Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:55:04

0001 // mersenne.h - written and placed in public domain by Jeffrey Walton.

0002 
0003 /// \file mersenne.h

0004 /// \brief Class file for Mersenne Twister

0005 /// \warning MersenneTwister is suitable for Monte-Carlo simulations, where uniformaly distributed

0006 ///  numbers are required quickly. It should not be used for cryptographic purposes.

0007 /// \since Crypto++ 5.6.3

0008 #ifndef CRYPTOPP_MERSENNE_TWISTER_H
0009 #define CRYPTOPP_MERSENNE_TWISTER_H
0010 
0011 #include "cryptlib.h"
0012 #include "secblock.h"
0013 #include "misc.h"
0014 
0015 NAMESPACE_BEGIN(CryptoPP)
0016 
0017 /// \brief Mersenne Twister class for Monte-Carlo simulations

0018 /// \tparam K Magic constant

0019 /// \tparam M Period parameter

0020 /// \tparam N Size of the state vector

0021 /// \tparam F Multiplier constant

0022 /// \tparam S Initial seed

0023 /// \details Provides the MersenneTwister implementation. The class is a header-only implementation.

0024 /// \details You should reseed the generator after a fork() to avoid multiple generators

0025 ///  with the same internal state.

0026 /// \warning MersenneTwister is suitable for simulations, where uniformaly distributed numbers are

0027 ///  required quickly. It should not be used for cryptographic purposes.

0028 /// \sa MT19937, MT19937ar

0029 /// \since Crypto++ 5.6.3

0030 template <unsigned int K, unsigned int M, unsigned int N, unsigned int F, word32 S>
0031 class MersenneTwister : public RandomNumberGenerator
0032 {
0033 public:
0034     CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() { return (S==5489 ? "MT19937ar" : (S==4537 ? "MT19937" : "MT19937x")); }
0035 
0036     ~MersenneTwister() {}
0037 
0038     /// \brief Construct a Mersenne Twister

0039     /// \param seed 32-bit seed

0040     /// \details Defaults to template parameter S due to changing algorithm

0041     ///  parameters over time

0042     MersenneTwister(word32 seed = S) : m_idx(N)
0043     {
0044         Reset(seed);
0045     }
0046 
0047     bool CanIncorporateEntropy() const {return true;}
0048 
0049     /// \brief Update RNG state with additional unpredictable values

0050     /// \param input the entropy to add to the generator

0051     /// \param length the size of the input buffer

0052     /// \details MersenneTwister uses the first 32-bits of <tt>input</tt> to reseed the

0053     ///  generator. If fewer bytes are provided, then the seed is padded with 0's.

0054     void IncorporateEntropy(const byte *input, size_t length)
0055     {
0056         // Handle word32 size blocks

0057         FixedSizeSecBlock<word32, 1> temp;
0058         temp[0] = 0;
0059 
0060         if (length > 4)
0061             length = 4;
0062 
0063         for (size_t i=0; i<length; ++i)
0064         {
0065             temp[0] <<= 8;
0066             temp[0] = temp[0] | input[i];
0067         }
0068 
0069         Reset(temp[0]);
0070     }
0071 
0072     /// \brief Generate random array of bytes

0073     /// \param output byte buffer

0074     /// \param size length of the buffer, in bytes

0075     /// \details Bytes are written to output in big endian order. If output length

0076     ///  is not a multiple of word32, then unused bytes are not accumulated for subsequent

0077     ///  calls to GenerateBlock. Rather, the unused tail bytes are discarded, and the

0078     ///  stream is continued at the next word32 boundary from the state array.

0079     void GenerateBlock(byte *output, size_t size)
0080     {
0081         // Handle word32 size blocks

0082         FixedSizeSecBlock<word32, 1> temp;
0083         for (size_t i=0; i < size/4; i++, output += 4)
0084         {
0085             temp[0] = NextMersenneWord();
0086             std::memcpy(output, temp+0, 4);
0087         }
0088 
0089         // No tail bytes

0090         if (size%4 == 0)
0091             return;
0092 
0093         // Handle tail bytes

0094         temp[0] = NextMersenneWord();
0095         switch (size%4)
0096         {
0097             case 3: output[2] = CRYPTOPP_GET_BYTE_AS_BYTE(temp[0], 1); /* fall through */
0098             case 2: output[1] = CRYPTOPP_GET_BYTE_AS_BYTE(temp[0], 2); /* fall through */
0099             case 1: output[0] = CRYPTOPP_GET_BYTE_AS_BYTE(temp[0], 3); break;
0100 
0101             default: CRYPTOPP_ASSERT(0);;
0102         }
0103     }
0104 
0105     /// \brief Generate a random 32-bit word in the range min to max, inclusive

0106     /// \return random 32-bit word in the range min to max, inclusive

0107     /// \details If the 32-bit candidate is not within the range, then it is discarded

0108     ///  and a new candidate is used.

0109     word32 GenerateWord32(word32 min=0, word32 max=0xffffffffL)
0110     {
0111         const word32 range = max-min;
0112         if (range == 0xffffffffL)
0113             return NextMersenneWord();
0114 
0115         const int maxBits = BitPrecision(range);
0116         word32 value;
0117 
0118         do{
0119             value = Crop(NextMersenneWord(), maxBits);
0120         } while (value > range);
0121 
0122         return value+min;
0123     }
0124 
0125     /// \brief Generate and discard n bytes

0126     /// \param n the number of bytes to discard, rounded up to a <tt>word32</tt> size

0127     /// \details If n is not a multiple of <tt>word32</tt>, then unused bytes are

0128     ///  not accumulated for subsequent calls to GenerateBlock. Rather, the unused

0129     ///  tail bytes are discarded, and the stream is continued at the next

0130     ///  <tt>word32</tt> boundary from the state array.

0131     void DiscardBytes(size_t n)
0132     {
0133         for(size_t i=0; i < RoundUpToMultipleOf(n, 4U); i++)
0134             NextMersenneWord();
0135     }
0136 
0137 protected:
0138 
0139     void Reset(word32 seed)
0140     {
0141         m_idx = N;
0142 
0143         m_state[0] = seed;
0144         for (unsigned int i = 1; i < N+1; i++)
0145             m_state[i] = word32(F * (m_state[i-1] ^ (m_state[i-1] >> 30)) + i);
0146     }
0147 
0148     /// \brief Returns the next 32-bit word from the state array

0149     /// \return the next 32-bit word from the state array

0150     /// \details fetches the next word frm the state array, performs bit operations on

0151     ///  it, and then returns the value to the caller.

0152     word32 NextMersenneWord()
0153     {
0154         if (m_idx >= N) { Twist(); }
0155 
0156         word32 temp = m_state[m_idx++];
0157 
0158         temp ^= (temp >> 11);
0159         temp ^= (temp << 7)  & 0x9D2C5680; // 0x9D2C5680 (2636928640)

0160         temp ^= (temp << 15) & 0xEFC60000; // 0xEFC60000 (4022730752)

0161 
0162         return temp ^ (temp >> 18);
0163     }
0164 
0165     /// \brief Performs the twist operation on the state array

0166     void Twist()
0167     {
0168         static const word32 magic[2]={0x0UL, K};
0169         word32 kk, temp;
0170 
0171         CRYPTOPP_ASSERT(N >= M);
0172         for (kk=0;kk<N-M;kk++)
0173         {
0174             temp = (m_state[kk] & 0x80000000)|(m_state[kk+1] & 0x7FFFFFFF);
0175             m_state[kk] = m_state[kk+M] ^ (temp >> 1) ^ magic[temp & 0x1UL];
0176         }
0177 
0178         for (;kk<N-1;kk++)
0179         {
0180             temp = (m_state[kk] & 0x80000000)|(m_state[kk+1] & 0x7FFFFFFF);
0181             m_state[kk] = m_state[kk+(M-N)] ^ (temp >> 1) ^ magic[temp & 0x1UL];
0182         }
0183 
0184         temp = (m_state[N-1] & 0x80000000)|(m_state[0] & 0x7FFFFFFF);
0185         m_state[N-1] = m_state[M-1] ^ (temp >> 1) ^ magic[temp & 0x1UL];
0186 
0187         // Reset index

0188         m_idx = 0;
0189 
0190         // Wipe temp

0191         SecureWipeArray(&temp, 1);
0192     }
0193 
0194 private:
0195 
0196     /// \brief 32-bit word state array of size N

0197     FixedSizeSecBlock<word32, N+1> m_state;
0198     /// \brief the current index into the state array

0199     word32 m_idx;
0200 };
0201 
0202 /// \brief Original MT19937 generator provided in the ACM paper.

0203 /// \details MT19937 uses 4537 as default initial seed.

0204 /// \details You should reseed the generator after a fork() to avoid multiple generators

0205 ///  with the same internal state.

0206 /// \sa MT19937ar, <A HREF="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf">Mersenne twister:

0207 ///  a 623-dimensionally equidistributed uniform pseudo-random number generator</A>

0208 /// \since Crypto++ 5.6.3

0209 #if CRYPTOPP_DOXYGEN_PROCESSING
0210 class MT19937 : public MersenneTwister<0x9908B0DF /*2567483615*/, 397, 624, 0x10DCD /*69069*/, 4537> {};
0211 #else
0212 typedef MersenneTwister<0x9908B0DF /*2567483615*/, 397, 624, 0x10DCD /*69069*/, 4537> MT19937;
0213 #endif
0214 
0215 /// \brief Updated MT19937 generator adapted to provide an array for initialization.

0216 /// \details MT19937 uses 5489 as default initial seed. Use this generator when interoperating with C++11's

0217 ///  mt19937 class.

0218 /// \details You should reseed the generator after a fork() to avoid multiple generators

0219 ///  with the same internal state.

0220 /// \sa MT19937, <A HREF="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html">Mersenne Twister

0221 ///  with improved initialization</A>

0222 /// \since Crypto++ 5.6.3

0223 #if CRYPTOPP_DOXYGEN_PROCESSING
0224 class MT19937ar : public MersenneTwister<0x9908B0DF /*2567483615*/, 397, 624, 0x6C078965 /*1812433253*/, 5489> {};
0225 #else
0226 typedef MersenneTwister<0x9908B0DF /*2567483615*/, 397, 624, 0x6C078965 /*1812433253*/, 5489> MT19937ar;
0227 #endif
0228 
0229 NAMESPACE_END
0230 
0231 #endif // CRYPTOPP_MERSENNE_TWISTER_H