File indexing completed on 2025-01-18 09:40:24
0001
0002
0003
0004
0005
0006 #ifndef BOOST_MATH_ZETA_HPP
0007 #define BOOST_MATH_ZETA_HPP
0008
0009 #ifdef _MSC_VER
0010 #pragma once
0011 #endif
0012
0013 #include <boost/math/special_functions/math_fwd.hpp>
0014 #include <boost/math/tools/precision.hpp>
0015 #include <boost/math/tools/series.hpp>
0016 #include <boost/math/tools/big_constant.hpp>
0017 #include <boost/math/policies/error_handling.hpp>
0018 #include <boost/math/special_functions/gamma.hpp>
0019 #include <boost/math/special_functions/factorials.hpp>
0020 #include <boost/math/special_functions/sin_pi.hpp>
0021
0022 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
0023
0024
0025
0026
0027
0028
0029 #pragma GCC system_header
0030 #endif
0031
0032 namespace boost{ namespace math{ namespace detail{
0033
0034 #if 0
0035
0036
0037
0038
0039
0040 template <class T, class Policy>
0041 struct zeta_series_cache_size
0042 {
0043
0044
0045
0046
0047
0048
0049
0050
0051 typedef typename boost::math::policies::precision<T,Policy>::type precision_type;
0052 typedef typename mpl::if_<
0053 mpl::less_equal<precision_type, std::integral_constant<int, 0> >,
0054 std::integral_constant<int, 5000>,
0055 typename mpl::if_<
0056 mpl::less_equal<precision_type, std::integral_constant<int, 64> >,
0057 std::integral_constant<int, 70>,
0058 typename mpl::if_<
0059 mpl::less_equal<precision_type, std::integral_constant<int, 113> >,
0060 std::integral_constant<int, 100>,
0061 std::integral_constant<int, 5000>
0062 >::type
0063 >::type
0064 >::type type;
0065 };
0066
0067 template <class T, class Policy>
0068 T zeta_series_imp(T s, T sc, const Policy&)
0069 {
0070
0071
0072
0073
0074
0075
0076
0077 BOOST_MATH_STD_USING
0078 T sum = 0;
0079 T mult = 0.5;
0080 T change;
0081 typedef typename zeta_series_cache_size<T,Policy>::type cache_size;
0082 T powers[cache_size::value] = { 0, };
0083 unsigned n = 0;
0084 do{
0085 T binom = -static_cast<T>(n);
0086 T nested_sum = 1;
0087 if(n < sizeof(powers) / sizeof(powers[0]))
0088 powers[n] = pow(static_cast<T>(n + 1), -s);
0089 for(unsigned k = 1; k <= n; ++k)
0090 {
0091 T p;
0092 if(k < sizeof(powers) / sizeof(powers[0]))
0093 {
0094 p = powers[k];
0095
0096 }
0097 else
0098 p = pow(static_cast<T>(k + 1), -s);
0099 nested_sum += binom * p;
0100 binom *= (k - static_cast<T>(n)) / (k + 1);
0101 }
0102 change = mult * nested_sum;
0103 sum += change;
0104 mult /= 2;
0105 ++n;
0106 }while(fabs(change / sum) > tools::epsilon<T>());
0107
0108 return sum * 1 / -boost::math::powm1(T(2), sc);
0109 }
0110
0111
0112
0113
0114 template <class T>
0115 struct zeta_series2
0116 {
0117 typedef T result_type;
0118 zeta_series2(T _s) : s(-_s), k(1){}
0119 T operator()()
0120 {
0121 BOOST_MATH_STD_USING
0122 return pow(static_cast<T>(k++), s);
0123 }
0124 private:
0125 T s;
0126 unsigned k;
0127 };
0128
0129 template <class T, class Policy>
0130 inline T zeta_series2_imp(T s, const Policy& pol)
0131 {
0132 std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();;
0133 zeta_series2<T> f(s);
0134 T result = tools::sum_series(
0135 f,
0136 policies::get_epsilon<T, Policy>(),
0137 max_iter);
0138 policies::check_series_iterations<T>("boost::math::zeta_series2<%1%>(%1%)", max_iter, pol);
0139 return result;
0140 }
0141 #endif
0142
0143 template <class T, class Policy>
0144 T zeta_polynomial_series(T s, T sc, Policy const &)
0145 {
0146
0147
0148
0149
0150
0151
0152
0153 BOOST_MATH_STD_USING
0154 int n = itrunc(T(log(boost::math::tools::epsilon<T>()) / -2));
0155 T sum = 0;
0156 T two_n = ldexp(T(1), n);
0157 int ej_sign = 1;
0158 for(int j = 0; j < n; ++j)
0159 {
0160 sum += ej_sign * -two_n / pow(T(j + 1), s);
0161 ej_sign = -ej_sign;
0162 }
0163 T ej_sum = 1;
0164 T ej_term = 1;
0165 for(int j = n; j <= 2 * n - 1; ++j)
0166 {
0167 sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s);
0168 ej_sign = -ej_sign;
0169 ej_term *= 2 * n - j;
0170 ej_term /= j - n + 1;
0171 ej_sum += ej_term;
0172 }
0173 return -sum / (two_n * (-powm1(T(2), sc)));
0174 }
0175
0176 template <class T, class Policy>
0177 T zeta_imp_prec(T s, T sc, const Policy& pol, const std::integral_constant<int, 0>&)
0178 {
0179 BOOST_MATH_STD_USING
0180 T result;
0181 if(s >= policies::digits<T, Policy>())
0182 return 1;
0183 result = zeta_polynomial_series(s, sc, pol);
0184 #if 0
0185
0186
0187
0188
0189
0190
0191
0192
0193 if (s > -log(tools::epsilon<T>()) / 4.5)
0194 result = detail::zeta_series2_imp(s, pol);
0195 else
0196 result = detail::zeta_series_imp(s, sc, pol);
0197 #endif
0198 return result;
0199 }
0200
0201 template <class T, class Policy>
0202 inline T zeta_imp_prec(T s, T sc, const Policy&, const std::integral_constant<int, 53>&)
0203 {
0204 BOOST_MATH_STD_USING
0205 T result;
0206 if(s < 1)
0207 {
0208
0209
0210
0211
0212 static const T P[6] = {
0213 static_cast<T>(0.24339294433593750202L),
0214 static_cast<T>(-0.49092470516353571651L),
0215 static_cast<T>(0.0557616214776046784287L),
0216 static_cast<T>(-0.00320912498879085894856L),
0217 static_cast<T>(0.000451534528645796438704L),
0218 static_cast<T>(-0.933241270357061460782e-5L),
0219 };
0220 static const T Q[6] = {
0221 static_cast<T>(1L),
0222 static_cast<T>(-0.279960334310344432495L),
0223 static_cast<T>(0.0419676223309986037706L),
0224 static_cast<T>(-0.00413421406552171059003L),
0225 static_cast<T>(0.00024978985622317935355L),
0226 static_cast<T>(-0.101855788418564031874e-4L),
0227 };
0228 result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc);
0229 result -= 1.2433929443359375F;
0230 result += (sc);
0231 result /= (sc);
0232 }
0233 else if(s <= 2)
0234 {
0235
0236
0237 static const T P[6] = {
0238 static_cast<T>(0.577215664901532860516L),
0239 static_cast<T>(0.243210646940107164097L),
0240 static_cast<T>(0.0417364673988216497593L),
0241 static_cast<T>(0.00390252087072843288378L),
0242 static_cast<T>(0.000249606367151877175456L),
0243 static_cast<T>(0.110108440976732897969e-4L),
0244 };
0245 static const T Q[6] = {
0246 static_cast<T>(1.0),
0247 static_cast<T>(0.295201277126631761737L),
0248 static_cast<T>(0.043460910607305495864L),
0249 static_cast<T>(0.00434930582085826330659L),
0250 static_cast<T>(0.000255784226140488490982L),
0251 static_cast<T>(0.10991819782396112081e-4L),
0252 };
0253 result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc));
0254 result += 1 / (-sc);
0255 }
0256 else if(s <= 4)
0257 {
0258
0259
0260 static const float Y = 0.6986598968505859375;
0261 static const T P[6] = {
0262 static_cast<T>(-0.0537258300023595030676L),
0263 static_cast<T>(0.0445163473292365591906L),
0264 static_cast<T>(0.0128677673534519952905L),
0265 static_cast<T>(0.00097541770457391752726L),
0266 static_cast<T>(0.769875101573654070925e-4L),
0267 static_cast<T>(0.328032510000383084155e-5L),
0268 };
0269 static const T Q[7] = {
0270 1.0f,
0271 static_cast<T>(0.33383194553034051422L),
0272 static_cast<T>(0.0487798431291407621462L),
0273 static_cast<T>(0.00479039708573558490716L),
0274 static_cast<T>(0.000270776703956336357707L),
0275 static_cast<T>(0.106951867532057341359e-4L),
0276 static_cast<T>(0.236276623974978646399e-7L),
0277 };
0278 result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2));
0279 result += Y + 1 / (-sc);
0280 }
0281 else if(s <= 7)
0282 {
0283
0284
0285
0286
0287 static const T P[6] = {
0288 static_cast<T>(-2.49710190602259410021L),
0289 static_cast<T>(-2.60013301809475665334L),
0290 static_cast<T>(-0.939260435377109939261L),
0291 static_cast<T>(-0.138448617995741530935L),
0292 static_cast<T>(-0.00701721240549802377623L),
0293 static_cast<T>(-0.229257310594893932383e-4L),
0294 };
0295 static const T Q[9] = {
0296 1.0f,
0297 static_cast<T>(0.706039025937745133628L),
0298 static_cast<T>(0.15739599649558626358L),
0299 static_cast<T>(0.0106117950976845084417L),
0300 static_cast<T>(-0.36910273311764618902e-4L),
0301 static_cast<T>(0.493409563927590008943e-5L),
0302 static_cast<T>(-0.234055487025287216506e-6L),
0303 static_cast<T>(0.718833729365459760664e-8L),
0304 static_cast<T>(-0.1129200113474947419e-9L),
0305 };
0306 result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4));
0307 result = 1 + exp(result);
0308 }
0309 else if(s < 15)
0310 {
0311
0312
0313
0314 static const T P[7] = {
0315 static_cast<T>(-4.78558028495135619286L),
0316 static_cast<T>(-1.89197364881972536382L),
0317 static_cast<T>(-0.211407134874412820099L),
0318 static_cast<T>(-0.000189204758260076688518L),
0319 static_cast<T>(0.00115140923889178742086L),
0320 static_cast<T>(0.639949204213164496988e-4L),
0321 static_cast<T>(0.139348932445324888343e-5L),
0322 };
0323 static const T Q[9] = {
0324 1.0f,
0325 static_cast<T>(0.244345337378188557777L),
0326 static_cast<T>(0.00873370754492288653669L),
0327 static_cast<T>(-0.00117592765334434471562L),
0328 static_cast<T>(-0.743743682899933180415e-4L),
0329 static_cast<T>(-0.21750464515767984778e-5L),
0330 static_cast<T>(0.471001264003076486547e-8L),
0331 static_cast<T>(-0.833378440625385520576e-10L),
0332 static_cast<T>(0.699841545204845636531e-12L),
0333 };
0334 result = tools::evaluate_polynomial(P, T(s - 7)) / tools::evaluate_polynomial(Q, T(s - 7));
0335 result = 1 + exp(result);
0336 }
0337 else if(s < 36)
0338 {
0339
0340
0341 static const T P[8] = {
0342 static_cast<T>(-10.3948950573308896825L),
0343 static_cast<T>(-2.85827219671106697179L),
0344 static_cast<T>(-0.347728266539245787271L),
0345 static_cast<T>(-0.0251156064655346341766L),
0346 static_cast<T>(-0.00119459173416968685689L),
0347 static_cast<T>(-0.382529323507967522614e-4L),
0348 static_cast<T>(-0.785523633796723466968e-6L),
0349 static_cast<T>(-0.821465709095465524192e-8L),
0350 };
0351 static const T Q[10] = {
0352 1.0f,
0353 static_cast<T>(0.208196333572671890965L),
0354 static_cast<T>(0.0195687657317205033485L),
0355 static_cast<T>(0.00111079638102485921877L),
0356 static_cast<T>(0.408507746266039256231e-4L),
0357 static_cast<T>(0.955561123065693483991e-6L),
0358 static_cast<T>(0.118507153474022900583e-7L),
0359 static_cast<T>(0.222609483627352615142e-14L),
0360 };
0361 result = tools::evaluate_polynomial(P, T(s - 15)) / tools::evaluate_polynomial(Q, T(s - 15));
0362 result = 1 + exp(result);
0363 }
0364 else if(s < 56)
0365 {
0366 result = 1 + pow(T(2), -s);
0367 }
0368 else
0369 {
0370 result = 1;
0371 }
0372 return result;
0373 }
0374
0375 template <class T, class Policy>
0376 T zeta_imp_prec(T s, T sc, const Policy&, const std::integral_constant<int, 64>&)
0377 {
0378 BOOST_MATH_STD_USING
0379 T result;
0380 if(s < 1)
0381 {
0382
0383
0384
0385
0386 static const T P[6] = {
0387 BOOST_MATH_BIG_CONSTANT(T, 64, 0.243392944335937499969),
0388 BOOST_MATH_BIG_CONSTANT(T, 64, -0.496837806864865688082),
0389 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0680008039723709987107),
0390 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00511620413006619942112),
0391 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000455369899250053003335),
0392 BOOST_MATH_BIG_CONSTANT(T, 64, -0.279496685273033761927e-4),
0393 };
0394 static const T Q[7] = {
0395 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0396 BOOST_MATH_BIG_CONSTANT(T, 64, -0.30425480068225790522),
0397 BOOST_MATH_BIG_CONSTANT(T, 64, 0.050052748580371598736),
0398 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00519355671064700627862),
0399 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000360623385771198350257),
0400 BOOST_MATH_BIG_CONSTANT(T, 64, -0.159600883054550987633e-4),
0401 BOOST_MATH_BIG_CONSTANT(T, 64, 0.339770279812410586032e-6),
0402 };
0403 result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc);
0404 result -= 1.2433929443359375F;
0405 result += (sc);
0406 result /= (sc);
0407 }
0408 else if(s <= 2)
0409 {
0410
0411
0412
0413
0414 static const T P[6] = {
0415 BOOST_MATH_BIG_CONSTANT(T, 64, 0.577215664901532860605),
0416 BOOST_MATH_BIG_CONSTANT(T, 64, 0.222537368917162139445),
0417 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0356286324033215682729),
0418 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00304465292366350081446),
0419 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000178102511649069421904),
0420 BOOST_MATH_BIG_CONSTANT(T, 64, 0.700867470265983665042e-5),
0421 };
0422 static const T Q[7] = {
0423 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0424 BOOST_MATH_BIG_CONSTANT(T, 64, 0.259385759149531030085),
0425 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0373974962106091316854),
0426 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00332735159183332820617),
0427 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000188690420706998606469),
0428 BOOST_MATH_BIG_CONSTANT(T, 64, 0.635994377921861930071e-5),
0429 BOOST_MATH_BIG_CONSTANT(T, 64, 0.226583954978371199405e-7),
0430 };
0431 result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc));
0432 result += 1 / (-sc);
0433 }
0434 else if(s <= 4)
0435 {
0436
0437
0438 static const float Y = 0.6986598968505859375;
0439 static const T P[7] = {
0440 BOOST_MATH_BIG_CONSTANT(T, 64, -0.053725830002359501027),
0441 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0470551187571475844778),
0442 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0101339410415759517471),
0443 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00100240326666092854528),
0444 BOOST_MATH_BIG_CONSTANT(T, 64, 0.685027119098122814867e-4),
0445 BOOST_MATH_BIG_CONSTANT(T, 64, 0.390972820219765942117e-5),
0446 BOOST_MATH_BIG_CONSTANT(T, 64, 0.540319769113543934483e-7),
0447 };
0448 static const T Q[8] = {
0449 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0450 BOOST_MATH_BIG_CONSTANT(T, 64, 0.286577739726542730421),
0451 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0447355811517733225843),
0452 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00430125107610252363302),
0453 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000284956969089786662045),
0454 BOOST_MATH_BIG_CONSTANT(T, 64, 0.116188101609848411329e-4),
0455 BOOST_MATH_BIG_CONSTANT(T, 64, 0.278090318191657278204e-6),
0456 BOOST_MATH_BIG_CONSTANT(T, 64, -0.19683620233222028478e-8),
0457 };
0458 result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2));
0459 result += Y + 1 / (-sc);
0460 }
0461 else if(s <= 7)
0462 {
0463
0464 static const T P[8] = {
0465 BOOST_MATH_BIG_CONSTANT(T, 64, -2.49710190602259407065),
0466 BOOST_MATH_BIG_CONSTANT(T, 64, -3.36664913245960625334),
0467 BOOST_MATH_BIG_CONSTANT(T, 64, -1.77180020623777595452),
0468 BOOST_MATH_BIG_CONSTANT(T, 64, -0.464717885249654313933),
0469 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0643694921293579472583),
0470 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00464265386202805715487),
0471 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000165556579779704340166),
0472 BOOST_MATH_BIG_CONSTANT(T, 64, -0.252884970740994069582e-5),
0473 };
0474 static const T Q[9] = {
0475 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0476 BOOST_MATH_BIG_CONSTANT(T, 64, 1.01300131390690459085),
0477 BOOST_MATH_BIG_CONSTANT(T, 64, 0.387898115758643503827),
0478 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0695071490045701135188),
0479 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00586908595251442839291),
0480 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000217752974064612188616),
0481 BOOST_MATH_BIG_CONSTANT(T, 64, 0.397626583349419011731e-5),
0482 BOOST_MATH_BIG_CONSTANT(T, 64, -0.927884739284359700764e-8),
0483 BOOST_MATH_BIG_CONSTANT(T, 64, 0.119810501805618894381e-9),
0484 };
0485 result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4));
0486 result = 1 + exp(result);
0487 }
0488 else if(s < 15)
0489 {
0490
0491
0492 static const T P[9] = {
0493 BOOST_MATH_BIG_CONSTANT(T, 64, -4.78558028495135548083),
0494 BOOST_MATH_BIG_CONSTANT(T, 64, -3.23873322238609358947),
0495 BOOST_MATH_BIG_CONSTANT(T, 64, -0.892338582881021799922),
0496 BOOST_MATH_BIG_CONSTANT(T, 64, -0.131326296217965913809),
0497 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0115651591773783712996),
0498 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000657728968362695775205),
0499 BOOST_MATH_BIG_CONSTANT(T, 64, -0.252051328129449973047e-4),
0500 BOOST_MATH_BIG_CONSTANT(T, 64, -0.626503445372641798925e-6),
0501 BOOST_MATH_BIG_CONSTANT(T, 64, -0.815696314790853893484e-8),
0502 };
0503 static const T Q[9] = {
0504 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0505 BOOST_MATH_BIG_CONSTANT(T, 64, 0.525765665400123515036),
0506 BOOST_MATH_BIG_CONSTANT(T, 64, 0.10852641753657122787),
0507 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0115669945375362045249),
0508 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000732896513858274091966),
0509 BOOST_MATH_BIG_CONSTANT(T, 64, 0.30683952282420248448e-4),
0510 BOOST_MATH_BIG_CONSTANT(T, 64, 0.819649214609633126119e-6),
0511 BOOST_MATH_BIG_CONSTANT(T, 64, 0.117957556472335968146e-7),
0512 BOOST_MATH_BIG_CONSTANT(T, 64, -0.193432300973017671137e-12),
0513 };
0514 result = tools::evaluate_polynomial(P, T(s - 7)) / tools::evaluate_polynomial(Q, T(s - 7));
0515 result = 1 + exp(result);
0516 }
0517 else if(s < 42)
0518 {
0519
0520
0521 static const T P[9] = {
0522 BOOST_MATH_BIG_CONSTANT(T, 64, -10.3948950573308861781),
0523 BOOST_MATH_BIG_CONSTANT(T, 64, -2.82646012777913950108),
0524 BOOST_MATH_BIG_CONSTANT(T, 64, -0.342144362739570333665),
0525 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0249285145498722647472),
0526 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00122493108848097114118),
0527 BOOST_MATH_BIG_CONSTANT(T, 64, -0.423055371192592850196e-4),
0528 BOOST_MATH_BIG_CONSTANT(T, 64, -0.1025215577185967488e-5),
0529 BOOST_MATH_BIG_CONSTANT(T, 64, -0.165096762663509467061e-7),
0530 BOOST_MATH_BIG_CONSTANT(T, 64, -0.145392555873022044329e-9),
0531 };
0532 static const T Q[10] = {
0533 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0534 BOOST_MATH_BIG_CONSTANT(T, 64, 0.205135978585281988052),
0535 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0192359357875879453602),
0536 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00111496452029715514119),
0537 BOOST_MATH_BIG_CONSTANT(T, 64, 0.434928449016693986857e-4),
0538 BOOST_MATH_BIG_CONSTANT(T, 64, 0.116911068726610725891e-5),
0539 BOOST_MATH_BIG_CONSTANT(T, 64, 0.206704342290235237475e-7),
0540 BOOST_MATH_BIG_CONSTANT(T, 64, 0.209772836100827647474e-9),
0541 BOOST_MATH_BIG_CONSTANT(T, 64, -0.939798249922234703384e-16),
0542 BOOST_MATH_BIG_CONSTANT(T, 64, 0.264584017421245080294e-18),
0543 };
0544 result = tools::evaluate_polynomial(P, T(s - 15)) / tools::evaluate_polynomial(Q, T(s - 15));
0545 result = 1 + exp(result);
0546 }
0547 else if(s < 63)
0548 {
0549 result = 1 + pow(T(2), -s);
0550 }
0551 else
0552 {
0553 result = 1;
0554 }
0555 return result;
0556 }
0557
0558 template <class T, class Policy>
0559 T zeta_imp_prec(T s, T sc, const Policy&, const std::integral_constant<int, 113>&)
0560 {
0561 BOOST_MATH_STD_USING
0562 T result;
0563 if(s < 1)
0564 {
0565
0566
0567
0568
0569
0570 static const T P[10] = {
0571 BOOST_MATH_BIG_CONSTANT(T, 113, -1.0),
0572 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0353008629988648122808504280990313668),
0573 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0107795651204927743049369868548706909),
0574 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000523961870530500751114866884685172975),
0575 BOOST_MATH_BIG_CONSTANT(T, 113, -0.661805838304910731947595897966487515e-4),
0576 BOOST_MATH_BIG_CONSTANT(T, 113, -0.658932670403818558510656304189164638e-5),
0577 BOOST_MATH_BIG_CONSTANT(T, 113, -0.103437265642266106533814021041010453e-6),
0578 BOOST_MATH_BIG_CONSTANT(T, 113, 0.116818787212666457105375746642927737e-7),
0579 BOOST_MATH_BIG_CONSTANT(T, 113, 0.660690993901506912123512551294239036e-9),
0580 BOOST_MATH_BIG_CONSTANT(T, 113, 0.113103113698388531428914333768142527e-10),
0581 };
0582 static const T Q[11] = {
0583 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0584 BOOST_MATH_BIG_CONSTANT(T, 113, -0.387483472099602327112637481818565459),
0585 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0802265315091063135271497708694776875),
0586 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0110727276164171919280036408995078164),
0587 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00112552716946286252000434849173787243),
0588 BOOST_MATH_BIG_CONSTANT(T, 113, -0.874554160748626916455655180296834352e-4),
0589 BOOST_MATH_BIG_CONSTANT(T, 113, 0.530097847491828379568636739662278322e-5),
0590 BOOST_MATH_BIG_CONSTANT(T, 113, -0.248461553590496154705565904497247452e-6),
0591 BOOST_MATH_BIG_CONSTANT(T, 113, 0.881834921354014787309644951507523899e-8),
0592 BOOST_MATH_BIG_CONSTANT(T, 113, -0.217062446168217797598596496310953025e-9),
0593 BOOST_MATH_BIG_CONSTANT(T, 113, 0.315823200002384492377987848307151168e-11),
0594 };
0595 result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc);
0596 result += (sc);
0597 result /= (sc);
0598 }
0599 else if(s <= 2)
0600 {
0601
0602
0603
0604 static const T P[10] = {
0605 BOOST_MATH_BIG_CONSTANT(T, 113, 0.577215664901532860606512090082402431),
0606 BOOST_MATH_BIG_CONSTANT(T, 113, 0.255597968739771510415479842335906308),
0607 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0494056503552807274142218876983542205),
0608 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00551372778611700965268920983472292325),
0609 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00043667616723970574871427830895192731),
0610 BOOST_MATH_BIG_CONSTANT(T, 113, 0.268562259154821957743669387915239528e-4),
0611 BOOST_MATH_BIG_CONSTANT(T, 113, 0.109249633923016310141743084480436612e-5),
0612 BOOST_MATH_BIG_CONSTANT(T, 113, 0.273895554345300227466534378753023924e-7),
0613 BOOST_MATH_BIG_CONSTANT(T, 113, 0.583103205551702720149237384027795038e-9),
0614 BOOST_MATH_BIG_CONSTANT(T, 113, -0.835774625259919268768735944711219256e-11),
0615 };
0616 static const T Q[11] = {
0617 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0618 BOOST_MATH_BIG_CONSTANT(T, 113, 0.316661751179735502065583176348292881),
0619 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0540401806533507064453851182728635272),
0620 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00598621274107420237785899476374043797),
0621 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000474907812321704156213038740142079615),
0622 BOOST_MATH_BIG_CONSTANT(T, 113, 0.272125421722314389581695715835862418e-4),
0623 BOOST_MATH_BIG_CONSTANT(T, 113, 0.112649552156479800925522445229212933e-5),
0624 BOOST_MATH_BIG_CONSTANT(T, 113, 0.301838975502992622733000078063330461e-7),
0625 BOOST_MATH_BIG_CONSTANT(T, 113, 0.422960728687211282539769943184270106e-9),
0626 BOOST_MATH_BIG_CONSTANT(T, 113, -0.377105263588822468076813329270698909e-11),
0627 BOOST_MATH_BIG_CONSTANT(T, 113, -0.581926559304525152432462127383600681e-13),
0628 };
0629 result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc));
0630 result += 1 / (-sc);
0631 }
0632 else if(s <= 4)
0633 {
0634
0635
0636
0637
0638 static const float Y = 0.6986598968505859375;
0639 static const T P[11] = {
0640 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0537258300023595010275848333539748089),
0641 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0429086930802630159457448174466342553),
0642 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0136148228754303412510213395034056857),
0643 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190231601036042925183751238033763915),
0644 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000186880390916311438818302549192456581),
0645 BOOST_MATH_BIG_CONSTANT(T, 113, 0.145347370745893262394287982691323657e-4),
0646 BOOST_MATH_BIG_CONSTANT(T, 113, 0.805843276446813106414036600485884885e-6),
0647 BOOST_MATH_BIG_CONSTANT(T, 113, 0.340818159286739137503297172091882574e-7),
0648 BOOST_MATH_BIG_CONSTANT(T, 113, 0.115762357488748996526167305116837246e-8),
0649 BOOST_MATH_BIG_CONSTANT(T, 113, 0.231904754577648077579913403645767214e-10),
0650 BOOST_MATH_BIG_CONSTANT(T, 113, 0.340169592866058506675897646629036044e-12),
0651 };
0652 static const T Q[12] = {
0653 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0654 BOOST_MATH_BIG_CONSTANT(T, 113, 0.363755247765087100018556983050520554),
0655 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0696581979014242539385695131258321598),
0656 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00882208914484611029571547753782014817),
0657 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000815405623261946661762236085660996718),
0658 BOOST_MATH_BIG_CONSTANT(T, 113, 0.571366167062457197282642344940445452e-4),
0659 BOOST_MATH_BIG_CONSTANT(T, 113, 0.309278269271853502353954062051797838e-5),
0660 BOOST_MATH_BIG_CONSTANT(T, 113, 0.12822982083479010834070516053794262e-6),
0661 BOOST_MATH_BIG_CONSTANT(T, 113, 0.397876357325018976733953479182110033e-8),
0662 BOOST_MATH_BIG_CONSTANT(T, 113, 0.8484432107648683277598472295289279e-10),
0663 BOOST_MATH_BIG_CONSTANT(T, 113, 0.105677416606909614301995218444080615e-11),
0664 BOOST_MATH_BIG_CONSTANT(T, 113, 0.547223964564003701979951154093005354e-15),
0665 };
0666 result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2));
0667 result += Y + 1 / (-sc);
0668 }
0669 else if(s <= 6)
0670 {
0671
0672
0673
0674 static const T Y = 3.28348541259765625F;
0675
0676 static const T P[13] = {
0677 BOOST_MATH_BIG_CONSTANT(T, 113, 0.786383506575062179339611614117697622),
0678 BOOST_MATH_BIG_CONSTANT(T, 113, 0.495766593395271370974685959652073976),
0679 BOOST_MATH_BIG_CONSTANT(T, 113, -0.409116737851754766422360889037532228),
0680 BOOST_MATH_BIG_CONSTANT(T, 113, -0.57340744006238263817895456842655987),
0681 BOOST_MATH_BIG_CONSTANT(T, 113, -0.280479899797421910694892949057963111),
0682 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0753148409447590257157585696212649869),
0683 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0122934003684672788499099362823748632),
0684 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126148398446193639247961370266962927),
0685 BOOST_MATH_BIG_CONSTANT(T, 113, -0.828465038179772939844657040917364896e-4),
0686 BOOST_MATH_BIG_CONSTANT(T, 113, -0.361008916706050977143208468690645684e-5),
0687 BOOST_MATH_BIG_CONSTANT(T, 113, -0.109879825497910544424797771195928112e-6),
0688 BOOST_MATH_BIG_CONSTANT(T, 113, -0.214539416789686920918063075528797059e-8),
0689 BOOST_MATH_BIG_CONSTANT(T, 113, -0.15090220092460596872172844424267351e-10),
0690 };
0691 static const T Q[14] = {
0692 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0693 BOOST_MATH_BIG_CONSTANT(T, 113, 1.69490865837142338462982225731926485),
0694 BOOST_MATH_BIG_CONSTANT(T, 113, 1.22697696630994080733321401255942464),
0695 BOOST_MATH_BIG_CONSTANT(T, 113, 0.495409420862526540074366618006341533),
0696 BOOST_MATH_BIG_CONSTANT(T, 113, 0.122368084916843823462872905024259633),
0697 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0191412993625268971656513890888208623),
0698 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00191401538628980617753082598351559642),
0699 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000123318142456272424148930280876444459),
0700 BOOST_MATH_BIG_CONSTANT(T, 113, 0.531945488232526067889835342277595709e-5),
0701 BOOST_MATH_BIG_CONSTANT(T, 113, 0.161843184071894368337068779669116236e-6),
0702 BOOST_MATH_BIG_CONSTANT(T, 113, 0.305796079600152506743828859577462778e-8),
0703 BOOST_MATH_BIG_CONSTANT(T, 113, 0.233582592298450202680170811044408894e-10),
0704 BOOST_MATH_BIG_CONSTANT(T, 113, -0.275363878344548055574209713637734269e-13),
0705 BOOST_MATH_BIG_CONSTANT(T, 113, 0.221564186807357535475441900517843892e-15),
0706 };
0707 result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4));
0708 result -= Y;
0709 result = 1 + exp(result);
0710 }
0711 else if(s < 10)
0712 {
0713
0714
0715
0716 static const T P[13] = {
0717 BOOST_MATH_BIG_CONSTANT(T, 113, -4.0545627381873738086704293881227365),
0718 BOOST_MATH_BIG_CONSTANT(T, 113, -4.70088348734699134347906176097717782),
0719 BOOST_MATH_BIG_CONSTANT(T, 113, -2.36921550900925512951976617607678789),
0720 BOOST_MATH_BIG_CONSTANT(T, 113, -0.684322583796369508367726293719322866),
0721 BOOST_MATH_BIG_CONSTANT(T, 113, -0.126026534540165129870721937592996324),
0722 BOOST_MATH_BIG_CONSTANT(T, 113, -0.015636903921778316147260572008619549),
0723 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00135442294754728549644376325814460807),
0724 BOOST_MATH_BIG_CONSTANT(T, 113, -0.842793965853572134365031384646117061e-4),
0725 BOOST_MATH_BIG_CONSTANT(T, 113, -0.385602133791111663372015460784978351e-5),
0726 BOOST_MATH_BIG_CONSTANT(T, 113, -0.130458500394692067189883214401478539e-6),
0727 BOOST_MATH_BIG_CONSTANT(T, 113, -0.315861074947230418778143153383660035e-8),
0728 BOOST_MATH_BIG_CONSTANT(T, 113, -0.500334720512030826996373077844707164e-10),
0729 BOOST_MATH_BIG_CONSTANT(T, 113, -0.420204769185233365849253969097184005e-12),
0730 };
0731 static const T Q[14] = {
0732 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0733 BOOST_MATH_BIG_CONSTANT(T, 113, 0.97663511666410096104783358493318814),
0734 BOOST_MATH_BIG_CONSTANT(T, 113, 0.40878780231201806504987368939673249),
0735 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0963890666609396058945084107597727252),
0736 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0142207619090854604824116070866614505),
0737 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139010220902667918476773423995750877),
0738 BOOST_MATH_BIG_CONSTANT(T, 113, 0.940669540194694997889636696089994734e-4),
0739 BOOST_MATH_BIG_CONSTANT(T, 113, 0.458220848507517004399292480807026602e-5),
0740 BOOST_MATH_BIG_CONSTANT(T, 113, 0.16345521617741789012782420625435495e-6),
0741 BOOST_MATH_BIG_CONSTANT(T, 113, 0.414007452533083304371566316901024114e-8),
0742 BOOST_MATH_BIG_CONSTANT(T, 113, 0.68701473543366328016953742622661377e-10),
0743 BOOST_MATH_BIG_CONSTANT(T, 113, 0.603461891080716585087883971886075863e-12),
0744 BOOST_MATH_BIG_CONSTANT(T, 113, 0.294670713571839023181857795866134957e-16),
0745 BOOST_MATH_BIG_CONSTANT(T, 113, -0.147003914536437243143096875069813451e-18),
0746 };
0747 result = tools::evaluate_polynomial(P, T(s - 6)) / tools::evaluate_polynomial(Q, T(s - 6));
0748 result = 1 + exp(result);
0749 }
0750 else if(s < 17)
0751 {
0752
0753
0754 static const T P[13] = {
0755 BOOST_MATH_BIG_CONSTANT(T, 113, -6.91319491921722925920883787894829678),
0756 BOOST_MATH_BIG_CONSTANT(T, 113, -3.65491257639481960248690596951049048),
0757 BOOST_MATH_BIG_CONSTANT(T, 113, -0.813557553449954526442644544105257881),
0758 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0994317301685870959473658713841138083),
0759 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00726896610245676520248617014211734906),
0760 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000317253318715075854811266230916762929),
0761 BOOST_MATH_BIG_CONSTANT(T, 113, -0.66851422826636750855184211580127133e-5),
0762 BOOST_MATH_BIG_CONSTANT(T, 113, 0.879464154730985406003332577806849971e-7),
0763 BOOST_MATH_BIG_CONSTANT(T, 113, 0.113838903158254250631678791998294628e-7),
0764 BOOST_MATH_BIG_CONSTANT(T, 113, 0.379184410304927316385211327537817583e-9),
0765 BOOST_MATH_BIG_CONSTANT(T, 113, 0.612992858643904887150527613446403867e-11),
0766 BOOST_MATH_BIG_CONSTANT(T, 113, 0.347873737198164757035457841688594788e-13),
0767 BOOST_MATH_BIG_CONSTANT(T, 113, -0.289187187441625868404494665572279364e-15),
0768 };
0769 static const T Q[14] = {
0770 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0771 BOOST_MATH_BIG_CONSTANT(T, 113, 0.427310044448071818775721584949868806),
0772 BOOST_MATH_BIG_CONSTANT(T, 113, 0.074602514873055756201435421385243062),
0773 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00688651562174480772901425121653945942),
0774 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000360174847635115036351323894321880445),
0775 BOOST_MATH_BIG_CONSTANT(T, 113, 0.973556847713307543918865405758248777e-5),
0776 BOOST_MATH_BIG_CONSTANT(T, 113, -0.853455848314516117964634714780874197e-8),
0777 BOOST_MATH_BIG_CONSTANT(T, 113, -0.118203513654855112421673192194622826e-7),
0778 BOOST_MATH_BIG_CONSTANT(T, 113, -0.462521662511754117095006543363328159e-9),
0779 BOOST_MATH_BIG_CONSTANT(T, 113, -0.834212591919475633107355719369463143e-11),
0780 BOOST_MATH_BIG_CONSTANT(T, 113, -0.5354594751002702935740220218582929e-13),
0781 BOOST_MATH_BIG_CONSTANT(T, 113, 0.406451690742991192964889603000756203e-15),
0782 BOOST_MATH_BIG_CONSTANT(T, 113, 0.887948682401000153828241615760146728e-19),
0783 BOOST_MATH_BIG_CONSTANT(T, 113, -0.34980761098820347103967203948619072e-21),
0784 };
0785 result = tools::evaluate_polynomial(P, T(s - 10)) / tools::evaluate_polynomial(Q, T(s - 10));
0786 result = 1 + exp(result);
0787 }
0788 else if(s < 30)
0789 {
0790
0791
0792
0793 static const T P[13] = {
0794 BOOST_MATH_BIG_CONSTANT(T, 113, -11.7824798233959252791987402769438322),
0795 BOOST_MATH_BIG_CONSTANT(T, 113, -4.36131215284987731928174218354118102),
0796 BOOST_MATH_BIG_CONSTANT(T, 113, -0.732260980060982349410898496846972204),
0797 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0744985185694913074484248803015717388),
0798 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00517228281320594683022294996292250527),
0799 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000260897206152101522569969046299309939),
0800 BOOST_MATH_BIG_CONSTANT(T, 113, -0.989553462123121764865178453128769948e-5),
0801 BOOST_MATH_BIG_CONSTANT(T, 113, -0.286916799741891410827712096608826167e-6),
0802 BOOST_MATH_BIG_CONSTANT(T, 113, -0.637262477796046963617949532211619729e-8),
0803 BOOST_MATH_BIG_CONSTANT(T, 113, -0.106796831465628373325491288787760494e-9),
0804 BOOST_MATH_BIG_CONSTANT(T, 113, -0.129343095511091870860498356205376823e-11),
0805 BOOST_MATH_BIG_CONSTANT(T, 113, -0.102397936697965977221267881716672084e-13),
0806 BOOST_MATH_BIG_CONSTANT(T, 113, -0.402663128248642002351627980255756363e-16),
0807 };
0808 static const T Q[14] = {
0809 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0810 BOOST_MATH_BIG_CONSTANT(T, 113, 0.311288325355705609096155335186466508),
0811 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0438318468940415543546769437752132748),
0812 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00374396349183199548610264222242269536),
0813 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000218707451200585197339671707189281302),
0814 BOOST_MATH_BIG_CONSTANT(T, 113, 0.927578767487930747532953583797351219e-5),
0815 BOOST_MATH_BIG_CONSTANT(T, 113, 0.294145760625753561951137473484889639e-6),
0816 BOOST_MATH_BIG_CONSTANT(T, 113, 0.704618586690874460082739479535985395e-8),
0817 BOOST_MATH_BIG_CONSTANT(T, 113, 0.126333332872897336219649130062221257e-9),
0818 BOOST_MATH_BIG_CONSTANT(T, 113, 0.16317315713773503718315435769352765e-11),
0819 BOOST_MATH_BIG_CONSTANT(T, 113, 0.137846712823719515148344938160275695e-13),
0820 BOOST_MATH_BIG_CONSTANT(T, 113, 0.580975420554224366450994232723910583e-16),
0821 BOOST_MATH_BIG_CONSTANT(T, 113, -0.291354445847552426900293580511392459e-22),
0822 BOOST_MATH_BIG_CONSTANT(T, 113, 0.73614324724785855925025452085443636e-25),
0823 };
0824 result = tools::evaluate_polynomial(P, T(s - 17)) / tools::evaluate_polynomial(Q, T(s - 17));
0825 result = 1 + exp(result);
0826 }
0827 else if(s < 74)
0828 {
0829
0830
0831 static const T P[14] = {
0832 BOOST_MATH_BIG_CONSTANT(T, 113, -20.7944102007844314586649688802236072),
0833 BOOST_MATH_BIG_CONSTANT(T, 113, -4.95759941987499442499908748130192187),
0834 BOOST_MATH_BIG_CONSTANT(T, 113, -0.563290752832461751889194629200298688),
0835 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0406197001137935911912457120706122877),
0836 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0020846534789473022216888863613422293),
0837 BOOST_MATH_BIG_CONSTANT(T, 113, -0.808095978462109173749395599401375667e-4),
0838 BOOST_MATH_BIG_CONSTANT(T, 113, -0.244706022206249301640890603610060959e-5),
0839 BOOST_MATH_BIG_CONSTANT(T, 113, -0.589477682919645930544382616501666572e-7),
0840 BOOST_MATH_BIG_CONSTANT(T, 113, -0.113699573675553496343617442433027672e-8),
0841 BOOST_MATH_BIG_CONSTANT(T, 113, -0.174767860183598149649901223128011828e-10),
0842 BOOST_MATH_BIG_CONSTANT(T, 113, -0.210051620306761367764549971980026474e-12),
0843 BOOST_MATH_BIG_CONSTANT(T, 113, -0.189187969537370950337212675466400599e-14),
0844 BOOST_MATH_BIG_CONSTANT(T, 113, -0.116313253429564048145641663778121898e-16),
0845 BOOST_MATH_BIG_CONSTANT(T, 113, -0.376708747782400769427057630528578187e-19),
0846 };
0847 static const T Q[16] = {
0848 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0849 BOOST_MATH_BIG_CONSTANT(T, 113, 0.205076752981410805177554569784219717),
0850 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0202526722696670378999575738524540269),
0851 BOOST_MATH_BIG_CONSTANT(T, 113, 0.001278305290005994980069466658219057),
0852 BOOST_MATH_BIG_CONSTANT(T, 113, 0.576404779858501791742255670403304787e-4),
0853 BOOST_MATH_BIG_CONSTANT(T, 113, 0.196477049872253010859712483984252067e-5),
0854 BOOST_MATH_BIG_CONSTANT(T, 113, 0.521863830500876189501054079974475762e-7),
0855 BOOST_MATH_BIG_CONSTANT(T, 113, 0.109524209196868135198775445228552059e-8),
0856 BOOST_MATH_BIG_CONSTANT(T, 113, 0.181698713448644481083966260949267825e-10),
0857 BOOST_MATH_BIG_CONSTANT(T, 113, 0.234793316975091282090312036524695562e-12),
0858 BOOST_MATH_BIG_CONSTANT(T, 113, 0.227490441461460571047545264251399048e-14),
0859 BOOST_MATH_BIG_CONSTANT(T, 113, 0.151500292036937400913870642638520668e-16),
0860 BOOST_MATH_BIG_CONSTANT(T, 113, 0.543475775154780935815530649335936121e-19),
0861 BOOST_MATH_BIG_CONSTANT(T, 113, 0.241647013434111434636554455083309352e-28),
0862 BOOST_MATH_BIG_CONSTANT(T, 113, -0.557103423021951053707162364713587374e-31),
0863 BOOST_MATH_BIG_CONSTANT(T, 113, 0.618708773442584843384712258199645166e-34),
0864 };
0865 result = tools::evaluate_polynomial(P, T(s - 30)) / tools::evaluate_polynomial(Q, T(s - 30));
0866 result = 1 + exp(result);
0867 }
0868 else if(s < 117)
0869 {
0870 result = 1 + pow(T(2), -s);
0871 }
0872 else
0873 {
0874 result = 1;
0875 }
0876 return result;
0877 }
0878
0879 template <class T, class Policy>
0880 T zeta_imp_odd_integer(int s, const T&, const Policy&, const std::true_type&)
0881 {
0882 static const T results[] = {
0883 BOOST_MATH_BIG_CONSTANT(T, 113, 1.2020569031595942853997381615114500), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0369277551433699263313654864570342), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0083492773819228268397975498497968), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0020083928260822144178527692324121), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0004941886041194645587022825264699), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0001227133475784891467518365263574), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000305882363070204935517285106451), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000076371976378997622736002935630), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000019082127165539389256569577951), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000004769329867878064631167196044), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000001192199259653110730677887189), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000298035035146522801860637051), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000074507117898354294919810042), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000018626597235130490064039099), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000004656629065033784072989233), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000001164155017270051977592974), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000291038504449709968692943), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000072759598350574810145209), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000018189896503070659475848), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000004547473783042154026799), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000001136868407680227849349), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000284217097688930185546), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000071054273952108527129), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000017763568435791203275), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000004440892103143813364), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000001110223025141066134), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000277555756213612417), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000069388939045441537), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000017347234760475766), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000004336808690020650), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000001084202172494241), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000271050543122347), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000067762635780452), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000016940658945098), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000004235164736273), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000001058791184068), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000264697796017), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000066174449004), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000016543612251), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000004135903063), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000001033975766), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000258493941), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000064623485), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000016155871), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000004038968), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000001009742), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000252435), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000063109), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000015777), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000003944), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000986), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000247), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000062), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000015), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000004), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000001),
0884 };
0885 return s > 113 ? 1 : results[(s - 3) / 2];
0886 }
0887
0888 template <class T, class Policy>
0889 T zeta_imp_odd_integer(int s, const T& sc, const Policy& pol, const std::false_type&)
0890 {
0891 #ifdef BOOST_MATH_NO_THREAD_LOCAL_WITH_NON_TRIVIAL_TYPES
0892 static_assert(std::is_trivially_destructible<T>::value, "Your platform does not support thread_local with non-trivial types, last checked with Mingw-x64-8.1, Jan 2021. Please try a Mingw build with the POSIX threading model, see https://sourceforge.net/p/mingw-w64/bugs/527/");
0893 #endif
0894 static BOOST_MATH_THREAD_LOCAL bool is_init = false;
0895 static BOOST_MATH_THREAD_LOCAL T results[50] = {};
0896 static BOOST_MATH_THREAD_LOCAL int digits = tools::digits<T>();
0897 int current_digits = tools::digits<T>();
0898 if(digits != current_digits)
0899 {
0900
0901 is_init = false;
0902 }
0903 if(!is_init)
0904 {
0905 is_init = true;
0906 digits = current_digits;
0907 for(unsigned k = 0; k < sizeof(results) / sizeof(results[0]); ++k)
0908 {
0909 T arg = k * 2 + 3;
0910 T c_arg = 1 - arg;
0911 results[k] = zeta_polynomial_series(arg, c_arg, pol);
0912 }
0913 }
0914 unsigned index = (s - 3) / 2;
0915 return index >= sizeof(results) / sizeof(results[0]) ? zeta_polynomial_series(T(s), sc, pol): results[index];
0916 }
0917
0918 template <class T, class Policy, class Tag>
0919 T zeta_imp(T s, T sc, const Policy& pol, const Tag& tag)
0920 {
0921 BOOST_MATH_STD_USING
0922 static const char* function = "boost::math::zeta<%1%>";
0923 if(sc == 0)
0924 return policies::raise_pole_error<T>(
0925 function,
0926 "Evaluation of zeta function at pole %1%",
0927 s, pol);
0928 T result;
0929
0930
0931
0932 if(s > policies::digits<T, Policy>())
0933 return 1;
0934
0935
0936
0937 if(floor(s) == s)
0938 {
0939 #ifndef BOOST_NO_EXCEPTIONS
0940
0941
0942 try
0943 {
0944 #endif
0945 int v = itrunc(s);
0946 if(v == s)
0947 {
0948 if(v < 0)
0949 {
0950 if(((-v) & 1) == 0)
0951 return 0;
0952 int n = (-v + 1) / 2;
0953 if(n <= (int)boost::math::max_bernoulli_b2n<T>::value)
0954 return T((-v & 1) ? -1 : 1) * boost::math::unchecked_bernoulli_b2n<T>(n) / (1 - v);
0955 }
0956 else if((v & 1) == 0)
0957 {
0958 if(((v / 2) <= (int)boost::math::max_bernoulli_b2n<T>::value) && (v <= (int)boost::math::max_factorial<T>::value))
0959 return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * static_cast<T>(pow(constants::pi<T, Policy>(), T(v))) *
0960 boost::math::unchecked_bernoulli_b2n<T>(v / 2) / boost::math::unchecked_factorial<T>(v);
0961 return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * static_cast<T>(pow(constants::pi<T, Policy>(), T(v))) *
0962 boost::math::bernoulli_b2n<T>(v / 2) / boost::math::factorial<T>(v, pol);
0963 }
0964 else
0965 return zeta_imp_odd_integer(v, sc, pol, std::integral_constant<bool, (Tag::value <= 113) && Tag::value>());
0966 }
0967 #ifndef BOOST_NO_EXCEPTIONS
0968 }
0969 catch(const boost::math::rounding_error&){}
0970 catch(const std::overflow_error&){}
0971 #endif
0972 }
0973
0974 if(fabs(s) < tools::root_epsilon<T>())
0975 {
0976 result = -0.5f - constants::log_root_two_pi<T, Policy>() * s;
0977 }
0978 else if(s < 0)
0979 {
0980 std::swap(s, sc);
0981 if(floor(sc/2) == sc/2)
0982 result = 0;
0983 else
0984 {
0985 if(s > max_factorial<T>::value)
0986 {
0987 T mult = boost::math::sin_pi(0.5f * sc, pol) * 2 * zeta_imp(s, sc, pol, tag);
0988 result = boost::math::lgamma(s, pol);
0989 result -= s * log(2 * constants::pi<T>());
0990 if(result > tools::log_max_value<T>())
0991 return sign(mult) * policies::raise_overflow_error<T>(function, nullptr, pol);
0992 result = exp(result);
0993 if(tools::max_value<T>() / fabs(mult) < result)
0994 return boost::math::sign(mult) * policies::raise_overflow_error<T>(function, nullptr, pol);
0995 result *= mult;
0996 }
0997 else
0998 {
0999 result = boost::math::sin_pi(0.5f * sc, pol)
1000 * 2 * pow(2 * constants::pi<T>(), -s)
1001 * boost::math::tgamma(s, pol)
1002 * zeta_imp(s, sc, pol, tag);
1003 }
1004 }
1005 }
1006 else
1007 {
1008 result = zeta_imp_prec(s, sc, pol, tag);
1009 }
1010 return result;
1011 }
1012
1013 template <class T, class Policy, class tag>
1014 struct zeta_initializer
1015 {
1016 struct init
1017 {
1018 init()
1019 {
1020 do_init(tag());
1021 }
1022 static void do_init(const std::integral_constant<int, 0>&){ boost::math::zeta(static_cast<T>(5), Policy()); }
1023 static void do_init(const std::integral_constant<int, 53>&){ boost::math::zeta(static_cast<T>(5), Policy()); }
1024 static void do_init(const std::integral_constant<int, 64>&)
1025 {
1026 boost::math::zeta(static_cast<T>(0.5), Policy());
1027 boost::math::zeta(static_cast<T>(1.5), Policy());
1028 boost::math::zeta(static_cast<T>(3.5), Policy());
1029 boost::math::zeta(static_cast<T>(6.5), Policy());
1030 boost::math::zeta(static_cast<T>(14.5), Policy());
1031 boost::math::zeta(static_cast<T>(40.5), Policy());
1032
1033 boost::math::zeta(static_cast<T>(5), Policy());
1034 }
1035 static void do_init(const std::integral_constant<int, 113>&)
1036 {
1037 boost::math::zeta(static_cast<T>(0.5), Policy());
1038 boost::math::zeta(static_cast<T>(1.5), Policy());
1039 boost::math::zeta(static_cast<T>(3.5), Policy());
1040 boost::math::zeta(static_cast<T>(5.5), Policy());
1041 boost::math::zeta(static_cast<T>(9.5), Policy());
1042 boost::math::zeta(static_cast<T>(16.5), Policy());
1043 boost::math::zeta(static_cast<T>(25.5), Policy());
1044 boost::math::zeta(static_cast<T>(70.5), Policy());
1045
1046 boost::math::zeta(static_cast<T>(5), Policy());
1047 }
1048 void force_instantiate()const{}
1049 };
1050 static const init initializer;
1051 static void force_instantiate()
1052 {
1053 initializer.force_instantiate();
1054 }
1055 };
1056
1057 template <class T, class Policy, class tag>
1058 const typename zeta_initializer<T, Policy, tag>::init zeta_initializer<T, Policy, tag>::initializer;
1059
1060 }
1061
1062 template <class T, class Policy>
1063 inline typename tools::promote_args<T>::type zeta(T s, const Policy&)
1064 {
1065 typedef typename tools::promote_args<T>::type result_type;
1066 typedef typename policies::evaluation<result_type, Policy>::type value_type;
1067 typedef typename policies::precision<result_type, Policy>::type precision_type;
1068 typedef typename policies::normalise<
1069 Policy,
1070 policies::promote_float<false>,
1071 policies::promote_double<false>,
1072 policies::discrete_quantile<>,
1073 policies::assert_undefined<> >::type forwarding_policy;
1074 typedef std::integral_constant<int,
1075 precision_type::value <= 0 ? 0 :
1076 precision_type::value <= 53 ? 53 :
1077 precision_type::value <= 64 ? 64 :
1078 precision_type::value <= 113 ? 113 : 0
1079 > tag_type;
1080
1081 detail::zeta_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
1082
1083 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::zeta_imp(
1084 static_cast<value_type>(s),
1085 static_cast<value_type>(1 - static_cast<value_type>(s)),
1086 forwarding_policy(),
1087 tag_type()), "boost::math::zeta<%1%>(%1%)");
1088 }
1089
1090 template <class T>
1091 inline typename tools::promote_args<T>::type zeta(T s)
1092 {
1093 return zeta(s, policies::policy<>());
1094 }
1095
1096 }}
1097
1098 #endif
1099
1100
1101