Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:42:54

0001 /*
0002  [auto_generated]
0003  boost/numeric/odeint/stepper/base/explicit_error_stepper_fsal_base.hpp
0004 
0005  [begin_description]
0006  Base class for all explicit first-same-as-last Runge Kutta steppers.
0007  [end_description]
0008 
0009  Copyright 2010-2013 Karsten Ahnert
0010  Copyright 2010-2012 Mario Mulansky
0011  Copyright 2012 Christoph Koke
0012 
0013  Distributed under the Boost Software License, Version 1.0.
0014  (See accompanying file LICENSE_1_0.txt or
0015  copy at http://www.boost.org/LICENSE_1_0.txt)
0016  */
0017 
0018 
0019 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
0020 #define BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
0021 
0022 #include <boost/utility/enable_if.hpp>
0023 #include <boost/type_traits/is_same.hpp>
0024 
0025 
0026 #include <boost/numeric/odeint/util/bind.hpp>
0027 #include <boost/numeric/odeint/util/unwrap_reference.hpp>
0028 #include <boost/numeric/odeint/util/state_wrapper.hpp>
0029 #include <boost/numeric/odeint/util/is_resizeable.hpp>
0030 #include <boost/numeric/odeint/util/resizer.hpp>
0031 #include <boost/numeric/odeint/util/copy.hpp>
0032 
0033 #include <boost/numeric/odeint/stepper/stepper_categories.hpp>
0034 
0035 #include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>
0036 
0037 namespace boost {
0038 namespace numeric {
0039 namespace odeint {
0040 
0041 /*
0042  * base class for explicit stepper and error steppers with the fsal property
0043  * models the stepper AND the error stepper fsal concept
0044  * 
0045  * this class provides the following do_step overloads
0046     * do_step( sys , x , t , dt )
0047     * do_step( sys , x , dxdt , t , dt )
0048     * do_step( sys , in , t , out , dt )
0049     * do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )
0050     * do_step( sys , x , t , dt , xerr )
0051     * do_step( sys , x , dxdt , t , dt , xerr )
0052     * do_step( sys , in , t , out , dt , xerr )
0053     * do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )
0054  */
0055 template<
0056 class Stepper ,
0057 unsigned short Order ,
0058 unsigned short StepperOrder ,
0059 unsigned short ErrorOrder ,
0060 class State ,
0061 class Value ,
0062 class Deriv ,
0063 class Time ,
0064 class Algebra ,
0065 class Operations ,
0066 class Resizer
0067 >
0068 class explicit_error_stepper_fsal_base : public algebra_stepper_base< Algebra , Operations >
0069 {
0070 public:
0071 
0072     typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
0073     typedef typename algebra_stepper_base_type::algebra_type algebra_type;
0074 
0075     typedef State state_type;
0076     typedef Value value_type;
0077     typedef Deriv deriv_type;
0078     typedef Time time_type;
0079     typedef Resizer resizer_type;
0080     typedef Stepper stepper_type;
0081     typedef explicit_error_stepper_fsal_tag stepper_category;
0082 
0083     #ifndef DOXYGEN_SKIP
0084     typedef state_wrapper< state_type > wrapped_state_type;
0085     typedef state_wrapper< deriv_type > wrapped_deriv_type;
0086     typedef explicit_error_stepper_fsal_base< Stepper , Order , StepperOrder , ErrorOrder ,
0087             State , Value , Deriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type;
0088     #endif 
0089 
0090 
0091     typedef unsigned short order_type;
0092     static const order_type order_value = Order;
0093     static const order_type stepper_order_value = StepperOrder;
0094     static const order_type error_order_value = ErrorOrder;
0095 
0096     explicit_error_stepper_fsal_base( const algebra_type &algebra = algebra_type() )
0097     : algebra_stepper_base_type( algebra ) , m_first_call( true )
0098     { }
0099 
0100     order_type order( void ) const
0101     {
0102         return order_value;
0103     }
0104 
0105     order_type stepper_order( void ) const
0106     {
0107         return stepper_order_value;
0108     }
0109 
0110     order_type error_order( void ) const
0111     {
0112         return error_order_value;
0113     }
0114 
0115 
0116     /*
0117      * version 1 : do_step( sys , x , t , dt )
0118      *
0119      * the two overloads are needed in order to solve the forwarding problem
0120      */
0121     template< class System , class StateInOut >
0122     void do_step( System system , StateInOut &x , time_type t , time_type dt )
0123     {
0124         do_step_v1( system , x , t , dt );
0125     }
0126 
0127     /**
0128      * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
0129      */
0130     template< class System , class StateInOut >
0131     void do_step( System system , const StateInOut &x , time_type t , time_type dt )
0132     {
0133         do_step_v1( system , x , t , dt );
0134     }
0135 
0136 
0137     /*
0138      * version 2 : do_step( sys , x , dxdt , t , dt )
0139      *
0140      * this version does not solve the forwarding problem, boost.range can not be used
0141      *
0142      * the disable is needed to avoid ambiguous overloads if state_type = time_type
0143      */
0144     template< class System , class StateInOut , class DerivInOut >
0145     typename boost::disable_if< boost::is_same< StateInOut , time_type > , void >::type
0146     do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
0147     {
0148         m_first_call = true;
0149         this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt );
0150     }
0151 
0152 
0153     /*
0154      * named Version 2: do_step_dxdt_impl( sys , in , dxdt , t , dt )
0155      *
0156      * this version is needed when this stepper is used for initializing 
0157      * multistep stepper like adams-bashforth. Hence we provide an explicitely
0158      * named version that is not disabled. Meant for internal use only.
0159      */
0160     template< class System , class StateInOut , class DerivInOut >
0161     void do_step_dxdt_impl( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
0162     {
0163         m_first_call = true;
0164         this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt );
0165     }
0166 
0167     /*
0168      * version 3 : do_step( sys , in , t , out , dt )
0169      *
0170      * this version does not solve the forwarding problem, boost.range can not
0171      * be used.
0172      *
0173      * the disable is needed to avoid ambiguous overloads if 
0174      * state_type = time_type
0175      */
0176     template< class System , class StateIn , class StateOut >
0177     typename boost::disable_if< boost::is_same< StateIn , time_type > , void >::type
0178     do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
0179     {
0180         if( m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
0181         {
0182             initialize( system , in , t );
0183         }
0184         this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , m_dxdt.m_v , dt );
0185     }
0186 
0187 
0188     /*
0189      * version 4 : do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )
0190      *
0191      * this version does not solve the forwarding problem, boost.range can not be used
0192      */
0193     template< class System, class StateIn, class DerivIn, class StateOut,
0194                class DerivOut >
0195     void do_step( System system, const StateIn &in, const DerivIn &dxdt_in,
0196                   time_type t, StateOut &out, DerivOut &dxdt_out, time_type dt )
0197     {
0198         m_first_call = true;
0199         this->stepper().do_step_impl( system, in, dxdt_in, t, out, dxdt_out,
0200                                       dt );
0201     }
0202 
0203 
0204 
0205 
0206 
0207     /*
0208      * version 5 : do_step( sys , x , t , dt , xerr )
0209      *
0210      * the two overloads are needed in order to solve the forwarding problem
0211      */
0212     template< class System , class StateInOut , class Err >
0213     void do_step( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
0214     {
0215         do_step_v5( system , x , t , dt , xerr );
0216     }
0217 
0218     /**
0219      * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
0220      */
0221     template< class System , class StateInOut , class Err >
0222     void do_step( System system , const StateInOut &x , time_type t , time_type dt , Err &xerr )
0223     {
0224         do_step_v5( system , x , t , dt , xerr );
0225     }
0226 
0227 
0228     /*
0229      * version 6 : do_step( sys , x , dxdt , t , dt , xerr )
0230      *
0231      * this version does not solve the forwarding problem, boost.range can not be used
0232      *
0233      * the disable is needed to avoid ambiguous overloads if state_type = time_type
0234      */
0235     template< class System , class StateInOut , class DerivInOut , class Err >
0236     typename boost::disable_if< boost::is_same< StateInOut , time_type > , void >::type
0237     do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt , Err &xerr )
0238     {
0239         m_first_call = true;
0240         this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt , xerr );
0241     }
0242 
0243 
0244 
0245 
0246     /*
0247      * version 7 : do_step( sys , in , t , out , dt , xerr )
0248      *
0249      * this version does not solve the forwarding problem, boost.range can not be used
0250      */
0251     template< class System , class StateIn , class StateOut , class Err >
0252     void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt , Err &xerr )
0253     {
0254         if( m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
0255         {
0256             initialize( system , in , t );
0257         }
0258         this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , m_dxdt.m_v , dt , xerr );
0259     }
0260 
0261 
0262     /*
0263      * version 8 : do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )
0264      *
0265      * this version does not solve the forwarding problem, boost.range can not be used
0266      */
0267     template< class System , class StateIn , class DerivIn , class StateOut , class DerivOut , class Err >
0268     void do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t ,
0269             StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr )
0270     {
0271         m_first_call = true;
0272         this->stepper().do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt , xerr );
0273     }
0274 
0275     template< class StateIn >
0276     void adjust_size( const StateIn &x )
0277     {
0278         resize_impl( x );
0279     }
0280 
0281     void reset( void )
0282     {
0283         m_first_call = true;
0284     }
0285 
0286     template< class DerivIn >
0287     void initialize( const DerivIn &deriv )
0288     {
0289         boost::numeric::odeint::copy( deriv , m_dxdt.m_v );
0290         m_first_call = false;
0291     }
0292 
0293     template< class System , class StateIn >
0294     void initialize( System system , const StateIn &x , time_type t )
0295     {
0296         typename odeint::unwrap_reference< System >::type &sys = system;
0297         sys( x , m_dxdt.m_v , t );
0298         m_first_call = false;
0299     }
0300 
0301     bool is_initialized( void ) const
0302     {
0303         return ! m_first_call;
0304     }
0305 
0306 
0307 
0308 private:
0309 
0310     template< class System , class StateInOut >
0311     void do_step_v1( System system , StateInOut &x , time_type t , time_type dt )
0312     {
0313         if( m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
0314         {
0315             initialize( system , x , t );
0316         }
0317         this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , m_dxdt.m_v , dt );
0318     }
0319 
0320     template< class System , class StateInOut , class Err >
0321     void do_step_v5( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
0322     {
0323         if( m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
0324         {
0325             initialize( system , x , t );
0326         }
0327         this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , m_dxdt.m_v , dt , xerr );
0328     }
0329 
0330     template< class StateIn >
0331     bool resize_impl( const StateIn &x )
0332     {
0333         return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
0334     }
0335 
0336 
0337     stepper_type& stepper( void )
0338     {
0339         return *static_cast< stepper_type* >( this );
0340     }
0341 
0342     const stepper_type& stepper( void ) const
0343     {
0344         return *static_cast< const stepper_type* >( this );
0345     }
0346 
0347 
0348     resizer_type m_resizer;
0349     bool m_first_call;
0350 
0351 protected:
0352 
0353 
0354     wrapped_deriv_type m_dxdt;
0355 };
0356 
0357 
0358 /******* DOXYGEN *******/
0359 
0360 /**
0361  * \class explicit_error_stepper_fsal_base
0362  * \brief Base class for explicit steppers with error estimation and stepper fulfilling the FSAL (first-same-as-last)
0363  * property. This class can be used with controlled steppers for step size control.
0364  *
0365  * This class serves as the base class for all explicit steppers with algebra and operations and which fulfill the FSAL
0366  * property. In contrast to explicit_stepper_base it also estimates the error and can be used in a controlled stepper
0367  * to provide step size control.
0368  *
0369  * The FSAL property means that the derivative of the system at t+dt is already used in the current step going from
0370  * t to t +dt. Therefore, some more do_steps method can be introduced and the controlled steppers can explicitly make use
0371  * of this property.
0372  *
0373  * \note This stepper provides `do_step` methods with and without error estimation. It has therefore three orders,
0374  * one for the order of a step if the error is not estimated. The other two orders are the orders of the step and 
0375  * the error step if the error estimation is performed.
0376  *
0377  * explicit_error_stepper_fsal_base  is used as the interface in a CRTP (currently recurring template
0378  * pattern). In order to work correctly the parent class needs to have a method
0379  * `do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt , xerr )`. 
0380  * explicit_error_stepper_fsal_base derives from algebra_stepper_base.
0381  *
0382  * This class can have an intrinsic state depending on the explicit usage of the `do_step` method. This means that some
0383  * `do_step` methods are expected to be called in order. For example the `do_step( sys , x , t , dt , xerr )` will keep track 
0384  * of the derivative of `x` which is the internal state. The first call of this method is recognized such that one
0385  * does not explicitly initialize the internal state, so it is safe to use this method like
0386  *
0387  * \code
0388  * stepper_type stepper;
0389  * stepper.do_step( sys , x , t , dt , xerr );
0390  * stepper.do_step( sys , x , t , dt , xerr );
0391  * stepper.do_step( sys , x , t , dt , xerr );
0392  * \endcode
0393  *
0394  * But it is unsafe to call this method with different system functions after each other. Do do so, one must initialize the
0395  * internal state with the `initialize` method or reset the internal state with the `reset` method.
0396  *
0397  * explicit_error_stepper_fsal_base provides several overloaded `do_step` methods, see the list below. Only two of them are needed
0398  * to fulfill the Error Stepper concept. The other ones are for convenience and for better performance. Some of them
0399  * simply update the state out-of-place, while other expect that the first derivative at `t` is passed to the stepper.
0400  *
0401  * - `do_step( sys , x , t , dt )` - The classical `do_step` method needed to fulfill the Error Stepper concept. The
0402  *      state is updated in-place. A type modelling a Boost.Range can be used for x.
0403  * - `do_step( sys , x , dxdt , t , dt )` - This method updates the state x and the derivative dxdt in-place. It is expected
0404  *     that dxdt has the value of the derivative of x at time t.
0405  * - `do_step( sys , in , t , out , dt )` - This method updates the state out-of-place, hence the result of the step
0406  *      is stored in `out`.
0407  * - `do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )` - This method updates the state and the derivative
0408  *     out-of-place. It expects that the derivative at the point `t` is explicitly passed in `dxdt_in`.
0409  * - `do_step( sys , x , t , dt , xerr )` - This `do_step` method is needed to fulfill the Error Stepper concept. The
0410  *     state is updated in-place and an error estimate is calculated. A type modelling a Boost.Range can be used for x.
0411  * - `do_step( sys , x , dxdt , t , dt , xerr )` - This method updates the state and the derivative in-place. It is assumed
0412  *      that the dxdt has the value of the derivative of x at time t. An error estimate is calculated.
0413  * - `do_step( sys , in , t , out , dt , xerr )` - This method updates the state out-of-place and estimates the error
0414  *      during the step.
0415  * - `do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )` - This methods updates the state and the derivative
0416  *      out-of-place and estimates the error during the step. It is assumed the dxdt_in is derivative of in at time t.
0417  *
0418  * \note The system is always passed as value, which might result in poor performance if it contains data. In this
0419  *      case it can be used with `boost::ref` or `std::ref`, for example `stepper.do_step( boost::ref( sys ) , x , t , dt );`
0420  *
0421  * \note The time `t` is not advanced by the stepper. This has to done manually, or by the appropriate `integrate`
0422  *      routines or `iterator`s.
0423  *
0424  * \tparam Stepper The stepper on which this class should work. It is used via CRTP, hence explicit_stepper_base
0425  * provides the interface for the Stepper.
0426  * \tparam Order The order of a stepper if the stepper is used without error estimation.
0427  * \tparam StepperOrder The order of a step if the stepper is used with error estimation. Usually Order and StepperOrder have 
0428  * the same value.
0429  * \tparam ErrorOrder The order of the error step if the stepper is used with error estimation.
0430  * \tparam State The state type for the stepper.
0431  * \tparam Value The value type for the stepper. This should be a floating point type, like float,
0432  * double, or a multiprecision type. It must not necessary be the value_type of the State. For example
0433  * the State can be a `vector< complex< double > >` in this case the Value must be double.
0434  * The default value is double.
0435  * \tparam Deriv The type representing time derivatives of the state type. It is usually the same type as the
0436  * state type, only if used with Boost.Units both types differ.
0437  * \tparam Time The type representing the time. Usually the same type as the value type. When Boost.Units is
0438  * used, this type has usually a unit.
0439  * \tparam Algebra The algebra type which must fulfill the Algebra Concept.
0440  * \tparam Operations The type for the operations which must fulfill the Operations Concept.
0441  * \tparam Resizer The resizer policy class.
0442  */
0443 
0444 
0445 
0446     /**
0447      * \fn explicit_error_stepper_fsal_base::explicit_error_stepper_fsal_base( const algebra_type &algebra )
0448      * \brief Constructs a explicit_stepper_fsal_base class. This constructor can be used as a default
0449      * constructor if the algebra has a default constructor.
0450      * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
0451      */
0452 
0453 
0454     /**
0455      * \fn explicit_error_stepper_fsal_base::order( void ) const
0456      * \return Returns the order of the stepper if it used without error estimation.
0457      */
0458 
0459     /**
0460      * \fn explicit_error_stepper_fsal_base::stepper_order( void ) const
0461      * \return Returns the order of a step if the stepper is used without error estimation.
0462      */
0463 
0464 
0465     /**
0466      * \fn explicit_error_stepper_fsal_base::error_order( void ) const
0467      * \return Returns the order of an error step if the stepper is used without error estimation.
0468      */
0469 
0470     /**
0471      * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , time_type t , time_type dt )
0472      * \brief This method performs one step. It transforms the result in-place.
0473      *
0474      * \note This method uses the internal state of the stepper.
0475      *
0476      * \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
0477      *               Simple System concept.
0478      * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
0479      * \param t The value of the time, at which the step should be performed.
0480      * \param dt The step size.
0481      */
0482 
0483 
0484     /**
0485      * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
0486      * \brief The method performs one step with the stepper passed by Stepper. Additionally to the other methods
0487      * the derivative of x is also passed to this method. Therefore, dxdt must be evaluated initially:
0488      *
0489      * \code
0490      * ode( x , dxdt , t );
0491      * for( ... )
0492      * {
0493      *     stepper.do_step( ode , x , dxdt , t , dt );
0494      *     t += dt;
0495      * }
0496      * \endcode
0497      *
0498      * \note This method does NOT use the initial state, since the first derivative is explicitly passed to this method.
0499      *
0500      * The result is updated in place in x as well as the derivative dxdt. This method is disabled if
0501      * Time and StateInOut are of the same type. In this case the method could not be distinguished from other `do_step`
0502      * versions.
0503      * 
0504      * \note This method does not solve the forwarding problem.
0505      *
0506      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
0507      *               Simple System concept.
0508      * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
0509      * \param dxdt The derivative of x at t. After calling `do_step` dxdt is updated to the new value.
0510      * \param t The value of the time, at which the step should be performed.
0511      * \param dt The step size.
0512      */
0513 
0514     /**
0515      * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
0516      * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
0517      * This method is disabled if StateIn and Time are the same type. In this case the method can not be distinguished from
0518      * other `do_step` variants.
0519      *
0520      * \note This method uses the internal state of the stepper.
0521      *
0522      * \note This method does not solve the forwarding problem. 
0523      *
0524      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
0525      *               Simple System concept.
0526      * \param in The state of the ODE which should be solved. in is not modified in this method
0527      * \param t The value of the time, at which the step should be performed.
0528      * \param out The result of the step is written in out.
0529      * \param dt The step size.
0530      */
0531 
0532     /**
0533      * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt )
0534      * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
0535      * Furthermore, the derivative of x at t is passed to the stepper and updated by the stepper to its new value at
0536      * t+dt.
0537      *
0538      * \note This method does not solve the forwarding problem.
0539      *
0540      * \note This method does NOT use the internal state of the stepper.
0541      *
0542      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
0543      *               Simple System concept.
0544      * \param in The state of the ODE which should be solved. in is not modified in this method
0545      * \param dxdt_in The derivative of x at t.
0546      * \param t The value of the time, at which the step should be performed.
0547      * \param out The result of the step is written in out.
0548      * \param dxdt_out The updated derivative of `out` at `t+dt`.
0549      * \param dt The step size.
0550      */
0551 
0552     /**
0553      * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
0554      * \brief The method performs one step with the stepper passed by Stepper and estimates the error. The state of the ODE
0555      * is updated in-place.
0556      *
0557      *
0558      * \note This method uses the internal state of the stepper.
0559      *
0560      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
0561      *               Simple System concept.
0562      * \param x The state of the ODE which should be solved. x is updated by this method.
0563      * \param t The value of the time, at which the step should be performed.
0564      * \param dt The step size.
0565      * \param xerr The estimation of the error is stored in xerr.
0566      */
0567 
0568     /**
0569      * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt , Err &xerr )
0570      * \brief The method performs one step with the stepper passed by Stepper. Additionally to the other method
0571      * the derivative of x is also passed to this method and updated by this method.
0572      *
0573      * \note This method does NOT use the internal state of the stepper.
0574      *
0575      * The result is updated in place in x. This method is disabled if Time and Deriv are of the same type. In this
0576      * case the method could not be distinguished from other `do_step` versions. This method is disabled if StateInOut and
0577      * Time are of the same type.
0578      *
0579      * \note This method does NOT use the internal state of the stepper.
0580      * 
0581      * \note This method does not solve the forwarding problem.
0582      *
0583      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
0584      *               Simple System concept.
0585      * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
0586      * \param dxdt The derivative of x at t. After calling `do_step` this value is updated to the new value at `t+dt`.
0587      * \param t The value of the time, at which the step should be performed.
0588      * \param dt The step size.
0589      * \param xerr The error estimate is stored in xerr.
0590      */
0591 
0592 
0593     /**
0594      * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt , Err &xerr )
0595      * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
0596      * Furthermore, the error is estimated.
0597      *
0598      * \note This method uses the internal state of the stepper.
0599      *
0600      * \note This method does not solve the forwarding problem. 
0601      *
0602      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
0603      *               Simple System concept.
0604      * \param in The state of the ODE which should be solved. in is not modified in this method
0605      * \param t The value of the time, at which the step should be performed.
0606      * \param out The result of the step is written in out.
0607      * \param dt The step size.
0608      * \param xerr The error estimate.
0609      */
0610 
0611     /**
0612      * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr )
0613      * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
0614      * Furthermore, the derivative of x at t is passed to the stepper and the error is estimated.
0615      *
0616      * \note This method does NOT use the internal state of the stepper.
0617      *
0618      * \note This method does not solve the forwarding problem.
0619      *
0620      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
0621      *               Simple System concept.
0622      * \param in The state of the ODE which should be solved. in is not modified in this method
0623      * \param dxdt_in The derivative of x at t.
0624      * \param t The value of the time, at which the step should be performed.
0625      * \param out The result of the step is written in out.
0626      * \param dxdt_out The new derivative at `t+dt` is written into this variable.
0627      * \param dt The step size.
0628      * \param xerr The error estimate.
0629      */
0630 
0631     /**
0632      * \fn explicit_error_stepper_fsal_base::adjust_size( const StateIn &x )
0633      * \brief Adjust the size of all temporaries in the stepper manually.
0634      * \param x A state from which the size of the temporaries to be resized is deduced.
0635      */
0636 
0637     /**
0638      * \fn explicit_error_stepper_fsal_base::reset( void )
0639      * \brief Resets the internal state of this stepper. After calling this method it is safe to use all
0640      * `do_step` method without explicitly initializing the stepper.
0641      */
0642 
0643     /**
0644      * \fn explicit_error_stepper_fsal_base::initialize( const DerivIn &deriv )
0645      * \brief Initializes the internal state of the stepper.
0646      * \param deriv The derivative of x. The next call of `do_step` expects that the derivative of `x` passed to `do_step`
0647      *              has the value of `deriv`.
0648      */
0649 
0650     /**
0651      * \fn explicit_error_stepper_fsal_base::initialize( System system , const StateIn &x , time_type t )
0652      * \brief Initializes the internal state of the stepper.
0653      *
0654      * This method is equivalent to 
0655      * \code
0656      * Deriv dxdt;
0657      * system( x , dxdt , t );
0658      * stepper.initialize( dxdt );
0659      * \endcode
0660      *
0661      * \param system The system function for the next calls of `do_step`.
0662      * \param x The current state of the ODE.
0663      * \param t The current time of the ODE.
0664      */
0665 
0666     /**
0667      * \fn explicit_error_stepper_fsal_base::is_initialized( void ) const
0668      * \brief Returns if the stepper is already initialized. If the stepper is not initialized, the first 
0669      * call of `do_step` will initialize the state of the stepper. If the stepper is already initialized
0670      * the system function can not be safely exchanged between consecutive `do_step` calls.
0671      */
0672 
0673 } // odeint
0674 } // numeric
0675 } // boost
0676 
0677 #endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED