetheless possible). */ 0519 0520 #define CTF_LSTRUCT_THRESH 536870912 0521 0522 /* In v1, the same is true, except that lmembers are used for structs >= 8192 0523 bytes in size. (The ordering of members in the ctf_member_* structures is 0524 different to improve padding.) */ 0525 0526 #define CTF_LSTRUCT_THRESH_V1 8192 0527 0528 typedef struct ctf_member_v1 0529 { 0530 uint32_t ctm_name; /* Reference to name in string table. */ 0531 unsigned short ctm_type; /* Reference to type of member. */ 0532 unsigned short ctm_offset; /* Offset of this member in bits. */ 0533 } ctf_member_v1_t; 0534 0535 typedef struct ctf_lmember_v1 0536 { 0537 uint32_t ctlm_name; /* Reference to name in string table. */ 0538 unsigned short ctlm_type; /* Reference to type of member. */ 0539 unsigned short ctlm_pad; /* Padding. */ 0540 uint32_t ctlm_offsethi; /* High 32 bits of member offset in bits. */ 0541 uint32_t ctlm_offsetlo; /* Low 32 bits of member offset in bits. */ 0542 } ctf_lmember_v1_t; 0543 0544 typedef struct ctf_member_v2 0545 { 0546 uint32_t ctm_name; /* Reference to name in string table. */ 0547 uint32_t ctm_offset; /* Offset of this member in bits. */ 0548 uint32_t ctm_type; /* Reference to type of member. */ 0549 } ctf_member_t; 0550 0551 typedef struct ctf_lmember_v2 0552 { 0553 uint32_t ctlm_name; /* Reference to name in string table. */ 0554 uint32_t ctlm_offsethi; /* High 32 bits of member offset in bits. */ 0555 uint32_t ctlm_type; /* Reference to type of member. */ 0556 uint32_t ctlm_offsetlo; /* Low 32 bits of member offset in bits. */ 0557 } ctf_lmember_t; 0558 0559 #define CTF_LMEM_OFFSET(ctlmp) \ 0560 (((uint64_t)(ctlmp)->ctlm_offsethi) << 32 | (ctlmp)->ctlm_offsetlo) 0561 #define CTF_OFFSET_TO_LMEMHI(offset) ((uint32_t)((uint64_t)(offset) >> 32)) 0562 #define CTF_OFFSET_TO_LMEMLO(offset) ((uint32_t)(offset)) 0563 0564 typedef struct ctf_enum 0565 { 0566 uint32_t cte_name; /* Reference to name in string table. */ 0567 int32_t cte_value; /* Value associated with this name. */ 0568 } ctf_enum_t; 0569 0570 /* The ctf_archive is a collection of ctf_dict_t's stored together. The format 0571 is suitable for mmap()ing: this control structure merely describes the 0572 mmap()ed archive (and overlaps the first few bytes of it), hence the 0573 greater care taken with integral types. All CTF files in an archive 0574 must have the same data model. (This is not validated.) 0575 0576 All integers in this structure are stored in little-endian byte order. 0577 0578 The code relies on the fact that everything in this header is a uint64_t 0579 and thus the header needs no padding (in particular, that no padding is 0580 needed between ctfa_ctfs and the unnamed ctfa_archive_modent array 0581 that follows it). 0582 0583 This is *not* the same as the data structure returned by the ctf_arc_*() 0584 functions: this is the low-level on-disk representation. */ 0585 0586 #define CTFA_MAGIC 0x8b47f2a4d7623eeb /* Random. */ 0587 struct ctf_archive 0588 { 0589 /* Magic number. (In loaded files, overwritten with the file size 0590 so ctf_arc_close() knows how much to munmap()). */ 0591 uint64_t ctfa_magic; 0592 0593 /* CTF data model. */ 0594 uint64_t ctfa_model; 0595 0596 /* Number of CTF dicts in the archive. */ 0597 uint64_t ctfa_ndicts; 0598 0599 /* Offset of the name table. */ 0600 uint64_t ctfa_names; 0601 0602 /* Offset of the CTF table. Each element starts with a size (a little- 0603 endian uint64_t) then a ctf_dict_t of that size. */ 0604 uint64_t ctfa_ctfs; 0605 }; 0606 0607 /* An array of ctfa_ndicts of this structure lies at 0608 ctf_archive[sizeof(struct ctf_archive)] and gives the ctfa_ctfs or 0609 ctfa_names-relative offsets of each name or ctf_dict_t. */ 0610 0611 typedef struct ctf_archive_modent 0612 { 0613 uint64_t name_offset; 0614 uint64_t ctf_offset; 0615 } ctf_archive_modent_t; 0616 0617 #ifdef __cplusplus 0618 } 0619 #endif 0620 0621 #endif /* _CTF_H */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |