|
||||
File indexing completed on 2025-01-18 09:42:54
0001 /* 0002 [auto_generated] 0003 boost/numeric/odeint/stepper/base/explicit_stepper_base.hpp 0004 0005 [begin_description] 0006 Base class for all explicit Runge Kutta steppers. 0007 [end_description] 0008 0009 Copyright 2010-2013 Karsten Ahnert 0010 Copyright 2010-2012 Mario Mulansky 0011 Copyright 2012 Christoph Koke 0012 0013 Distributed under the Boost Software License, Version 1.0. 0014 (See accompanying file LICENSE_1_0.txt or 0015 copy at http://www.boost.org/LICENSE_1_0.txt) 0016 */ 0017 0018 0019 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED 0020 #define BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED 0021 0022 0023 #include <boost/utility/enable_if.hpp> 0024 #include <boost/type_traits/is_same.hpp> 0025 0026 #include <boost/numeric/odeint/util/bind.hpp> 0027 #include <boost/numeric/odeint/util/unwrap_reference.hpp> 0028 0029 #include <boost/numeric/odeint/util/state_wrapper.hpp> 0030 #include <boost/numeric/odeint/util/resizer.hpp> 0031 #include <boost/numeric/odeint/util/is_resizeable.hpp> 0032 0033 #include <boost/numeric/odeint/stepper/stepper_categories.hpp> 0034 0035 #include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp> 0036 0037 namespace boost { 0038 namespace numeric { 0039 namespace odeint { 0040 0041 /* 0042 * base class for explicit steppers 0043 * models the stepper concept 0044 * 0045 * this class provides the following overloads 0046 * do_step( sys , x , t , dt ) 0047 * do_step( sys , in , t , out , dt ) 0048 * do_step( sys , x , dxdt_in , t , dt ) 0049 * do_step( sys , in , dxdt_in , t , out , dt ) 0050 */ 0051 0052 template< 0053 class Stepper , 0054 unsigned short Order , 0055 class State , 0056 class Value , 0057 class Deriv , 0058 class Time , 0059 class Algebra , 0060 class Operations , 0061 class Resizer 0062 > 0063 class explicit_stepper_base : public algebra_stepper_base< Algebra , Operations > 0064 { 0065 public: 0066 0067 #ifndef DOXYGEN_SKIP 0068 typedef explicit_stepper_base< Stepper , Order , State , Value , Deriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type; 0069 #endif // DOXYGEN_SKIP 0070 0071 0072 typedef State state_type; 0073 typedef Value value_type; 0074 typedef Deriv deriv_type; 0075 typedef Time time_type; 0076 typedef Resizer resizer_type; 0077 typedef Stepper stepper_type; 0078 typedef stepper_tag stepper_category; 0079 typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type; 0080 typedef typename algebra_stepper_base_type::algebra_type algebra_type; 0081 typedef typename algebra_stepper_base_type::operations_type operations_type; 0082 typedef unsigned short order_type; 0083 0084 #ifndef DOXYGEN_SKIP 0085 typedef state_wrapper< state_type > wrapped_state_type; 0086 typedef state_wrapper< deriv_type > wrapped_deriv_type; 0087 #endif // DOXYGEN_SKIP 0088 0089 0090 static const order_type order_value = Order; 0091 0092 0093 explicit_stepper_base( const algebra_type &algebra = algebra_type() ) 0094 : algebra_stepper_base_type( algebra ) 0095 { } 0096 0097 /** 0098 * \return Returns the order of the stepper. 0099 */ 0100 order_type order( void ) const 0101 { 0102 return order_value; 0103 } 0104 0105 0106 /* 0107 * Version 1 : do_step( sys , x , t , dt ) 0108 * 0109 * the two overloads are needed in order to solve the forwarding problem 0110 */ 0111 template< class System , class StateInOut > 0112 void do_step( System system , StateInOut &x , time_type t , time_type dt ) 0113 { 0114 do_step_v1( system , x , t , dt ); 0115 } 0116 0117 /** 0118 * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut. 0119 */ 0120 template< class System , class StateInOut > 0121 void do_step( System system , const StateInOut &x , time_type t , time_type dt ) 0122 { 0123 do_step_v1( system , x , t , dt ); 0124 } 0125 0126 /* 0127 * Version 2 : do_step( sys , x , dxdt , t , dt ) 0128 * 0129 * this version does not solve the forwarding problem, boost.range can not be used 0130 * 0131 * the disable is needed to avoid ambiguous overloads if state_type = time_type 0132 */ 0133 template< class System , class StateInOut , class DerivIn > 0134 typename boost::disable_if< boost::is_same< DerivIn , time_type > , void >::type 0135 do_step( System system , StateInOut &x , const DerivIn &dxdt , time_type t , time_type dt ) 0136 { 0137 this->stepper().do_step_impl( system , x , dxdt , t , x , dt ); 0138 } 0139 0140 0141 /* 0142 * named Version 2: do_step_dxdt_impl( sys , in , dxdt , t , dt ) 0143 * 0144 * this version is needed when this stepper is used for initializing 0145 * multistep stepper like adams-bashforth. Hence we provide an explicitely 0146 * named version that is not disabled. Meant for internal use only. 0147 */ 0148 template < class System, class StateInOut, class DerivIn > 0149 void do_step_dxdt_impl( System system, StateInOut &x, const DerivIn &dxdt, 0150 time_type t, time_type dt ) 0151 { 0152 this->stepper().do_step_impl( system , x , dxdt , t , x , dt ); 0153 } 0154 0155 0156 /* 0157 * Version 3 : do_step( sys , in , t , out , dt ) 0158 * 0159 * this version does not solve the forwarding problem, boost.range can not be used 0160 */ 0161 template< class System , class StateIn , class StateOut > 0162 void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt ) 0163 { 0164 typename odeint::unwrap_reference< System >::type &sys = system; 0165 m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl<StateIn> , detail::ref( *this ) , detail::_1 ) ); 0166 sys( in , m_dxdt.m_v ,t ); 0167 this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , dt ); 0168 } 0169 0170 0171 /* 0172 * Version 4 : do_step( sys , in , dxdt , t , out , dt ) 0173 * 0174 * this version does not solve the forwarding problem, boost.range can not be used 0175 */ 0176 template< class System , class StateIn , class DerivIn , class StateOut > 0177 void do_step( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt ) 0178 { 0179 this->stepper().do_step_impl( system , in , dxdt , t , out , dt ); 0180 } 0181 0182 0183 /* 0184 * named Version 4: do_step_dxdt_impl( sys , in , dxdt , t , out, dt ) 0185 * 0186 * this version is needed when this stepper is used for initializing 0187 * multistep stepper like adams-bashforth. Hence we provide an explicitely 0188 * named version. Meant for internal use only. 0189 */ 0190 template < class System, class StateIn, class DerivIn, class StateOut > 0191 void do_step_dxdt_impl( System system, const StateIn &in, 0192 const DerivIn &dxdt, time_type t, StateOut &out, 0193 time_type dt ) 0194 { 0195 this->stepper().do_step_impl( system , in , dxdt , t , out , dt ); 0196 } 0197 0198 template< class StateIn > 0199 void adjust_size( const StateIn &x ) 0200 { 0201 resize_impl( x ); 0202 } 0203 0204 private: 0205 0206 stepper_type& stepper( void ) 0207 { 0208 return *static_cast< stepper_type* >( this ); 0209 } 0210 0211 const stepper_type& stepper( void ) const 0212 { 0213 return *static_cast< const stepper_type* >( this ); 0214 } 0215 0216 0217 template< class StateIn > 0218 bool resize_impl( const StateIn &x ) 0219 { 0220 return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() ); 0221 } 0222 0223 0224 template< class System , class StateInOut > 0225 void do_step_v1( System system , StateInOut &x , time_type t , time_type dt ) 0226 { 0227 typename odeint::unwrap_reference< System >::type &sys = system; 0228 m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) ); 0229 sys( x , m_dxdt.m_v ,t ); 0230 this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , dt ); 0231 } 0232 0233 0234 resizer_type m_resizer; 0235 0236 protected: 0237 0238 wrapped_deriv_type m_dxdt; 0239 }; 0240 0241 0242 /******* DOXYGEN *********/ 0243 0244 /** 0245 * \class explicit_stepper_base 0246 * \brief Base class for explicit steppers without step size control and without dense output. 0247 * 0248 * This class serves as the base class for all explicit steppers with algebra and operations. 0249 * Step size control and error estimation as well as dense output are not provided. explicit_stepper_base 0250 * is used as the interface in a CRTP (currently recurring template pattern). In order to work 0251 * correctly the parent class needs to have a method `do_step_impl( system , in , dxdt_in , t , out , dt )`. 0252 * This is method is used by explicit_stepper_base. explicit_stepper_base derives from 0253 * algebra_stepper_base. An example how this class can be used is 0254 * 0255 * \code 0256 * template< class State , class Value , class Deriv , class Time , class Algebra , class Operations , class Resizer > 0257 * class custom_euler : public explicit_stepper_base< 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > 0258 * { 0259 * public: 0260 * 0261 * typedef explicit_stepper_base< 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > base_type; 0262 * 0263 * custom_euler( const Algebra &algebra = Algebra() ) { } 0264 * 0265 * template< class Sys , class StateIn , class DerivIn , class StateOut > 0266 * void do_step_impl( Sys sys , const StateIn &in , const DerivIn &dxdt , Time t , StateOut &out , Time dt ) 0267 * { 0268 * m_algebra.for_each3( out , in , dxdt , Operations::scale_sum2< Value , Time >( 1.0 , dt ); 0269 * } 0270 * 0271 * template< class State > 0272 * void adjust_size( const State &x ) 0273 * { 0274 * base_type::adjust_size( x ); 0275 * } 0276 * }; 0277 * \endcode 0278 * 0279 * For the Stepper concept only the `do_step( sys , x , t , dt )` needs to be implemented. But this class 0280 * provides additional `do_step` variants since the stepper is explicit. These methods can be used to increase 0281 * the performance in some situation, for example if one needs to analyze `dxdt` during each step. In this case 0282 * one can use 0283 * 0284 * \code 0285 * sys( x , dxdt , t ); 0286 * stepper.do_step( sys , x , dxdt , t , dt ); // the value of dxdt is used here 0287 * t += dt; 0288 * \endcode 0289 * 0290 * In detail explicit_stepper_base provides the following `do_step` variants 0291 * - `do_step( sys , x , t , dt )` - The classical `do_step` method needed to fulfill the Stepper concept. The state is updated in-place. 0292 * A type modelling a Boost.Range can be used for x. 0293 * - `do_step( sys , in , t , out , dt )` - This method updates the state out-of-place, hence the result of the step is stored in `out`. 0294 * - `do_step( sys , x , dxdt , t , dt )` - This method updates the state in-place, but the derivative at the point `t` must be 0295 * explicitly passed in `dxdt`. For an example see the code snippet above. 0296 * - `do_step( sys , in , dxdt , t , out , dt )` - This method update the state out-of-place and expects that the derivative at the point 0297 * `t` is explicitly passed in `dxdt`. It is a combination of the two `do_step` methods above. 0298 * 0299 * \note The system is always passed as value, which might result in poor performance if it contains data. In this case it can be used with `boost::ref` 0300 * or `std::ref`, for example `stepper.do_step( boost::ref( sys ) , x , t , dt );` 0301 * 0302 * \note The time `t` is not advanced by the stepper. This has to done manually, or by the appropriate `integrate` routines or `iterator`s. 0303 * 0304 * \tparam Stepper The stepper on which this class should work. It is used via CRTP, hence explicit_stepper_base 0305 * provides the interface for the Stepper. 0306 * \tparam Order The order of the stepper. 0307 * \tparam State The state type for the stepper. 0308 * \tparam Value The value type for the stepper. This should be a floating point type, like float, 0309 * double, or a multiprecision type. It must not necessary be the value_type of the State. For example 0310 * the State can be a `vector< complex< double > >` in this case the Value must be double. 0311 * The default value is double. 0312 * \tparam Deriv The type representing time derivatives of the state type. It is usually the same type as the 0313 * state type, only if used with Boost.Units both types differ. 0314 * \tparam Time The type representing the time. Usually the same type as the value type. When Boost.Units is 0315 * used, this type has usually a unit. 0316 * \tparam Algebra The algebra type which must fulfill the Algebra Concept. 0317 * \tparam Operations The type for the operations which must fulfill the Operations Concept. 0318 * \tparam Resizer The resizer policy class. 0319 */ 0320 0321 0322 /** 0323 * \fn explicit_stepper_base::explicit_stepper_base( const algebra_type &algebra ) 0324 * \brief Constructs a explicit_stepper_base class. This constructor can be used as a default 0325 * constructor if the algebra has a default constructor. 0326 * \param algebra A copy of algebra is made and stored inside explicit_stepper_base. 0327 */ 0328 0329 /** 0330 * \fn explicit_stepper_base::order_type order( void ) const 0331 * \return Returns the order of the stepper. 0332 */ 0333 0334 /** 0335 * \fn explicit_stepper_base::do_step( System system , StateInOut &x , time_type t , time_type dt ) 0336 * \brief This method performs one step. It transforms the result in-place. 0337 * 0338 * \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the 0339 * Simple System concept. 0340 * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x. 0341 * \param t The value of the time, at which the step should be performed. 0342 * \param dt The step size. 0343 */ 0344 0345 0346 /** 0347 * \fn explicit_stepper_base::do_step( System system , StateInOut &x , const DerivIn &dxdt , time_type t , time_type dt ) 0348 0349 * \brief The method performs one step. Additionally to the other method 0350 * the derivative of x is also passed to this method. It is supposed to be used in the following way: 0351 * 0352 * \code 0353 * sys( x , dxdt , t ); 0354 * stepper.do_step( sys , x , dxdt , t , dt ); 0355 * \endcode 0356 * 0357 * The result is updated in place in x. This method is disabled if Time and Deriv are of the same type. In this 0358 * case the method could not be distinguished from other `do_step` versions. 0359 * 0360 * \note This method does not solve the forwarding problem. 0361 * 0362 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the 0363 * Simple System concept. 0364 * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x. 0365 * \param dxdt The derivative of x at t. 0366 * \param t The value of the time, at which the step should be performed. 0367 * \param dt The step size. 0368 */ 0369 0370 /** 0371 * \fn void explicit_stepper_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt ) 0372 * \brief The method performs one step. The state of the ODE is updated out-of-place. 0373 * \note This method does not solve the forwarding problem. 0374 * 0375 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the 0376 * Simple System concept. 0377 * \param in The state of the ODE which should be solved. in is not modified in this method 0378 * \param t The value of the time, at which the step should be performed. 0379 * \param out The result of the step is written in out. 0380 * \param dt The step size. 0381 */ 0382 0383 /** 0384 * \fn void explicit_stepper_base::do_step( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt ) 0385 * \brief The method performs one step. The state of the ODE is updated out-of-place. 0386 * Furthermore, the derivative of x at t is passed to the stepper. 0387 * It is supposed to be used in the following way: 0388 * 0389 * \code 0390 * sys( in , dxdt , t ); 0391 * stepper.do_step( sys , in , dxdt , t , out , dt ); 0392 * \endcode 0393 * 0394 * \note This method does not solve the forwarding problem. 0395 * 0396 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the 0397 * Simple System concept. 0398 * \param in The state of the ODE which should be solved. in is not modified in this method 0399 * \param dxdt The derivative of x at t. 0400 * \param t The value of the time, at which the step should be performed. 0401 * \param out The result of the step is written in out. 0402 * \param dt The step size. 0403 */ 0404 0405 /** 0406 * \fn void explicit_stepper_base::adjust_size( const StateIn &x ) 0407 * \brief Adjust the size of all temporaries in the stepper manually. 0408 * \param x A state from which the size of the temporaries to be resized is deduced. 0409 */ 0410 0411 } // odeint 0412 } // numeric 0413 } // boost 0414 0415 #endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |