|
||||
File indexing completed on 2025-01-18 09:55:05
0001 // nbtheory.h - originally written and placed in the public domain by Wei Dai 0002 0003 /// \file nbtheory.h 0004 /// \brief Classes and functions for number theoretic operations 0005 0006 #ifndef CRYPTOPP_NBTHEORY_H 0007 #define CRYPTOPP_NBTHEORY_H 0008 0009 #include "cryptlib.h" 0010 #include "integer.h" 0011 #include "algparam.h" 0012 0013 NAMESPACE_BEGIN(CryptoPP) 0014 0015 /// \brief The Small Prime table 0016 /// \param size number of elements in the table 0017 /// \return prime table with /p size elements 0018 /// \details GetPrimeTable() obtains pointer to small prime table and provides the size of the table. 0019 /// /p size is an out parameter. 0020 CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size); 0021 0022 // ************ primality testing **************** 0023 0024 /// \brief Generates a provable prime 0025 /// \param rng a RandomNumberGenerator to produce random material 0026 /// \param bits the number of bits in the prime number 0027 /// \return Integer() meeting Maurer's tests for primality 0028 CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits); 0029 0030 /// \brief Generates a provable prime 0031 /// \param rng a RandomNumberGenerator to produce random material 0032 /// \param bits the number of bits in the prime number 0033 /// \return Integer() meeting Mihailescu's tests for primality 0034 /// \details Mihailescu's methods performs a search using algorithmic progressions. 0035 CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits); 0036 0037 /// \brief Tests whether a number is a small prime 0038 /// \param p a candidate prime to test 0039 /// \return true if p is a small prime, false otherwise 0040 /// \details Internally, the library maintains a table of the first 32719 prime numbers 0041 /// in sorted order. IsSmallPrime searches the table and returns true if p is 0042 /// in the table. 0043 CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p); 0044 0045 /// \brief Tests whether a number is divisible by a small prime 0046 /// \return true if p is divisible by some prime less than bound. 0047 /// \details TrialDivision() returns <tt>true</tt> if <tt>p</tt> is divisible by some prime less 0048 /// than <tt>bound</tt>. <tt>bound</tt> should not be greater than the largest entry in the 0049 /// prime table, which is 32719. 0050 CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound); 0051 0052 /// \brief Tests whether a number is divisible by a small prime 0053 /// \return true if p is NOT divisible by small primes. 0054 /// \details SmallDivisorsTest() returns <tt>true</tt> if <tt>p</tt> is NOT divisible by some 0055 /// prime less than 32719. 0056 CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p); 0057 0058 /// \brief Determine if a number is probably prime 0059 /// \param n the number to test 0060 /// \param b the base to exponentiate 0061 /// \return true if the number n is probably prime, false otherwise. 0062 /// \details IsFermatProbablePrime raises <tt>b</tt> to the <tt>n-1</tt> power and checks if 0063 /// the result is congruent to 1 modulo <tt>n</tt>. 0064 /// \details These is no reason to use IsFermatProbablePrime, use IsStrongProbablePrime or 0065 /// IsStrongLucasProbablePrime instead. 0066 /// \sa IsStrongProbablePrime, IsStrongLucasProbablePrime 0067 CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b); 0068 0069 /// \brief Determine if a number is probably prime 0070 /// \param n the number to test 0071 /// \return true if the number n is probably prime, false otherwise. 0072 /// \details These is no reason to use IsLucasProbablePrime, use IsStrongProbablePrime or 0073 /// IsStrongLucasProbablePrime instead. 0074 /// \sa IsStrongProbablePrime, IsStrongLucasProbablePrime 0075 CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n); 0076 0077 /// \brief Determine if a number is probably prime 0078 /// \param n the number to test 0079 /// \param b the base to exponentiate 0080 /// \return true if the number n is probably prime, false otherwise. 0081 CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b); 0082 0083 /// \brief Determine if a number is probably prime 0084 /// \param n the number to test 0085 /// \return true if the number n is probably prime, false otherwise. 0086 CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n); 0087 0088 /// \brief Determine if a number is probably prime 0089 /// \param rng a RandomNumberGenerator to produce random material 0090 /// \param n the number to test 0091 /// \param rounds the number of tests to perform 0092 /// \details This is the Rabin-Miller primality test, i.e. repeating the strong probable prime 0093 /// test for several rounds with random bases 0094 /// \sa <A HREF="https://crypto.stackexchange.com/q/17707/10496">Trial divisions before 0095 /// Miller-Rabin checks?</A> on Crypto Stack Exchange 0096 CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds); 0097 0098 /// \brief Verifies a number is probably prime 0099 /// \param p a candidate prime to test 0100 /// \return true if p is a probable prime, false otherwise 0101 /// \details IsPrime() is suitable for testing candidate primes when creating them. Internally, 0102 /// IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime(). 0103 CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p); 0104 0105 /// \brief Verifies a number is probably prime 0106 /// \param rng a RandomNumberGenerator for randomized testing 0107 /// \param p a candidate prime to test 0108 /// \param level the level of thoroughness of testing 0109 /// \return true if p is a strong probable prime, false otherwise 0110 /// \details VerifyPrime() is suitable for testing candidate primes created by others. Internally, 0111 /// VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candidate passes and 0112 /// level is greater than 1, then 10 round RabinMillerTest() primality testing is performed. 0113 CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1); 0114 0115 /// \brief Application callback to signal suitability of a cabdidate prime 0116 class CRYPTOPP_DLL PrimeSelector 0117 { 0118 public: 0119 virtual ~PrimeSelector() {} 0120 const PrimeSelector *GetSelectorPointer() const {return this;} 0121 virtual bool IsAcceptable(const Integer &candidate) const =0; 0122 }; 0123 0124 /// \brief Finds a random prime of special form 0125 /// \param p an Integer reference to receive the prime 0126 /// \param max the maximum value 0127 /// \param equiv the equivalence class based on the parameter mod 0128 /// \param mod the modulus used to reduce the equivalence class 0129 /// \param pSelector pointer to a PrimeSelector function for the application to signal suitability 0130 /// \return true if and only if FirstPrime() finds a prime and returns the prime through p. If FirstPrime() 0131 /// returns false, then no such prime exists and the value of p is undefined 0132 /// \details FirstPrime() uses a fast sieve to find the first probable prime 0133 /// in <tt>{x | p<=x<=max and x%mod==equiv}</tt> 0134 CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector); 0135 0136 CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max); 0137 0138 CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength); 0139 0140 // ********** other number theoretic functions ************ 0141 0142 /// \brief Calculate the greatest common divisor 0143 /// \param a the first term 0144 /// \param b the second term 0145 /// \return the greatest common divisor if one exists, 0 otherwise. 0146 inline Integer GCD(const Integer &a, const Integer &b) 0147 {return Integer::Gcd(a,b);} 0148 0149 /// \brief Determine relative primality 0150 /// \param a the first term 0151 /// \param b the second term 0152 /// \return true if <tt>a</tt> and <tt>b</tt> are relatively prime, false otherwise. 0153 inline bool RelativelyPrime(const Integer &a, const Integer &b) 0154 {return Integer::Gcd(a,b) == Integer::One();} 0155 0156 /// \brief Calculate the least common multiple 0157 /// \param a the first term 0158 /// \param b the second term 0159 /// \return the least common multiple of <tt>a</tt> and <tt>b</tt>. 0160 inline Integer LCM(const Integer &a, const Integer &b) 0161 {return a/Integer::Gcd(a,b)*b;} 0162 0163 /// \brief Calculate multiplicative inverse 0164 /// \param a the number to test 0165 /// \param b the modulus 0166 /// \return an Integer <tt>(a ^ -1) % n</tt> or 0 if none exists. 0167 /// \details EuclideanMultiplicativeInverse returns the multiplicative inverse of the Integer 0168 /// <tt>*a</tt> modulo the Integer <tt>b</tt>. If no Integer exists then Integer 0 is returned. 0169 inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b) 0170 {return a.InverseMod(b);} 0171 0172 0173 /// \brief Chinese Remainder Theorem 0174 /// \param xp the first number, mod p 0175 /// \param p the first prime modulus 0176 /// \param xq the second number, mod q 0177 /// \param q the second prime modulus 0178 /// \param u inverse of p mod q 0179 /// \return the CRT value of the parameters 0180 /// \details CRT uses the Chinese Remainder Theorem to calculate <tt>x</tt> given 0181 /// <tt>x mod p</tt> and <tt>x mod q</tt>, and <tt>u</tt> the inverse of <tt>p mod q</tt>. 0182 CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u); 0183 0184 /// \brief Calculate the Jacobi symbol 0185 /// \param a the first term 0186 /// \param b the second term 0187 /// \return the Jacobi symbol. 0188 /// \details Jacobi symbols are calculated using the following rules: 0189 /// -# if <tt>b</tt> is prime, then <tt>Jacobi(a, b)</tt>, then return 0 0190 /// -# if <tt>a%b</tt>==0 AND <tt>a</tt> is quadratic residue <tt>mod b</tt>, then return 1 0191 /// -# return -1 otherwise 0192 /// \details Refer to a number theory book for what Jacobi symbol means when <tt>b</tt> is not prime. 0193 CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b); 0194 0195 /// \brief Calculate the Lucas value 0196 /// \return the Lucas value 0197 /// \details Lucas() calculates the Lucas function <tt>V_e(p, 1) mod n</tt>. 0198 CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n); 0199 0200 /// \brief Calculate the inverse Lucas value 0201 /// \return the inverse Lucas value 0202 /// \details InverseLucas() calculates <tt>x</tt> such that <tt>m==Lucas(e, x, p*q)</tt>, 0203 /// <tt>p q</tt> primes, <tt>u</tt> is inverse of <tt>p mod q</tt>. 0204 CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u); 0205 0206 /// \brief Modular multiplication 0207 /// \param x the first term 0208 /// \param y the second term 0209 /// \param m the modulus 0210 /// \return an Integer <tt>(x * y) % m</tt>. 0211 inline Integer ModularMultiplication(const Integer &x, const Integer &y, const Integer &m) 0212 {return a_times_b_mod_c(x, y, m);} 0213 0214 /// \brief Modular exponentiation 0215 /// \param x the base 0216 /// \param e the exponent 0217 /// \param m the modulus 0218 /// \return an Integer <tt>(a ^ b) % m</tt>. 0219 inline Integer ModularExponentiation(const Integer &x, const Integer &e, const Integer &m) 0220 {return a_exp_b_mod_c(x, e, m);} 0221 0222 /// \brief Extract a modular square root 0223 /// \param a the number to extract square root 0224 /// \param p the prime modulus 0225 /// \return the modular square root if it exists 0226 /// \details ModularSquareRoot returns <tt>x</tt> such that <tt>x*x%p == a</tt>, <tt>p</tt> prime 0227 CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p); 0228 0229 /// \brief Extract a modular root 0230 /// \return a modular root if it exists 0231 /// \details ModularRoot returns <tt>x</tt> such that <tt>a==ModularExponentiation(x, e, p*q)</tt>, 0232 /// <tt>p</tt> <tt>q</tt> primes, and <tt>e</tt> relatively prime to <tt>(p-1)*(q-1)</tt>, 0233 /// <tt>dp=d%(p-1)</tt>, <tt>dq=d%(q-1)</tt>, (d is inverse of <tt>e mod (p-1)*(q-1)</tt>) 0234 /// and <tt>u=inverse of p mod q</tt>. 0235 CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u); 0236 0237 /// \brief Solve a Modular Quadratic Equation 0238 /// \param r1 the first residue 0239 /// \param r2 the second residue 0240 /// \param a the first coefficient 0241 /// \param b the second coefficient 0242 /// \param c the third constant 0243 /// \param p the prime modulus 0244 /// \return true if solutions exist 0245 /// \details SolveModularQuadraticEquation() finds <tt>r1</tt> and <tt>r2</tt> such that <tt>ax^2 + 0246 /// bx + c == 0 (mod p)</tt> for x in <tt>{r1, r2}</tt>, <tt>p</tt> prime. 0247 CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p); 0248 0249 /// \brief Estimate work factor 0250 /// \param bitlength the size of the number, in bits 0251 /// \return the estimated work factor, in operations 0252 /// \details DiscreteLogWorkFactor returns log base 2 of estimated number of operations to 0253 /// calculate discrete log or factor a number. 0254 CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength); 0255 0256 /// \brief Estimate work factor 0257 /// \param bitlength the size of the number, in bits 0258 /// \return the estimated work factor, in operations 0259 /// \details FactoringWorkFactor returns log base 2 of estimated number of operations to 0260 /// calculate discrete log or factor a number. 0261 CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength); 0262 0263 // ******************************************************** 0264 0265 /// \brief Generator of prime numbers of special forms 0266 class CRYPTOPP_DLL PrimeAndGenerator 0267 { 0268 public: 0269 /// \brief Construct a PrimeAndGenerator 0270 PrimeAndGenerator() {} 0271 0272 /// \brief Construct a PrimeAndGenerator 0273 /// \param delta +1 or -1 0274 /// \param rng a RandomNumberGenerator derived class 0275 /// \param pbits the number of bits in the prime p 0276 /// \details PrimeAndGenerator() generates a random prime p of the form <tt>2*q+delta</tt>, where delta is 1 or -1 and q is 0277 /// also prime. Internally the constructor calls <tt>Generate(delta, rng, pbits, pbits-1)</tt>. 0278 /// \pre <tt>pbits > 5</tt> 0279 /// \warning This PrimeAndGenerator() is slow because primes of this form are harder to find. 0280 PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits) 0281 {Generate(delta, rng, pbits, pbits-1);} 0282 0283 /// \brief Construct a PrimeAndGenerator 0284 /// \param delta +1 or -1 0285 /// \param rng a RandomNumberGenerator derived class 0286 /// \param pbits the number of bits in the prime p 0287 /// \param qbits the number of bits in the prime q 0288 /// \details PrimeAndGenerator() generates a random prime p of the form <tt>2*r*q+delta</tt>, where q is also prime. 0289 /// Internally the constructor calls <tt>Generate(delta, rng, pbits, qbits)</tt>. 0290 /// \pre <tt>qbits > 4 && pbits > qbits</tt> 0291 PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits) 0292 {Generate(delta, rng, pbits, qbits);} 0293 0294 /// \brief Generate a Prime and Generator 0295 /// \param delta +1 or -1 0296 /// \param rng a RandomNumberGenerator derived class 0297 /// \param pbits the number of bits in the prime p 0298 /// \param qbits the number of bits in the prime q 0299 /// \details Generate() generates a random prime p of the form <tt>2*r*q+delta</tt>, where q is also prime. 0300 void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits); 0301 0302 /// \brief Retrieve first prime 0303 /// \return Prime() returns the prime p. 0304 const Integer& Prime() const {return p;} 0305 0306 /// \brief Retrieve second prime 0307 /// \return SubPrime() returns the prime q. 0308 const Integer& SubPrime() const {return q;} 0309 0310 /// \brief Retrieve the generator 0311 /// \return Generator() returns the generator g. 0312 const Integer& Generator() const {return g;} 0313 0314 private: 0315 Integer p, q, g; 0316 }; 0317 0318 NAMESPACE_END 0319 0320 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |