File indexing completed on 2025-01-30 09:46:32
0001
0002
0003
0004
0005
0006 #ifndef BOOST_MATH_TOOLS_CENTERED_CONTINUED_FRACTION_HPP
0007 #define BOOST_MATH_TOOLS_CENTERED_CONTINUED_FRACTION_HPP
0008
0009 #include <cmath>
0010 #include <cstdint>
0011 #include <vector>
0012 #include <ostream>
0013 #include <iomanip>
0014 #include <limits>
0015 #include <stdexcept>
0016 #include <sstream>
0017 #include <array>
0018 #include <type_traits>
0019 #include <boost/math/tools/is_standalone.hpp>
0020
0021 #ifndef BOOST_MATH_STANDALONE
0022 #include <boost/config.hpp>
0023 #ifdef BOOST_NO_CXX17_IF_CONSTEXPR
0024 #error "The header <boost/math/norms.hpp> can only be used in C++17 and later."
0025 #endif
0026 #endif
0027
0028 #ifndef BOOST_MATH_STANDALONE
0029 #include <boost/core/demangle.hpp>
0030 #endif
0031
0032 namespace boost::math::tools {
0033
0034 template<typename Real, typename Z = int64_t>
0035 class centered_continued_fraction {
0036 public:
0037 centered_continued_fraction(Real x) : x_{x} {
0038 static_assert(std::is_integral_v<Z> && std::is_signed_v<Z>,
0039 "Centered continued fractions require signed integer types.");
0040 using std::round;
0041 using std::abs;
0042 using std::sqrt;
0043 using std::isfinite;
0044 if (!isfinite(x))
0045 {
0046 throw std::domain_error("Cannot convert non-finites into continued fractions.");
0047 }
0048 b_.reserve(50);
0049 Real bj = round(x);
0050 b_.push_back(static_cast<Z>(bj));
0051 if (bj == x)
0052 {
0053 b_.shrink_to_fit();
0054 return;
0055 }
0056 x = 1/(x-bj);
0057 Real f = bj;
0058 if (bj == 0)
0059 {
0060 f = 16*(std::numeric_limits<Real>::min)();
0061 }
0062 Real C = f;
0063 Real D = 0;
0064 int i = 0;
0065 while (abs(f - x_) >= (1 + i++)*std::numeric_limits<Real>::epsilon()*abs(x_))
0066 {
0067 bj = round(x);
0068 b_.push_back(static_cast<Z>(bj));
0069 x = 1/(x-bj);
0070 D += bj;
0071 if (D == 0) {
0072 D = 16*(std::numeric_limits<Real>::min)();
0073 }
0074 C = bj + 1/C;
0075 if (C==0)
0076 {
0077 C = 16*(std::numeric_limits<Real>::min)();
0078 }
0079 D = 1/D;
0080 f *= (C*D);
0081 }
0082
0083 if (b_.size() > 2 && b_.back() == 1)
0084 {
0085 b_[b_.size() - 2] += 1;
0086 b_.resize(b_.size() - 1);
0087 }
0088 b_.shrink_to_fit();
0089
0090 for (size_t i = 1; i < b_.size(); ++i)
0091 {
0092 if (b_[i] == 0) {
0093 std::ostringstream oss;
0094 oss << "Found a zero partial denominator: b[" << i << "] = " << b_[i] << "."
0095 #ifndef BOOST_MATH_STANDALONE
0096 << " This means the integer type '" << boost::core::demangle(typeid(Z).name())
0097 #else
0098 << " This means the integer type '" << typeid(Z).name()
0099 #endif
0100 << "' has overflowed and you need to use a wider type,"
0101 << " or there is a bug.";
0102 throw std::overflow_error(oss.str());
0103 }
0104 }
0105 }
0106
0107 Real khinchin_geometric_mean() const {
0108 if (b_.size() == 1)
0109 {
0110 return std::numeric_limits<Real>::quiet_NaN();
0111 }
0112 using std::log;
0113 using std::exp;
0114 using std::abs;
0115 const std::array<Real, 7> logs{std::numeric_limits<Real>::quiet_NaN(), Real(0), log(static_cast<Real>(2)), log(static_cast<Real>(3)), log(static_cast<Real>(4)), log(static_cast<Real>(5)), log(static_cast<Real>(6))};
0116 Real log_prod = 0;
0117 for (size_t i = 1; i < b_.size(); ++i)
0118 {
0119 if (abs(b_[i]) < static_cast<Z>(logs.size()))
0120 {
0121 log_prod += logs[abs(b_[i])];
0122 }
0123 else
0124 {
0125 log_prod += log(static_cast<Real>(abs(b_[i])));
0126 }
0127 }
0128 log_prod /= (b_.size()-1);
0129 return exp(log_prod);
0130 }
0131
0132 const std::vector<Z>& partial_denominators() const {
0133 return b_;
0134 }
0135
0136 template<typename T, typename Z2>
0137 friend std::ostream& operator<<(std::ostream& out, centered_continued_fraction<T, Z2>& ccf);
0138
0139 private:
0140 const Real x_;
0141 std::vector<Z> b_;
0142 };
0143
0144
0145 template<typename Real, typename Z2>
0146 std::ostream& operator<<(std::ostream& out, centered_continued_fraction<Real, Z2>& scf) {
0147 constexpr const int p = std::numeric_limits<Real>::max_digits10;
0148 if constexpr (p == 2147483647)
0149 {
0150 out << std::setprecision(scf.x_.backend().precision());
0151 }
0152 else
0153 {
0154 out << std::setprecision(p);
0155 }
0156
0157 out << "[" << scf.b_.front();
0158 if (scf.b_.size() > 1)
0159 {
0160 out << "; ";
0161 for (size_t i = 1; i < scf.b_.size() -1; ++i)
0162 {
0163 out << scf.b_[i] << ", ";
0164 }
0165 out << scf.b_.back();
0166 }
0167 out << "]";
0168 return out;
0169 }
0170
0171
0172 }
0173 #endif