Back to home page

EIC code displayed by LXR

 
 

    


Warning, file /include/boost/math/special_functions/gamma.hpp was not indexed or was modified since last indexation (in which case cross-reference links may be missing, inaccurate or erroneous).

0001 //  Copyright John Maddock 2006-7, 2013-20.
0002 //  Copyright Paul A. Bristow 2007, 2013-14.
0003 //  Copyright Nikhar Agrawal 2013-14
0004 //  Copyright Christopher Kormanyos 2013-14, 2020, 2024
0005 //  Copyright Matt Borland 2024.
0006 //  Use, modification and distribution are subject to the
0007 //  Boost Software License, Version 1.0. (See accompanying file
0008 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
0009 
0010 #ifndef BOOST_MATH_SF_GAMMA_HPP
0011 #define BOOST_MATH_SF_GAMMA_HPP
0012 
0013 #ifdef _MSC_VER
0014 #pragma once
0015 #endif
0016 
0017 #include <boost/math/tools/config.hpp>
0018 #include <boost/math/tools/series.hpp>
0019 #include <boost/math/tools/fraction.hpp>
0020 #include <boost/math/tools/precision.hpp>
0021 #include <boost/math/tools/promotion.hpp>
0022 #include <boost/math/tools/type_traits.hpp>
0023 #include <boost/math/tools/numeric_limits.hpp>
0024 #include <boost/math/tools/cstdint.hpp>
0025 #include <boost/math/tools/assert.hpp>
0026 #include <boost/math/policies/error_handling.hpp>
0027 #include <boost/math/constants/constants.hpp>
0028 #include <boost/math/special_functions/math_fwd.hpp>
0029 #include <boost/math/special_functions/log1p.hpp>
0030 #include <boost/math/special_functions/trunc.hpp>
0031 #include <boost/math/special_functions/powm1.hpp>
0032 #include <boost/math/special_functions/sqrt1pm1.hpp>
0033 #include <boost/math/special_functions/lanczos.hpp>
0034 #include <boost/math/special_functions/fpclassify.hpp>
0035 #include <boost/math/special_functions/detail/igamma_large.hpp>
0036 #include <boost/math/special_functions/detail/unchecked_factorial.hpp>
0037 #include <boost/math/special_functions/detail/lgamma_small.hpp>
0038 
0039 // Only needed for types larger than double
0040 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
0041 #include <boost/math/special_functions/bernoulli.hpp>
0042 #include <boost/math/special_functions/polygamma.hpp>
0043 #endif
0044 
0045 #ifdef _MSC_VER
0046 # pragma warning(push)
0047 # pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
0048 # pragma warning(disable: 4127) // conditional expression is constant.
0049 # pragma warning(disable: 4100) // unreferenced formal parameter.
0050 # pragma warning(disable: 6326) // potential comparison of a constant with another constant
0051 // Several variables made comments,
0052 // but some difficulty as whether referenced on not may depend on macro values.
0053 // So to be safe, 4100 warnings suppressed.
0054 // TODO - revisit this?
0055 #endif
0056 
0057 namespace boost{ namespace math{
0058 
0059 namespace detail{
0060 
0061 template <class T>
0062 BOOST_MATH_GPU_ENABLED inline bool is_odd(T v, const boost::math::true_type&)
0063 {
0064    int i = static_cast<int>(v);
0065    return i&1;
0066 }
0067 template <class T>
0068 BOOST_MATH_GPU_ENABLED inline bool is_odd(T v, const boost::math::false_type&)
0069 {
0070    // Oh dear can't cast T to int!
0071    BOOST_MATH_STD_USING
0072    T modulus = v - 2 * floor(v/2);
0073    return static_cast<bool>(modulus != 0);
0074 }
0075 template <class T>
0076 BOOST_MATH_GPU_ENABLED inline bool is_odd(T v)
0077 {
0078    return is_odd(v, ::boost::math::is_convertible<T, int>());
0079 }
0080 
0081 template <class T>
0082 BOOST_MATH_GPU_ENABLED T sinpx(T z)
0083 {
0084    // Ad hoc function calculates x * sin(pi * x),
0085    // taking extra care near when x is near a whole number.
0086    BOOST_MATH_STD_USING
0087    int sign = 1;
0088    if(z < 0)
0089    {
0090       z = -z;
0091    }
0092    T fl = floor(z);
0093    T dist;
0094    if(is_odd(fl))
0095    {
0096       fl += 1;
0097       dist = fl - z;
0098       sign = -sign;
0099    }
0100    else
0101    {
0102       dist = z - fl;
0103    }
0104    BOOST_MATH_ASSERT(fl >= 0);
0105    if(dist > T(0.5))
0106       dist = 1 - dist;
0107    T result = sin(dist*boost::math::constants::pi<T>());
0108    return sign*z*result;
0109 } // template <class T> T sinpx(T z)
0110 //
0111 // tgamma(z), with Lanczos support:
0112 //
0113 template <class T, class Policy, class Lanczos>
0114 BOOST_MATH_GPU_ENABLED T gamma_imp_final(T z, const Policy& pol, const Lanczos& l)
0115 {
0116    BOOST_MATH_STD_USING
0117    
0118    (void)l; // Suppresses unused variable warning when BOOST_MATH_INSTRUMENT is not defined
0119 
0120    T result = 1;  
0121 
0122 #ifdef BOOST_MATH_INSTRUMENT
0123    static bool b = false;
0124    if(!b)
0125    {
0126       std::cout << "tgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
0127       b = true;
0128    }
0129 #endif
0130    constexpr auto function = "boost::math::tgamma<%1%>(%1%)";
0131 
0132    if(z <= 0)
0133    {
0134       if(floor(z) == z)
0135       {
0136          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
0137       }
0138 
0139       // shift z to > 1:
0140       while(z < 0)
0141       {
0142          result /= z;
0143          z += 1;
0144       }
0145    }
0146    BOOST_MATH_INSTRUMENT_VARIABLE(result);
0147    if((floor(z) == z) && (z < max_factorial<T>::value))
0148    {
0149       result *= unchecked_factorial<T>(itrunc(z, pol) - 1);
0150       BOOST_MATH_INSTRUMENT_VARIABLE(result);
0151    }
0152    else if (z < tools::root_epsilon<T>())
0153    {
0154       if (z < 1 / tools::max_value<T>())
0155          result = policies::raise_overflow_error<T>(function, nullptr, pol);
0156       result *= 1 / z - constants::euler<T>();
0157    }
0158    else
0159    {
0160       result *= Lanczos::lanczos_sum(z);
0161       T zgh = (z + static_cast<T>(Lanczos::g()) - boost::math::constants::half<T>());
0162       T lzgh = log(zgh);
0163       BOOST_MATH_INSTRUMENT_VARIABLE(result);
0164       BOOST_MATH_INSTRUMENT_VARIABLE(tools::log_max_value<T>());
0165       if(z * lzgh > tools::log_max_value<T>())
0166       {
0167          // we're going to overflow unless this is done with care:
0168          BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
0169          if(lzgh * z / 2 > tools::log_max_value<T>())
0170             return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
0171          T hp = pow(zgh, T((z / 2) - T(0.25)));
0172          BOOST_MATH_INSTRUMENT_VARIABLE(hp);
0173          result *= hp / exp(zgh);
0174          BOOST_MATH_INSTRUMENT_VARIABLE(result);
0175          if(tools::max_value<T>() / hp < result)
0176             return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
0177          result *= hp;
0178          BOOST_MATH_INSTRUMENT_VARIABLE(result);
0179       }
0180       else
0181       {
0182          BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
0183          BOOST_MATH_INSTRUMENT_VARIABLE(pow(zgh, T(z - boost::math::constants::half<T>())));
0184          BOOST_MATH_INSTRUMENT_VARIABLE(exp(zgh));
0185          result *= pow(zgh, T(z - boost::math::constants::half<T>())) / exp(zgh);
0186          BOOST_MATH_INSTRUMENT_VARIABLE(result);
0187       }
0188    }
0189    return result;
0190 }
0191 
0192 #ifdef BOOST_MATH_ENABLE_CUDA
0193 #  pragma nv_diag_suppress 2190
0194 #endif
0195 
0196 // SYCL compilers can not support recursion so we extract it into a dispatch function
0197 template <class T, class Policy, class Lanczos>
0198 BOOST_MATH_GPU_ENABLED BOOST_MATH_FORCEINLINE T gamma_imp(T z, const Policy& pol, const Lanczos& l)
0199 {
0200    BOOST_MATH_STD_USING
0201 
0202    T result = 1;
0203    constexpr auto function = "boost::math::tgamma<%1%>(%1%)";
0204 
0205    if(z <= 0)
0206    {
0207       if(floor(z) == z)
0208          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
0209       if(z <= -20)
0210       {
0211          result = gamma_imp_final(T(-z), pol, l) * sinpx(z);
0212          BOOST_MATH_INSTRUMENT_VARIABLE(result);
0213          if((fabs(result) < 1) && (tools::max_value<T>() * fabs(result) < boost::math::constants::pi<T>()))
0214             return -boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
0215          result = -boost::math::constants::pi<T>() / result;
0216          if(result == 0)
0217             return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
0218          if((boost::math::fpclassify)(result) == BOOST_MATH_FP_SUBNORMAL)
0219             return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", result, pol);
0220          BOOST_MATH_INSTRUMENT_VARIABLE(result);
0221          return result;
0222       }
0223    }
0224 
0225    return gamma_imp_final(T(z), pol, l);
0226 }
0227 
0228 #ifdef BOOST_MATH_ENABLE_CUDA
0229 #  pragma nv_diag_default 2190
0230 #endif
0231 
0232 //
0233 // lgamma(z) with Lanczos support:
0234 //
0235 template <class T, class Policy, class Lanczos>
0236 BOOST_MATH_GPU_ENABLED T lgamma_imp_final(T z, const Policy& pol, const Lanczos& l, int* sign = nullptr)
0237 {
0238 #ifdef BOOST_MATH_INSTRUMENT
0239    static bool b = false;
0240    if(!b)
0241    {
0242       std::cout << "lgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
0243       b = true;
0244    }
0245 #endif
0246 
0247    BOOST_MATH_STD_USING
0248 
0249    constexpr auto function = "boost::math::lgamma<%1%>(%1%)";
0250 
0251    T result = 0;
0252    int sresult = 1;
0253    
0254    if (z < tools::root_epsilon<T>())
0255    {
0256       if (0 == z)
0257          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at %1%.", z, pol);
0258       if (4 * fabs(z) < tools::epsilon<T>())
0259          result = -log(fabs(z));
0260       else
0261          result = log(fabs(1 / z - constants::euler<T>()));
0262       if (z < 0)
0263          sresult = -1;
0264    }
0265    else if(z < 15)
0266    {
0267       typedef typename policies::precision<T, Policy>::type precision_type;
0268       typedef boost::math::integral_constant<int,
0269          precision_type::value <= 0 ? 0 :
0270          precision_type::value <= 64 ? 64 :
0271          precision_type::value <= 113 ? 113 : 0
0272       > tag_type;
0273 
0274       result = lgamma_small_imp<T>(z, T(z - 1), T(z - 2), tag_type(), pol, l);
0275    }
0276    else if((z >= 3) && (z < 100) && (boost::math::numeric_limits<T>::max_exponent >= 1024))
0277    {
0278       // taking the log of tgamma reduces the error, no danger of overflow here:
0279       result = log(gamma_imp(z, pol, l));
0280    }
0281    else
0282    {
0283       // regular evaluation:
0284       T zgh = static_cast<T>(z + T(Lanczos::g()) - boost::math::constants::half<T>());
0285       result = log(zgh) - 1;
0286       result *= z - 0.5f;
0287       //
0288       // Only add on the lanczos sum part if we're going to need it:
0289       //
0290       if(result * tools::epsilon<T>() < 20)
0291          result += log(Lanczos::lanczos_sum_expG_scaled(z));
0292    }
0293 
0294    if(sign)
0295       *sign = sresult;
0296    return result;
0297 }
0298 
0299 #ifdef BOOST_MATH_ENABLE_CUDA
0300 #  pragma nv_diag_suppress 2190
0301 #endif
0302 
0303 template <class T, class Policy, class Lanczos>
0304 BOOST_MATH_GPU_ENABLED BOOST_MATH_FORCEINLINE T lgamma_imp(T z, const Policy& pol, const Lanczos& l, int* sign = nullptr)
0305 {
0306    BOOST_MATH_STD_USING
0307 
0308    if(z <= -tools::root_epsilon<T>())
0309    {
0310       constexpr auto function = "boost::math::lgamma<%1%>(%1%)";
0311 
0312       T result = 0;
0313       int sresult = 1;
0314 
0315       // reflection formula:
0316       if(floor(z) == z)
0317          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
0318 
0319       T t = sinpx(z);
0320       z = -z;
0321       if(t < 0)
0322       {
0323          t = -t;
0324       }
0325       else
0326       {
0327          sresult = -sresult;
0328       }
0329       result = log(boost::math::constants::pi<T>()) - lgamma_imp_final(T(z), pol, l) - log(t);
0330 
0331       if(sign)
0332       {
0333          *sign = sresult;
0334       }
0335 
0336       return result;
0337    }
0338    else
0339    {
0340       return lgamma_imp_final(T(z), pol, l, sign);
0341    }
0342 }
0343 
0344 #ifdef BOOST_MATH_ENABLE_CUDA
0345 #  pragma nv_diag_default 2190
0346 #endif
0347 
0348 //
0349 // Incomplete gamma functions follow:
0350 //
0351 template <class T>
0352 struct upper_incomplete_gamma_fract
0353 {
0354 private:
0355    T z, a;
0356    int k;
0357 public:
0358    typedef boost::math::pair<T,T> result_type;
0359 
0360    BOOST_MATH_GPU_ENABLED upper_incomplete_gamma_fract(T a1, T z1)
0361       : z(z1-a1+1), a(a1), k(0)
0362    {
0363    }
0364 
0365    BOOST_MATH_GPU_ENABLED result_type operator()()
0366    {
0367       ++k;
0368       z += 2;
0369       return result_type(k * (a - k), z);
0370    }
0371 };
0372 
0373 template <class T>
0374 BOOST_MATH_GPU_ENABLED inline T upper_gamma_fraction(T a, T z, T eps)
0375 {
0376    // Multiply result by z^a * e^-z to get the full
0377    // upper incomplete integral.  Divide by tgamma(z)
0378    // to normalise.
0379    upper_incomplete_gamma_fract<T> f(a, z);
0380    return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps));
0381 }
0382 
0383 template <class T>
0384 struct lower_incomplete_gamma_series
0385 {
0386 private:
0387    T a, z, result;
0388 public:
0389    typedef T result_type;
0390    BOOST_MATH_GPU_ENABLED lower_incomplete_gamma_series(T a1, T z1) : a(a1), z(z1), result(1){}
0391 
0392    BOOST_MATH_GPU_ENABLED T operator()()
0393    {
0394       T r = result;
0395       a += 1;
0396       result *= z/a;
0397       return r;
0398    }
0399 };
0400 
0401 template <class T, class Policy>
0402 BOOST_MATH_GPU_ENABLED inline T lower_gamma_series(T a, T z, const Policy& pol, T init_value = 0)
0403 {
0404    // Multiply result by ((z^a) * (e^-z) / a) to get the full
0405    // lower incomplete integral. Then divide by tgamma(a)
0406    // to get the normalised value.
0407    lower_incomplete_gamma_series<T> s(a, z);
0408    boost::math::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
0409    T factor = policies::get_epsilon<T, Policy>();
0410    T result = boost::math::tools::sum_series(s, factor, max_iter, init_value);
0411    policies::check_series_iterations<T>("boost::math::detail::lower_gamma_series<%1%>(%1%)", max_iter, pol);
0412    return result;
0413 }
0414 
0415 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
0416 
0417 //
0418 // Fully generic tgamma and lgamma use Stirling's approximation
0419 // with Bernoulli numbers.
0420 //
0421 template<class T>
0422 boost::math::size_t highest_bernoulli_index()
0423 {
0424    const float digits10_of_type = (boost::math::numeric_limits<T>::is_specialized
0425                                       ? static_cast<float>(boost::math::numeric_limits<T>::digits10)
0426                                       : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
0427 
0428    // Find the high index n for Bn to produce the desired precision in Stirling's calculation.
0429    return static_cast<boost::math::size_t>(18.0F + (0.6F * digits10_of_type));
0430 }
0431 
0432 template<class T>
0433 int minimum_argument_for_bernoulli_recursion()
0434 {
0435    BOOST_MATH_STD_USING
0436 
0437    const float digits10_of_type = (boost::math::numeric_limits<T>::is_specialized
0438                                     ? (float) boost::math::numeric_limits<T>::digits10
0439                                     : (float) (boost::math::tools::digits<T>() * 0.301F));
0440 
0441    int min_arg = (int) (digits10_of_type * 1.7F);
0442 
0443    if(digits10_of_type < 50.0F)
0444    {
0445       // The following code sequence has been modified
0446       // within the context of issue 396.
0447 
0448       // The calculation of the test-variable limit has now
0449       // been protected against overflow/underflow dangers.
0450 
0451       // The previous line looked like this and did, in fact,
0452       // underflow ldexp when using certain multiprecision types.
0453 
0454       // const float limit = std::ceil(std::pow(1.0f / std::ldexp(1.0f, 1-boost::math::tools::digits<T>()), 1.0f / 20.0f));
0455 
0456       // The new safe version of the limit check is now here.
0457       const float d2_minus_one = ((digits10_of_type / 0.301F) - 1.0F);
0458       const float limit        = ceil(exp((d2_minus_one * log(2.0F)) / 20.0F));
0459 
0460       min_arg = (int) (BOOST_MATH_GPU_SAFE_MIN(digits10_of_type * 1.7F, limit));
0461    }
0462 
0463    return min_arg;
0464 }
0465 
0466 template <class T, class Policy>
0467 T scaled_tgamma_no_lanczos(const T& z, const Policy& pol, bool islog = false)
0468 {
0469    BOOST_MATH_STD_USING
0470    //
0471    // Calculates tgamma(z) / (z/e)^z
0472    // Requires that our argument is large enough for Sterling's approximation to hold.
0473    // Used internally when combining gamma's of similar magnitude without logarithms.
0474    //
0475    BOOST_MATH_ASSERT(minimum_argument_for_bernoulli_recursion<T>() <= z);
0476 
0477    // Perform the Bernoulli series expansion of Stirling's approximation.
0478 
0479    const boost::math::size_t number_of_bernoullis_b2n = policies::get_max_series_iterations<Policy>();
0480 
0481    T one_over_x_pow_two_n_minus_one = 1 / z;
0482    const T one_over_x2 = one_over_x_pow_two_n_minus_one * one_over_x_pow_two_n_minus_one;
0483    T sum = (boost::math::bernoulli_b2n<T>(1) / 2) * one_over_x_pow_two_n_minus_one;
0484    const T target_epsilon_to_break_loop = sum * boost::math::tools::epsilon<T>();
0485    const T half_ln_two_pi_over_z = sqrt(boost::math::constants::two_pi<T>() / z);
0486    T last_term = 2 * sum;
0487 
0488    for (boost::math::size_t n = 2U;; ++n)
0489    {
0490       one_over_x_pow_two_n_minus_one *= one_over_x2;
0491 
0492       const boost::math::size_t n2 = static_cast<boost::math::size_t>(n * 2U);
0493 
0494       const T term = (boost::math::bernoulli_b2n<T>(static_cast<int>(n)) * one_over_x_pow_two_n_minus_one) / (n2 * (n2 - 1U));
0495 
0496       if ((n >= 3U) && (abs(term) < target_epsilon_to_break_loop))
0497       {
0498          // We have reached the desired precision in Stirling's expansion.
0499          // Adding additional terms to the sum of this divergent asymptotic
0500          // expansion will not improve the result.
0501 
0502          // Break from the loop.
0503          break;
0504       }
0505       if (n > number_of_bernoullis_b2n)
0506          return policies::raise_evaluation_error("scaled_tgamma_no_lanczos<%1%>()", "Exceeded maximum series iterations without reaching convergence, best approximation was %1%", T(exp(sum) * half_ln_two_pi_over_z), pol);
0507 
0508       sum += term;
0509 
0510       // Sanity check for divergence:
0511       T fterm = fabs(term);
0512       if(fterm > last_term)
0513          return policies::raise_evaluation_error("scaled_tgamma_no_lanczos<%1%>()", "Series became divergent without reaching convergence, best approximation was %1%", T(exp(sum) * half_ln_two_pi_over_z), pol);
0514       last_term = fterm;
0515    }
0516 
0517    // Complete Stirling's approximation.
0518    T scaled_gamma_value = islog ? T(sum + log(half_ln_two_pi_over_z)) : T(exp(sum) * half_ln_two_pi_over_z);
0519    return scaled_gamma_value;
0520 }
0521 
0522 // Forward declaration of the lgamma_imp template specialization.
0523 template <class T, class Policy>
0524 T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign = nullptr);
0525 
0526 template <class T, class Policy>
0527 T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&)
0528 {
0529    BOOST_MATH_STD_USING
0530 
0531    constexpr auto function = "boost::math::tgamma<%1%>(%1%)";
0532 
0533    // Check if the argument of tgamma is identically zero.
0534    const bool is_at_zero = (z == 0);
0535 
0536    if((boost::math::isnan)(z) || (is_at_zero) || ((boost::math::isinf)(z) && (z < 0)))
0537       return policies::raise_domain_error<T>(function, "Evaluation of tgamma at %1%.", z, pol);
0538 
0539    const bool b_neg = (z < 0);
0540 
0541    const bool floor_of_z_is_equal_to_z = (floor(z) == z);
0542 
0543    // Special case handling of small factorials:
0544    if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
0545    {
0546       return boost::math::unchecked_factorial<T>(itrunc(z) - 1);
0547    }
0548 
0549    // Make a local, unsigned copy of the input argument.
0550    T zz((!b_neg) ? z : -z);
0551 
0552    // Special case for ultra-small z:
0553    if(zz < tools::cbrt_epsilon<T>())
0554    {
0555       const T a0(1);
0556       const T a1(boost::math::constants::euler<T>());
0557       const T six_euler_squared((boost::math::constants::euler<T>() * boost::math::constants::euler<T>()) * 6);
0558       const T a2((six_euler_squared -  boost::math::constants::pi_sqr<T>()) / 12);
0559 
0560       const T inverse_tgamma_series = z * ((a2 * z + a1) * z + a0);
0561 
0562       return 1 / inverse_tgamma_series;
0563    }
0564 
0565    // Scale the argument up for the calculation of lgamma,
0566    // and use downward recursion later for the final result.
0567    const int min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
0568 
0569    int n_recur;
0570 
0571    if(zz < min_arg_for_recursion)
0572    {
0573       n_recur = boost::math::itrunc(min_arg_for_recursion - zz) + 1;
0574 
0575       zz += n_recur;
0576    }
0577    else
0578    {
0579       n_recur = 0;
0580    }
0581    if (!n_recur)
0582    {
0583       if (zz > tools::log_max_value<T>())
0584          return policies::raise_overflow_error<T>(function, nullptr, pol);
0585       if (log(zz) * zz / 2 > tools::log_max_value<T>())
0586          return policies::raise_overflow_error<T>(function, nullptr, pol);
0587    }
0588    T gamma_value = scaled_tgamma_no_lanczos(zz, pol);
0589    T power_term = pow(zz, zz / 2);
0590    T exp_term = exp(-zz);
0591    gamma_value *= (power_term * exp_term);
0592    if(!n_recur && (tools::max_value<T>() / power_term < gamma_value))
0593       return policies::raise_overflow_error<T>(function, nullptr, pol);
0594    gamma_value *= power_term;
0595 
0596    // Rescale the result using downward recursion if necessary.
0597    if(n_recur)
0598    {
0599       // The order of divides is important, if we keep subtracting 1 from zz
0600       // we DO NOT get back to z (cancellation error).  Further if z < epsilon
0601       // we would end up dividing by zero.  Also in order to prevent spurious
0602       // overflow with the first division, we must save dividing by |z| till last,
0603       // so the optimal order of divides is z+1, z+2, z+3...z+n_recur-1,z.
0604       zz = fabs(z) + 1;
0605       for(int k = 1; k < n_recur; ++k)
0606       {
0607          gamma_value /= zz;
0608          zz += 1;
0609       }
0610       gamma_value /= fabs(z);
0611    }
0612 
0613    // Return the result, accounting for possible negative arguments.
0614    if(b_neg)
0615    {
0616       // Provide special error analysis for:
0617       // * arguments in the neighborhood of a negative integer
0618       // * arguments exactly equal to a negative integer.
0619 
0620       // Check if the argument of tgamma is exactly equal to a negative integer.
0621       if(floor_of_z_is_equal_to_z)
0622          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
0623 
0624       gamma_value *= sinpx(z);
0625 
0626       BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
0627 
0628       const bool result_is_too_large_to_represent = (   (abs(gamma_value) < 1)
0629                                                      && ((tools::max_value<T>() * abs(gamma_value)) < boost::math::constants::pi<T>()));
0630 
0631       if(result_is_too_large_to_represent)
0632          return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
0633 
0634       gamma_value = -boost::math::constants::pi<T>() / gamma_value;
0635       BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
0636 
0637       if(gamma_value == 0)
0638          return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
0639 
0640       if((boost::math::fpclassify)(gamma_value) == static_cast<int>(BOOST_MATH_FP_SUBNORMAL))
0641          return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", gamma_value, pol);
0642    }
0643 
0644    return gamma_value;
0645 }
0646 
0647 template <class T, class Policy>
0648 inline T log_gamma_near_1(const T& z, Policy const& pol)
0649 {
0650    //
0651    // This is for the multiprecision case where there is
0652    // no lanczos support, use a taylor series at z = 1,
0653    // see https://www.wolframalpha.com/input/?i=taylor+series+lgamma(x)+at+x+%3D+1
0654    //
0655    BOOST_MATH_STD_USING // ADL of std names
0656 
0657    BOOST_MATH_ASSERT(fabs(z) < 1);
0658 
0659    T result = -constants::euler<T>() * z;
0660 
0661    T power_term = z * z / 2;
0662    int n = 2;
0663    T term = 0;
0664 
0665    do
0666    {
0667       term = power_term * boost::math::polygamma(n - 1, T(1), pol);
0668       result += term;
0669       ++n;
0670       power_term *= z / n;
0671    } while (fabs(result) * tools::epsilon<T>() < fabs(term));
0672 
0673    return result;
0674 }
0675 
0676 template <class T, class Policy>
0677 T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign)
0678 {
0679    BOOST_MATH_STD_USING
0680 
0681    constexpr auto function = "boost::math::lgamma<%1%>(%1%)";
0682 
0683    // Check if the argument of lgamma is identically zero.
0684    const bool is_at_zero = (z == 0);
0685 
0686    if(is_at_zero)
0687       return policies::raise_domain_error<T>(function, "Evaluation of lgamma at zero %1%.", z, pol);
0688    if((boost::math::isnan)(z))
0689       return policies::raise_domain_error<T>(function, "Evaluation of lgamma at %1%.", z, pol);
0690    if((boost::math::isinf)(z))
0691       return policies::raise_overflow_error<T>(function, nullptr, pol);
0692 
0693    const bool b_neg = (z < 0);
0694 
0695    const bool floor_of_z_is_equal_to_z = (floor(z) == z);
0696 
0697    // Special case handling of small factorials:
0698    if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
0699    {
0700       if (sign)
0701          *sign = 1;
0702       return log(boost::math::unchecked_factorial<T>(itrunc(z) - 1));
0703    }
0704 
0705    // Make a local, unsigned copy of the input argument.
0706    T zz((!b_neg) ? z : -z);
0707 
0708    const int min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
0709 
0710    T log_gamma_value;
0711 
0712    if (zz < min_arg_for_recursion)
0713    {
0714       // Here we simply take the logarithm of tgamma(). This is somewhat
0715       // inefficient, but simple. The rationale is that the argument here
0716       // is relatively small and overflow is not expected to be likely.
0717       if (sign)
0718          * sign = 1;
0719       if(fabs(z - 1) < 0.25)
0720       {
0721          log_gamma_value = log_gamma_near_1(T(zz - 1), pol);
0722       }
0723       else if(fabs(z - 2) < 0.25)
0724       {
0725          log_gamma_value = log_gamma_near_1(T(zz - 2), pol) + log(zz - 1);
0726       }
0727       else if (z > -tools::root_epsilon<T>())
0728       {
0729          // Reflection formula may fail if z is very close to zero, let the series
0730          // expansion for tgamma close to zero do the work:
0731          if (sign)
0732             *sign = z < 0 ? -1 : 1;
0733          return log(abs(gamma_imp(z, pol, lanczos::undefined_lanczos())));
0734       }
0735       else
0736       {
0737          // No issue with spurious overflow in reflection formula,
0738          // just fall through to regular code:
0739          T g = gamma_imp(zz, pol, lanczos::undefined_lanczos());
0740          if (sign)
0741          {
0742             *sign = g < 0 ? -1 : 1;
0743          }
0744          log_gamma_value = log(abs(g));
0745       }
0746    }
0747    else
0748    {
0749       // Perform the Bernoulli series expansion of Stirling's approximation.
0750       T sum = scaled_tgamma_no_lanczos(zz, pol, true);
0751       log_gamma_value = zz * (log(zz) - 1) + sum;
0752    }
0753 
0754    int sign_of_result = 1;
0755 
0756    if(b_neg)
0757    {
0758       // Provide special error analysis if the argument is exactly
0759       // equal to a negative integer.
0760 
0761       // Check if the argument of lgamma is exactly equal to a negative integer.
0762       if(floor_of_z_is_equal_to_z)
0763          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
0764 
0765       T t = sinpx(z);
0766 
0767       if(t < 0)
0768       {
0769          t = -t;
0770       }
0771       else
0772       {
0773          sign_of_result = -sign_of_result;
0774       }
0775 
0776       log_gamma_value = - log_gamma_value
0777                         + log(boost::math::constants::pi<T>())
0778                         - log(t);
0779    }
0780 
0781    if(sign != static_cast<int*>(nullptr)) { *sign = sign_of_result; }
0782 
0783    return log_gamma_value;
0784 }
0785 
0786 #endif // BOOST_MATH_HAS_GPU_SUPPORT
0787 
0788 // In order for tgammap1m1_imp to compile we need a forward decl of boost::math::tgamma
0789 // The rub is that we can't just use math_fwd so we provide one here only in that circumstance
0790 #ifdef BOOST_MATH_HAS_NVRTC
0791 template <class RT>
0792 BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT> tgamma(RT z);
0793 
0794 template <class RT1, class RT2>
0795 BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT1, RT2> tgamma(RT1 a, RT2 z);
0796 
0797 template <class RT1, class RT2, class Policy>
0798 BOOST_MATH_GPU_ENABLED tools::promote_args_t<RT1, RT2> tgamma(RT1 a, RT2 z, const Policy& pol);
0799 #endif
0800 
0801 //
0802 // This helper calculates tgamma(dz+1)-1 without cancellation errors,
0803 // used by the upper incomplete gamma with z < 1:
0804 //
0805 template <class T, class Policy, class Lanczos>
0806 BOOST_MATH_GPU_ENABLED T tgammap1m1_imp(T dz, Policy const& pol, const Lanczos& l)
0807 {
0808    BOOST_MATH_STD_USING
0809 
0810    typedef typename policies::precision<T,Policy>::type precision_type;
0811 
0812    typedef boost::math::integral_constant<int,
0813       precision_type::value <= 0 ? 0 :
0814       precision_type::value <= 64 ? 64 :
0815       precision_type::value <= 113 ? 113 : 0
0816    > tag_type;
0817 
0818    T result;
0819    if(dz < 0)
0820    {
0821       if(dz < T(-0.5))
0822       {
0823          // Best method is simply to subtract 1 from tgamma:
0824          #ifdef BOOST_MATH_HAS_NVRTC
0825          result = ::tgamma(1+dz);
0826          #else
0827          result = boost::math::tgamma(1+dz, pol) - 1;
0828          #endif
0829          BOOST_MATH_INSTRUMENT_CODE(result);
0830       }
0831       else
0832       {
0833          // Use expm1 on lgamma:
0834          result = boost::math::expm1(-boost::math::log1p(dz, pol)
0835             + lgamma_small_imp<T>(dz+2, dz + 1, dz, tag_type(), pol, l), pol);
0836          BOOST_MATH_INSTRUMENT_CODE(result);
0837       }
0838    }
0839    else
0840    {
0841       if(dz < 2)
0842       {
0843          // Use expm1 on lgamma:
0844          result = boost::math::expm1(lgamma_small_imp<T>(dz+1, dz, dz-1, tag_type(), pol, l), pol);
0845          BOOST_MATH_INSTRUMENT_CODE(result);
0846       }
0847       else
0848       {
0849          // Best method is simply to subtract 1 from tgamma:
0850          #ifdef BOOST_MATH_HAS_NVRTC
0851          result = ::tgamma(1+dz);
0852          #else
0853          result = boost::math::tgamma(1+dz, pol) - 1;
0854          #endif
0855          BOOST_MATH_INSTRUMENT_CODE(result);
0856       }
0857    }
0858 
0859    return result;
0860 }
0861 
0862 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
0863 
0864 template <class T, class Policy>
0865 inline T tgammap1m1_imp(T z, Policy const& pol,
0866                  const ::boost::math::lanczos::undefined_lanczos&)
0867 {
0868    BOOST_MATH_STD_USING // ADL of std names
0869 
0870    if(fabs(z) < T(0.55))
0871    {
0872       return boost::math::expm1(log_gamma_near_1(z, pol));
0873    }
0874    return boost::math::expm1(boost::math::lgamma(1 + z, pol));
0875 }
0876 
0877 #endif // BOOST_MATH_HAS_GPU_SUPPORT
0878 
0879 //
0880 // Series representation for upper fraction when z is small:
0881 //
0882 template <class T>
0883 struct small_gamma2_series
0884 {
0885    typedef T result_type;
0886 
0887    BOOST_MATH_GPU_ENABLED small_gamma2_series(T a_, T x_) : result(-x_), x(-x_), apn(a_+1), n(1){}
0888 
0889    BOOST_MATH_GPU_ENABLED T operator()()
0890    {
0891       T r = result / (apn);
0892       result *= x;
0893       result /= ++n;
0894       apn += 1;
0895       return r;
0896    }
0897 
0898 private:
0899    T result, x, apn;
0900    int n;
0901 };
0902 //
0903 // calculate power term prefix (z^a)(e^-z) used in the non-normalised
0904 // incomplete gammas:
0905 //
0906 template <class T, class Policy>
0907 BOOST_MATH_GPU_ENABLED T full_igamma_prefix(T a, T z, const Policy& pol)
0908 {
0909    BOOST_MATH_STD_USING
0910 
0911    if (z > tools::max_value<T>())
0912       return 0;
0913 
0914    T alz = a * log(z);
0915 
0916    T prefix { };
0917 
0918    if(z >= 1)
0919    {
0920       if((alz < tools::log_max_value<T>()) && (-z > tools::log_min_value<T>()))
0921       {
0922          prefix = pow(z, a) * exp(-z);
0923       }
0924       else if(a >= 1)
0925       {
0926          prefix = pow(T(z / exp(z/a)), a);
0927       }
0928       else
0929       {
0930          prefix = exp(alz - z);
0931       }
0932    }
0933    else
0934    {
0935       if(alz > tools::log_min_value<T>())
0936       {
0937          prefix = pow(z, a) * exp(-z);
0938       }
0939       else if(z/a < tools::log_max_value<T>())
0940       {
0941          prefix = pow(T(z / exp(z/a)), a);
0942       }
0943       else
0944       {
0945          prefix = exp(alz - z);
0946       }
0947    }
0948    //
0949    // This error handling isn't very good: it happens after the fact
0950    // rather than before it...
0951    //
0952    if((boost::math::fpclassify)(prefix) == (int)BOOST_MATH_FP_INFINITE)
0953       return policies::raise_overflow_error<T>("boost::math::detail::full_igamma_prefix<%1%>(%1%, %1%)", "Result of incomplete gamma function is too large to represent.", pol);
0954 
0955    return prefix;
0956 }
0957 //
0958 // Compute (z^a)(e^-z)/tgamma(a)
0959 // most if the error occurs in this function:
0960 //
0961 template <class T, class Policy, class Lanczos>
0962 BOOST_MATH_GPU_ENABLED T regularised_gamma_prefix(T a, T z, const Policy& pol, const Lanczos& l)
0963 {
0964    BOOST_MATH_STD_USING
0965    if (z >= tools::max_value<T>())
0966       return 0;
0967    T agh = a + static_cast<T>(Lanczos::g()) - T(0.5);
0968    T prefix;
0969    T d = ((z - a) - static_cast<T>(Lanczos::g()) + T(0.5)) / agh;
0970 
0971    if(a < 1)
0972    {
0973       //
0974       // We have to treat a < 1 as a special case because our Lanczos
0975       // approximations are optimised against the factorials with a > 1,
0976       // and for high precision types especially (128-bit reals for example)
0977       // very small values of a can give rather erroneous results for gamma
0978       // unless we do this:
0979       //
0980       // TODO: is this still required?  Lanczos approx should be better now?
0981       //
0982       if((z <= tools::log_min_value<T>()) || (a < 1 / tools::max_value<T>()))
0983       {
0984          // Oh dear, have to use logs, should be free of cancellation errors though:
0985          return exp(a * log(z) - z - lgamma_imp(a, pol, l));
0986       }
0987       else
0988       {
0989          // direct calculation, no danger of overflow as gamma(a) < 1/a
0990          // for small a.
0991          return pow(z, a) * exp(-z) / gamma_imp(a, pol, l);
0992       }
0993    }
0994    else if((fabs(d*d*a) <= 100) && (a > 150))
0995    {
0996       // special case for large a and a ~ z.
0997       prefix = a * boost::math::log1pmx(d, pol) + z * static_cast<T>(0.5 - Lanczos::g()) / agh;
0998       prefix = exp(prefix);
0999    }
1000    else
1001    {
1002       //
1003       // general case.
1004       // direct computation is most accurate, but use various fallbacks
1005       // for different parts of the problem domain:
1006       //
1007       T alz = a * log(z / agh);
1008       T amz = a - z;
1009       if((BOOST_MATH_GPU_SAFE_MIN(alz, amz) <= tools::log_min_value<T>()) || (BOOST_MATH_GPU_SAFE_MAX(alz, amz) >= tools::log_max_value<T>()))
1010       {
1011          T amza = amz / a;
1012          if((BOOST_MATH_GPU_SAFE_MIN(alz, amz)/2 > tools::log_min_value<T>()) && (BOOST_MATH_GPU_SAFE_MAX(alz, amz)/2 < tools::log_max_value<T>()))
1013          {
1014             // compute square root of the result and then square it:
1015             T sq = pow(z / agh, a / 2) * exp(amz / 2);
1016             prefix = sq * sq;
1017          }
1018          else if((BOOST_MATH_GPU_SAFE_MIN(alz, amz)/4 > tools::log_min_value<T>()) && (BOOST_MATH_GPU_SAFE_MAX(alz, amz)/4 < tools::log_max_value<T>()) && (z > a))
1019          {
1020             // compute the 4th root of the result then square it twice:
1021             T sq = pow(z / agh, a / 4) * exp(amz / 4);
1022             prefix = sq * sq;
1023             prefix *= prefix;
1024          }
1025          else if((amza > tools::log_min_value<T>()) && (amza < tools::log_max_value<T>()))
1026          {
1027             prefix = pow(T((z * exp(amza)) / agh), a);
1028          }
1029          else
1030          {
1031             prefix = exp(alz + amz);
1032          }
1033       }
1034       else
1035       {
1036          prefix = pow(T(z / agh), a) * exp(amz);
1037       }
1038    }
1039    prefix *= sqrt(agh / boost::math::constants::e<T>()) / Lanczos::lanczos_sum_expG_scaled(a);
1040    return prefix;
1041 }
1042 
1043 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
1044 
1045 //
1046 // And again, without Lanczos support:
1047 //
1048 template <class T, class Policy>
1049 T regularised_gamma_prefix(T a, T z, const Policy& pol, const lanczos::undefined_lanczos& l)
1050 {
1051    BOOST_MATH_STD_USING
1052 
1053    if((a < 1) && (z < 1))
1054    {
1055       // No overflow possible since the power terms tend to unity as a,z -> 0
1056       return pow(z, a) * exp(-z) / boost::math::tgamma(a, pol);
1057    }
1058    else if(a > minimum_argument_for_bernoulli_recursion<T>())
1059    {
1060       T scaled_gamma = scaled_tgamma_no_lanczos(a, pol);
1061       T power_term = pow(z / a, a / 2);
1062       T a_minus_z = a - z;
1063       if ((0 == power_term) || (fabs(a_minus_z) > tools::log_max_value<T>()))
1064       {
1065          // The result is probably zero, but we need to be sure:
1066          return exp(a * log(z / a) + a_minus_z - log(scaled_gamma));
1067       }
1068       return (power_term * exp(a_minus_z)) * (power_term / scaled_gamma);
1069    }
1070    else
1071    {
1072       //
1073       // Usual case is to calculate the prefix at a+shift and recurse down
1074       // to the value we want:
1075       //
1076       const int min_z = minimum_argument_for_bernoulli_recursion<T>();
1077       long shift = 1 + ltrunc(min_z - a);
1078       T result = regularised_gamma_prefix(T(a + shift), z, pol, l);
1079       if (result != 0)
1080       {
1081          for (long i = 0; i < shift; ++i)
1082          {
1083             result /= z;
1084             result *= a + i;
1085          }
1086          return result;
1087       }
1088       else
1089       {
1090          //
1091          // We failed, most probably we have z << 1, try again, this time
1092          // we calculate z^a e^-z / tgamma(a+shift), combining power terms
1093          // as we go.  And again recurse down to the result.
1094          //
1095          T scaled_gamma = scaled_tgamma_no_lanczos(T(a + shift), pol);
1096          T power_term_1 = pow(T(z / (a + shift)), a);
1097          T power_term_2 = pow(T(a + shift), T(-shift));
1098          T power_term_3 = exp(a + shift - z);
1099          if ((0 == power_term_1) || (0 == power_term_2) || (0 == power_term_3) || (fabs(a + shift - z) > tools::log_max_value<T>()))
1100          {
1101             // We have no test case that gets here, most likely the type T
1102             // has a high precision but low exponent range:
1103             return exp(a * log(z) - z - boost::math::lgamma(a, pol));
1104          }
1105          result = power_term_1 * power_term_2 * power_term_3 / scaled_gamma;
1106          for (long i = 0; i < shift; ++i)
1107          {
1108             result *= a + i;
1109          }
1110          return result;
1111       }
1112    }
1113 }
1114 
1115 #endif // BOOST_MATH_HAS_GPU_SUPPORT
1116 
1117 //
1118 // Upper gamma fraction for very small a:
1119 //
1120 template <class T, class Policy>
1121 BOOST_MATH_GPU_ENABLED inline T tgamma_small_upper_part(T a, T x, const Policy& pol, T* pgam = 0, bool invert = false, T* pderivative = 0)
1122 {
1123    BOOST_MATH_STD_USING  // ADL of std functions.
1124    //
1125    // Compute the full upper fraction (Q) when a is very small:
1126    //
1127 
1128    #ifdef BOOST_MATH_HAS_NVRTC
1129    typedef typename tools::promote_args<T>::type result_type;
1130    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1131    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1132    T result {detail::tgammap1m1_imp(static_cast<value_type>(a), pol, evaluation_type())};
1133    #else
1134    T result { boost::math::tgamma1pm1(a, pol) };
1135    #endif
1136 
1137    if(pgam)
1138       *pgam = (result + 1) / a;
1139    T p = boost::math::powm1(x, a, pol);
1140    result -= p;
1141    result /= a;
1142    detail::small_gamma2_series<T> s(a, x);
1143    boost::math::uintmax_t max_iter = policies::get_max_series_iterations<Policy>() - 10;
1144    p += 1;
1145    if(pderivative)
1146       *pderivative = p / (*pgam * exp(x));
1147    T init_value = invert ? *pgam : 0;
1148    result = -p * tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, (init_value - result) / p);
1149    policies::check_series_iterations<T>("boost::math::tgamma_small_upper_part<%1%>(%1%, %1%)", max_iter, pol);
1150    if(invert)
1151       result = -result;
1152    return result;
1153 }
1154 //
1155 // Upper gamma fraction for integer a:
1156 //
1157 template <class T, class Policy>
1158 BOOST_MATH_GPU_ENABLED inline T finite_gamma_q(T a, T x, Policy const& pol, T* pderivative = 0)
1159 {
1160    //
1161    // Calculates normalised Q when a is an integer:
1162    //
1163    BOOST_MATH_STD_USING
1164    T e = exp(-x);
1165    T sum = e;
1166    if(sum != 0)
1167    {
1168       T term = sum;
1169       for(unsigned n = 1; n < a; ++n)
1170       {
1171          term /= n;
1172          term *= x;
1173          sum += term;
1174       }
1175    }
1176    if(pderivative)
1177    {
1178       *pderivative = e * pow(x, a) / boost::math::unchecked_factorial<T>(itrunc(T(a - 1), pol));
1179    }
1180    return sum;
1181 }
1182 //
1183 // Upper gamma fraction for half integer a:
1184 //
1185 template <class T, class Policy>
1186 BOOST_MATH_GPU_ENABLED T finite_half_gamma_q(T a, T x, T* p_derivative, const Policy& pol)
1187 {
1188    //
1189    // Calculates normalised Q when a is a half-integer:
1190    //
1191    BOOST_MATH_STD_USING
1192 
1193    #ifdef BOOST_MATH_HAS_NVRTC
1194    T e;
1195    if (boost::math::is_same_v<T, float>)
1196    {
1197       e = ::erfcf(::sqrtf(x));
1198    }
1199    else
1200    {
1201       e = ::erfc(::sqrt(x));
1202    }
1203    #else
1204    T e = boost::math::erfc(sqrt(x), pol);
1205    #endif
1206 
1207    if((e != 0) && (a > 1))
1208    {
1209       T term = exp(-x) / sqrt(constants::pi<T>() * x);
1210       term *= x;
1211       static const T half = T(1) / 2;
1212       term /= half;
1213       T sum = term;
1214       for(unsigned n = 2; n < a; ++n)
1215       {
1216          term /= n - half;
1217          term *= x;
1218          sum += term;
1219       }
1220       e += sum;
1221       if(p_derivative)
1222       {
1223          *p_derivative = 0;
1224       }
1225    }
1226    else if(p_derivative)
1227    {
1228       // We'll be dividing by x later, so calculate derivative * x:
1229       *p_derivative = sqrt(x) * exp(-x) / constants::root_pi<T>();
1230    }
1231    return e;
1232 }
1233 //
1234 // Asymptotic approximation for large argument, see: https://dlmf.nist.gov/8.11#E2
1235 //
1236 template <class T>
1237 struct incomplete_tgamma_large_x_series
1238 {
1239    typedef T result_type;
1240    BOOST_MATH_GPU_ENABLED incomplete_tgamma_large_x_series(const T& a, const T& x)
1241       : a_poch(a - 1), z(x), term(1) {}
1242    BOOST_MATH_GPU_ENABLED T operator()()
1243    {
1244       T result = term;
1245       term *= a_poch / z;
1246       a_poch -= 1;
1247       return result;
1248    }
1249    T a_poch, z, term;
1250 };
1251 
1252 template <class T, class Policy>
1253 BOOST_MATH_GPU_ENABLED T incomplete_tgamma_large_x(const T& a, const T& x, const Policy& pol)
1254 {
1255    BOOST_MATH_STD_USING
1256    incomplete_tgamma_large_x_series<T> s(a, x);
1257    boost::math::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<Policy>();
1258    T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
1259    boost::math::policies::check_series_iterations<T>("boost::math::tgamma<%1%>(%1%,%1%)", max_iter, pol);
1260    return result;
1261 }
1262 
1263 
1264 //
1265 // Main incomplete gamma entry point, handles all four incomplete gamma's:
1266 //
1267 template <class T, class Policy>
1268 BOOST_MATH_GPU_ENABLED T gamma_incomplete_imp_final(T a, T x, bool normalised, bool invert,
1269                        const Policy& pol, T* p_derivative)
1270 {
1271    constexpr auto function = "boost::math::gamma_p<%1%>(%1%, %1%)";
1272    if(a <= 0)
1273       return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
1274    if(x < 0)
1275       return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
1276 
1277    BOOST_MATH_STD_USING
1278 
1279    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1280 
1281    T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used
1282 
1283    BOOST_MATH_ASSERT((p_derivative == nullptr) || normalised);
1284 
1285    bool is_int, is_half_int;
1286    bool is_small_a = (a < 30) && (a <= x + 1) && (x < tools::log_max_value<T>());
1287    if(is_small_a)
1288    {
1289       T fa = floor(a);
1290       is_int = (fa == a);
1291       is_half_int = is_int ? false : (fabs(fa - a) == 0.5f);
1292    }
1293    else
1294    {
1295       is_int = is_half_int = false;
1296    }
1297 
1298    int eval_method;
1299 
1300    if(is_int && (x > 0.6))
1301    {
1302       // calculate Q via finite sum:
1303       invert = !invert;
1304       eval_method = 0;
1305    }
1306    else if(is_half_int && (x > 0.2))
1307    {
1308       // calculate Q via finite sum for half integer a:
1309       invert = !invert;
1310       eval_method = 1;
1311    }
1312    else if((x < tools::root_epsilon<T>()) && (a > 1))
1313    {
1314       eval_method = 6;
1315    }
1316    else if ((x > 1000) && ((a < x) || (fabs(a - 50) / x < 1)))
1317    {
1318       // calculate Q via asymptotic approximation:
1319       invert = !invert;
1320       eval_method = 7;
1321    }
1322    else if(x < T(0.5))
1323    {
1324       //
1325       // Changeover criterion chosen to give a changeover at Q ~ 0.33
1326       //
1327       if(T(-0.4) / log(x) < a)
1328       {
1329          eval_method = 2;
1330       }
1331       else
1332       {
1333          eval_method = 3;
1334       }
1335    }
1336    else if(x < T(1.1))
1337    {
1338       //
1339       // Changeover here occurs when P ~ 0.75 or Q ~ 0.25:
1340       //
1341       if(x * 0.75f < a)
1342       {
1343          eval_method = 2;
1344       }
1345       else
1346       {
1347          eval_method = 3;
1348       }
1349    }
1350    else
1351    {
1352       //
1353       // Begin by testing whether we're in the "bad" zone
1354       // where the result will be near 0.5 and the usual
1355       // series and continued fractions are slow to converge:
1356       //
1357       bool use_temme = false;
1358       if(normalised && boost::math::numeric_limits<T>::is_specialized && (a > 20))
1359       {
1360          T sigma = fabs((x-a)/a);
1361          if((a > 200) && (policies::digits<T, Policy>() <= 113))
1362          {
1363             //
1364             // This limit is chosen so that we use Temme's expansion
1365             // only if the result would be larger than about 10^-6.
1366             // Below that the regular series and continued fractions
1367             // converge OK, and if we use Temme's method we get increasing
1368             // errors from the dominant erfc term as it's (inexact) argument
1369             // increases in magnitude.
1370             //
1371             if(20 / a > sigma * sigma)
1372                use_temme = true;
1373          }
1374          else if(policies::digits<T, Policy>() <= 64)
1375          {
1376             // Note in this zone we can't use Temme's expansion for
1377             // types longer than an 80-bit real:
1378             // it would require too many terms in the polynomials.
1379             if(sigma < 0.4)
1380                use_temme = true;
1381          }
1382       }
1383       if(use_temme)
1384       {
1385          eval_method = 5;
1386       }
1387       else
1388       {
1389          //
1390          // Regular case where the result will not be too close to 0.5.
1391          //
1392          // Changeover here occurs at P ~ Q ~ 0.5
1393          // Note that series computation of P is about x2 faster than continued fraction
1394          // calculation of Q, so try and use the CF only when really necessary, especially
1395          // for small x.
1396          //
1397          if(x - (1 / (3 * x)) < a)
1398          {
1399             eval_method = 2;
1400          }
1401          else
1402          {
1403             eval_method = 4;
1404             invert = !invert;
1405          }
1406       }
1407    }
1408 
1409    switch(eval_method)
1410    {
1411    case 0:
1412       {
1413          result = finite_gamma_q(a, x, pol, p_derivative);
1414          if(!normalised)
1415          {
1416             #ifdef BOOST_MATH_HAS_NVRTC
1417             if (boost::math::is_same_v<T, float>)
1418             {
1419                result *= ::tgammaf(a);
1420             }
1421             else
1422             {
1423                result *= ::tgamma(a);
1424             }
1425             #else
1426             result *= boost::math::tgamma(a, pol);
1427             #endif
1428          }
1429          break;
1430       }
1431    case 1:
1432       {
1433          result = finite_half_gamma_q(a, x, p_derivative, pol);
1434          if(!normalised)
1435          {
1436             #ifdef BOOST_MATH_HAS_NVRTC
1437             if (boost::math::is_same_v<T, float>)
1438             {
1439                result *= ::tgammaf(a);
1440             }
1441             else
1442             {
1443                result *= ::tgamma(a);
1444             }
1445             #else
1446             result *= boost::math::tgamma(a, pol);
1447             #endif
1448          }
1449          if(p_derivative && (*p_derivative == 0))
1450             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1451          break;
1452       }
1453    case 2:
1454       {
1455          // Compute P:
1456          result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1457          if(p_derivative)
1458             *p_derivative = result;
1459          if(result != 0)
1460          {
1461             //
1462             // If we're going to be inverting the result then we can
1463             // reduce the number of series evaluations by quite
1464             // a few iterations if we set an initial value for the
1465             // series sum based on what we'll end up subtracting it from
1466             // at the end.
1467             // Have to be careful though that this optimization doesn't
1468             // lead to spurious numeric overflow.  Note that the
1469             // scary/expensive overflow checks below are more often
1470             // than not bypassed in practice for "sensible" input
1471             // values:
1472             //
1473             T init_value = 0;
1474             bool optimised_invert = false;
1475             if(invert)
1476             {
1477                #ifdef BOOST_MATH_HAS_NVRTC
1478                if (boost::math::is_same_v<T, float>)
1479                {
1480                   init_value = (normalised ? 1 : ::tgammaf(a));
1481                }
1482                else
1483                {
1484                   init_value = (normalised ? 1 : ::tgamma(a));
1485                }
1486                #else
1487                init_value = (normalised ? 1 : boost::math::tgamma(a, pol));
1488                #endif
1489 
1490                if(normalised || (result >= 1) || (tools::max_value<T>() * result > init_value))
1491                {
1492                   init_value /= result;
1493                   if(normalised || (a < 1) || (tools::max_value<T>() / a > init_value))
1494                   {
1495                      init_value *= -a;
1496                      optimised_invert = true;
1497                   }
1498                   else
1499                      init_value = 0;
1500                }
1501                else
1502                   init_value = 0;
1503             }
1504             result *= detail::lower_gamma_series(a, x, pol, init_value) / a;
1505             if(optimised_invert)
1506             {
1507                invert = false;
1508                result = -result;
1509             }
1510          }
1511          break;
1512       }
1513    case 3:
1514       {
1515          // Compute Q:
1516          invert = !invert;
1517          T g;
1518          result = tgamma_small_upper_part(a, x, pol, &g, invert, p_derivative);
1519          invert = false;
1520          if(normalised)
1521             result /= g;
1522          break;
1523       }
1524    case 4:
1525       {
1526          // Compute Q:
1527          result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1528          if(p_derivative)
1529             *p_derivative = result;
1530          if(result != 0)
1531             result *= upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>());
1532          break;
1533       }
1534    case 5:
1535       {
1536          //
1537          // Use compile time dispatch to the appropriate
1538          // Temme asymptotic expansion.  This may be dead code
1539          // if T does not have numeric limits support, or has
1540          // too many digits for the most precise version of
1541          // these expansions, in that case we'll be calling
1542          // an empty function.
1543          //
1544          typedef typename policies::precision<T, Policy>::type precision_type;
1545 
1546          typedef boost::math::integral_constant<int,
1547             precision_type::value <= 0 ? 0 :
1548             precision_type::value <= 53 ? 53 :
1549             precision_type::value <= 64 ? 64 :
1550             precision_type::value <= 113 ? 113 : 0
1551          > tag_type;
1552 
1553          result = igamma_temme_large(a, x, pol, tag_type());
1554          if(x >= a)
1555             invert = !invert;
1556          if(p_derivative)
1557             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1558          break;
1559       }
1560    case 6:
1561       {
1562          // x is so small that P is necessarily very small too,
1563          // use http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/
1564          if(!normalised)
1565             result = pow(x, a) / (a);
1566          else
1567          {
1568 #ifndef BOOST_MATH_NO_EXCEPTIONS
1569             try
1570             {
1571 #endif
1572                #ifdef BOOST_MATH_HAS_NVRTC
1573                if (boost::math::is_same_v<T, float>)
1574                {
1575                   result = ::powf(x, a) / ::tgammaf(a + 1);
1576                }
1577                else
1578                {
1579                   result = ::pow(x, a) / ::tgamma(a + 1);
1580                }
1581                #else
1582                result = pow(x, a) / boost::math::tgamma(a + 1, pol);
1583                #endif
1584 #ifndef BOOST_MATH_NO_EXCEPTIONS
1585             }
1586             catch (const std::overflow_error&)
1587             {
1588                result = 0;
1589             }
1590 #endif
1591          }
1592          result *= 1 - a * x / (a + 1);
1593          if (p_derivative)
1594             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1595          break;
1596       }
1597    case 7:
1598    {
1599       // x is large,
1600       // Compute Q:
1601       result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1602       if (p_derivative)
1603          *p_derivative = result;
1604       result /= x;
1605       if (result != 0)
1606          result *= incomplete_tgamma_large_x(a, x, pol);
1607       break;
1608    }
1609    }
1610 
1611    if(normalised && (result > 1))
1612       result = 1;
1613    if(invert)
1614    {
1615       #ifdef BOOST_MATH_HAS_NVRTC
1616       T gam;
1617       if (boost::math::is_same_v<T, float>)
1618       {
1619          gam = normalised ? 1 : ::tgammaf(a);
1620       }
1621       else
1622       {
1623          gam = normalised ? 1 : ::tgamma(a);
1624       }
1625       #else
1626       T gam = normalised ? 1 : boost::math::tgamma(a, pol);
1627       #endif
1628       result = gam - result;
1629    }
1630    if(p_derivative)
1631    {
1632       //
1633       // Need to convert prefix term to derivative:
1634       //
1635       if((x < 1) && (tools::max_value<T>() * x < *p_derivative))
1636       {
1637          // overflow, just return an arbitrarily large value:
1638          *p_derivative = tools::max_value<T>() / 2;
1639       }
1640 
1641       *p_derivative /= x;
1642    }
1643 
1644    return result;
1645 }
1646 
1647 // Need to implement this dispatch to avoid recursion for device compilers
1648 template <class T, class Policy>
1649 BOOST_MATH_GPU_ENABLED T gamma_incomplete_imp(T a, T x, bool normalised, bool invert,
1650                        const Policy& pol, T* p_derivative)
1651 {
1652    constexpr auto function = "boost::math::gamma_p<%1%>(%1%, %1%)";
1653    if(a <= 0)
1654       return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
1655    if(x < 0)
1656       return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
1657 
1658    BOOST_MATH_STD_USING
1659 
1660 
1661    T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used
1662 
1663    if(a >= max_factorial<T>::value && !normalised)
1664    {
1665       //
1666       // When we're computing the non-normalized incomplete gamma
1667       // and a is large the result is rather hard to compute unless
1668       // we use logs.  There are really two options - if x is a long
1669       // way from a in value then we can reliably use methods 2 and 4
1670       // below in logarithmic form and go straight to the result.
1671       // Otherwise we let the regularized gamma take the strain
1672       // (the result is unlikely to underflow in the central region anyway)
1673       // and combine with lgamma in the hopes that we get a finite result.
1674       //
1675       if(invert && (a * 4 < x))
1676       {
1677          // This is method 4 below, done in logs:
1678          result = a * log(x) - x;
1679          if(p_derivative)
1680             *p_derivative = exp(result);
1681          result += log(upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>()));
1682       }
1683       else if(!invert && (a > 4 * x))
1684       {
1685          // This is method 2 below, done in logs:
1686          result = a * log(x) - x;
1687          if(p_derivative)
1688             *p_derivative = exp(result);
1689          T init_value = 0;
1690          result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
1691       }
1692       else
1693       {
1694          result = gamma_incomplete_imp_final(T(a), T(x), true, invert, pol, p_derivative);
1695          if(result == 0)
1696          {
1697             if(invert)
1698             {
1699                // Try http://functions.wolfram.com/06.06.06.0039.01
1700                result = 1 + 1 / (12 * a) + 1 / (288 * a * a);
1701                result = log(result) - a + (a - 0.5f) * log(a) + log(boost::math::constants::root_two_pi<T>());
1702                if(p_derivative)
1703                   *p_derivative = exp(a * log(x) - x);
1704             }
1705             else
1706             {
1707                // This is method 2 below, done in logs, we're really outside the
1708                // range of this method, but since the result is almost certainly
1709                // infinite, we should probably be OK:
1710                result = a * log(x) - x;
1711                if(p_derivative)
1712                   *p_derivative = exp(result);
1713                T init_value = 0;
1714                result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
1715             }
1716          }
1717          else
1718          {
1719             #ifdef BOOST_MATH_HAS_NVRTC
1720             if (boost::math::is_same_v<T, float>)
1721             {
1722                result = ::logf(result) + ::lgammaf(a);
1723             }
1724             else
1725             {
1726                result = ::log(result) + ::lgamma(a);
1727             }
1728             #else
1729             result = log(result) + boost::math::lgamma(a, pol);
1730             #endif
1731          }
1732       }
1733       if(result > tools::log_max_value<T>())
1734          return policies::raise_overflow_error<T>(function, nullptr, pol);
1735       return exp(result);
1736    }
1737 
1738    // If no special handling is required then we proceeds as normal
1739    return gamma_incomplete_imp_final(T(a), T(x), normalised, invert, pol, p_derivative);
1740 }
1741 
1742 //
1743 // Ratios of two gamma functions:
1744 //
1745 template <class T, class Policy, class Lanczos>
1746 BOOST_MATH_GPU_ENABLED T tgamma_delta_ratio_imp_lanczos_final(T z, T delta, const Policy& pol, const Lanczos&)
1747 {
1748    BOOST_MATH_STD_USING
1749 
1750    T zgh = static_cast<T>(z + T(Lanczos::g()) - constants::half<T>());
1751    T result;
1752    if(z + delta == z)
1753    {
1754       if (fabs(delta / zgh) < boost::math::tools::epsilon<T>())
1755       {
1756          // We have:
1757          // result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
1758          // 0.5 - z == -z
1759          // log1p(delta / zgh) = delta / zgh = delta / z
1760          // multiplying we get -delta.
1761          result = exp(-delta);
1762       }
1763       else
1764          // from the pow formula below... but this may actually be wrong, we just can't really calculate it :(
1765          result = 1;
1766    }
1767    else
1768    {
1769       if(fabs(delta) < 10)
1770       {
1771          result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
1772       }
1773       else
1774       {
1775          result = pow(T(zgh / (zgh + delta)), T(z - constants::half<T>()));
1776       }
1777       // Split the calculation up to avoid spurious overflow:
1778       result *= Lanczos::lanczos_sum(z) / Lanczos::lanczos_sum(T(z + delta));
1779    }
1780    result *= pow(T(constants::e<T>() / (zgh + delta)), delta);
1781    return result;
1782 }
1783 
1784 template <class T, class Policy, class Lanczos>
1785 BOOST_MATH_GPU_ENABLED T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const Lanczos& l)
1786 {
1787    BOOST_MATH_STD_USING
1788 
1789    if(z < tools::epsilon<T>())
1790    {
1791       //
1792       // We get spurious numeric overflow unless we're very careful, this
1793       // can occur either inside Lanczos::lanczos_sum(z) or in the
1794       // final combination of terms, to avoid this, split the product up
1795       // into 2 (or 3) parts:
1796       //
1797       // G(z) / G(L) = 1 / (z * G(L)) ; z < eps, L = z + delta = delta
1798       //    z * G(L) = z * G(lim) * (G(L)/G(lim)) ; lim = largest factorial
1799       //
1800       if(boost::math::max_factorial<T>::value < delta)
1801       {
1802          T ratio = tgamma_delta_ratio_imp_lanczos_final(T(delta), T(boost::math::max_factorial<T>::value - delta), pol, l);
1803          ratio *= z;
1804          ratio *= boost::math::unchecked_factorial<T>(boost::math::max_factorial<T>::value - 1);
1805          return 1 / ratio;
1806       }
1807       else
1808       {
1809          #ifdef BOOST_MATH_HAS_NVRTC
1810          if (boost::math::is_same_v<T, float>)
1811          {
1812             return 1 / (z * ::tgammaf(z + delta));
1813          }
1814          else
1815          {
1816             return 1 / (z * ::tgamma(z + delta));
1817          }
1818          #else
1819          return 1 / (z * boost::math::tgamma(z + delta, pol));
1820          #endif
1821       }
1822    }
1823 
1824    return tgamma_delta_ratio_imp_lanczos_final(T(z), T(delta), pol, l);
1825 }
1826 
1827 //
1828 // And again without Lanczos support this time:
1829 //
1830 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
1831 
1832 template <class T, class Policy>
1833 T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const lanczos::undefined_lanczos& l)
1834 {
1835    BOOST_MATH_STD_USING
1836 
1837    //
1838    // We adjust z and delta so that both z and z+delta are large enough for
1839    // Sterling's approximation to hold.  We can then calculate the ratio
1840    // for the adjusted values, and rescale back down to z and z+delta.
1841    //
1842    // Get the required shifts first:
1843    //
1844    long numerator_shift = 0;
1845    long denominator_shift = 0;
1846    const int min_z = minimum_argument_for_bernoulli_recursion<T>();
1847 
1848    if (min_z > z)
1849       numerator_shift = 1 + ltrunc(min_z - z);
1850    if (min_z > z + delta)
1851       denominator_shift = 1 + ltrunc(min_z - z - delta);
1852    //
1853    // If the shifts are zero, then we can just combine scaled tgamma's
1854    // and combine the remaining terms:
1855    //
1856    if (numerator_shift == 0 && denominator_shift == 0)
1857    {
1858       T scaled_tgamma_num = scaled_tgamma_no_lanczos(z, pol);
1859       T scaled_tgamma_denom = scaled_tgamma_no_lanczos(T(z + delta), pol);
1860       T result = scaled_tgamma_num / scaled_tgamma_denom;
1861       result *= exp(z * boost::math::log1p(-delta / (z + delta), pol)) * pow(T((delta + z) / constants::e<T>()), -delta);
1862       return result;
1863    }
1864    //
1865    // We're going to have to rescale first, get the adjusted z and delta values,
1866    // plus the ratio for the adjusted values:
1867    //
1868    T zz = z + numerator_shift;
1869    T dd = delta - (numerator_shift - denominator_shift);
1870    T ratio = tgamma_delta_ratio_imp_lanczos(zz, dd, pol, l);
1871    //
1872    // Use gamma recurrence relations to get back to the original
1873    // z and z+delta:
1874    //
1875    for (long long i = 0; i < numerator_shift; ++i)
1876    {
1877       ratio /= (z + i);
1878       if (i < denominator_shift)
1879          ratio *= (z + delta + i);
1880    }
1881    for (long long i = numerator_shift; i < denominator_shift; ++i)
1882    {
1883       ratio *= (z + delta + i);
1884    }
1885    return ratio;
1886 }
1887 
1888 #endif
1889 
1890 template <class T, class Policy>
1891 BOOST_MATH_GPU_ENABLED T tgamma_delta_ratio_imp(T z, T delta, const Policy& pol)
1892 {
1893    BOOST_MATH_STD_USING
1894 
1895    if((z <= 0) || (z + delta <= 0))
1896    {
1897       // This isn't very sophisticated, or accurate, but it does work:
1898       #ifdef BOOST_MATH_HAS_NVRTC
1899       if (boost::math::is_same_v<T, float>)
1900       {
1901          return ::tgammaf(z) / ::tgammaf(z + delta);
1902       }
1903       else
1904       {
1905          return ::tgamma(z) / ::tgamma(z + delta);
1906       }
1907       #else
1908       return boost::math::tgamma(z, pol) / boost::math::tgamma(z + delta, pol);
1909       #endif
1910    }
1911 
1912    if(floor(delta) == delta)
1913    {
1914       if(floor(z) == z)
1915       {
1916          //
1917          // Both z and delta are integers, see if we can just use table lookup
1918          // of the factorials to get the result:
1919          //
1920          if((z <= max_factorial<T>::value) && (z + delta <= max_factorial<T>::value))
1921          {
1922             return unchecked_factorial<T>((unsigned)itrunc(z, pol) - 1) / unchecked_factorial<T>((unsigned)itrunc(T(z + delta), pol) - 1);
1923          }
1924       }
1925       if(fabs(delta) < 20)
1926       {
1927          //
1928          // delta is a small integer, we can use a finite product:
1929          //
1930          if(delta == 0)
1931             return 1;
1932          if(delta < 0)
1933          {
1934             z -= 1;
1935             T result = z;
1936             while(0 != (delta += 1))
1937             {
1938                z -= 1;
1939                result *= z;
1940             }
1941             return result;
1942          }
1943          else
1944          {
1945             T result = 1 / z;
1946             while(0 != (delta -= 1))
1947             {
1948                z += 1;
1949                result /= z;
1950             }
1951             return result;
1952          }
1953       }
1954    }
1955    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1956    return tgamma_delta_ratio_imp_lanczos(z, delta, pol, lanczos_type());
1957 }
1958 
1959 template <class T, class Policy>
1960 BOOST_MATH_GPU_ENABLED T tgamma_ratio_imp(T x, T y, const Policy& pol)
1961 {
1962    BOOST_MATH_STD_USING
1963 
1964    if((x <= 0) || (boost::math::isinf)(x))
1965       return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got a=%1%).", x, pol);
1966    if((y <= 0) || (boost::math::isinf)(y))
1967       return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got b=%1%).", y, pol);
1968 
1969    // We don't need to worry about the denorm case on device
1970    // And this has the added bonus of removing recursion
1971    #ifndef BOOST_MATH_HAS_GPU_SUPPORT
1972    if(x <= tools::min_value<T>())
1973    {
1974       // Special case for denorms...Ugh.
1975       T shift = ldexp(T(1), tools::digits<T>());
1976       return shift * tgamma_ratio_imp(T(x * shift), y, pol);
1977    }
1978    #endif
1979 
1980    if((x < max_factorial<T>::value) && (y < max_factorial<T>::value))
1981    {
1982       // Rather than subtracting values, lets just call the gamma functions directly:
1983       #ifdef BOOST_MATH_HAS_NVRTC
1984       if (boost::math::is_same_v<T, float>)
1985       {
1986          return ::tgammaf(x) / ::tgammaf(y);
1987       }
1988       else
1989       {
1990          return ::tgamma(x) / ::tgamma(y);
1991       }
1992       #else
1993       return boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1994       #endif
1995    }
1996    T prefix = 1;
1997    if(x < 1)
1998    {
1999       if(y < 2 * max_factorial<T>::value)
2000       {
2001          // We need to sidestep on x as well, otherwise we'll underflow
2002          // before we get to factor in the prefix term:
2003          prefix /= x;
2004          x += 1;
2005          while(y >=  max_factorial<T>::value)
2006          {
2007             y -= 1;
2008             prefix /= y;
2009          }
2010 
2011          #ifdef BOOST_MATH_HAS_NVRTC
2012          if (boost::math::is_same_v<T, float>)
2013          {
2014             return prefix * ::tgammaf(x) / ::tgammaf(y);
2015          }
2016          else
2017          {
2018             return prefix * ::tgamma(x) / ::tgamma(y);
2019          }
2020          #else
2021          return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
2022          #endif
2023       }
2024       //
2025       // result is almost certainly going to underflow to zero, try logs just in case:
2026       //
2027       #ifdef BOOST_MATH_HAS_NVRTC
2028       if (boost::math::is_same_v<T, float>)
2029       {
2030          return ::expf(::lgammaf(x) - ::lgammaf(y));
2031       }
2032       else
2033       {
2034          return ::exp(::lgamma(x) - ::lgamma(y));
2035       }
2036       #else
2037       return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
2038       #endif
2039    }
2040    if(y < 1)
2041    {
2042       if(x < 2 * max_factorial<T>::value)
2043       {
2044          // We need to sidestep on y as well, otherwise we'll overflow
2045          // before we get to factor in the prefix term:
2046          prefix *= y;
2047          y += 1;
2048          while(x >= max_factorial<T>::value)
2049          {
2050             x -= 1;
2051             prefix *= x;
2052          }
2053 
2054          #ifdef BOOST_MATH_HAS_NVRTC
2055          if (boost::math::is_same_v<T, float>)
2056          {
2057             return prefix * ::tgammaf(x) / ::tgammaf(y);
2058          }
2059          else
2060          {
2061             return prefix * ::tgamma(x) / ::tgamma(y);
2062          }
2063          #else
2064          return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
2065          #endif
2066       }
2067       //
2068       // Result will almost certainly overflow, try logs just in case:
2069       //
2070       #ifdef BOOST_MATH_HAS_NVRTC
2071       if (boost::math::is_same_v<T, float>)
2072       {
2073          return ::expf(::lgammaf(x) - ::lgammaf(y));
2074       }
2075       else
2076       {
2077          return ::exp(::lgamma(x) - ::lgamma(y));
2078       }
2079       #else
2080       return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
2081       #endif
2082    }
2083    //
2084    // Regular case, x and y both large and similar in magnitude:
2085    //
2086    #ifdef BOOST_MATH_HAS_NVRTC
2087    return detail::tgamma_delta_ratio_imp(x, y - x, pol);
2088    #else
2089    return boost::math::tgamma_delta_ratio(x, y - x, pol);
2090    #endif
2091 }
2092 
2093 template <class T, class Policy>
2094 BOOST_MATH_GPU_ENABLED T gamma_p_derivative_imp(T a, T x, const Policy& pol)
2095 {
2096    BOOST_MATH_STD_USING
2097    //
2098    // Usual error checks first:
2099    //
2100    if(a <= 0)
2101       return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
2102    if(x < 0)
2103       return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
2104    //
2105    // Now special cases:
2106    //
2107    if(x == 0)
2108    {
2109       return (a > 1) ? 0 :
2110          (a == 1) ? 1 : policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", nullptr, pol);
2111    }
2112    //
2113    // Normal case:
2114    //
2115    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
2116    T f1 = detail::regularised_gamma_prefix(a, x, pol, lanczos_type());
2117    if((x < 1) && (tools::max_value<T>() * x < f1))
2118    {
2119       // overflow:
2120       return policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", nullptr, pol);
2121    }
2122    if(f1 == 0)
2123    {
2124       // Underflow in calculation, use logs instead:
2125       #ifdef BOOST_MATH_HAS_NVRTC
2126       if (boost::math::is_same_v<T, float>)
2127       {
2128          f1 = a * ::logf(x) - x - ::lgammaf(a) - ::logf(x);
2129       }
2130       else
2131       {
2132          f1 = a * ::log(x) - x - ::lgamma(a) - ::log(x);
2133       }
2134       #else
2135       f1 = a * log(x) - x - lgamma(a, pol) - log(x);
2136       #endif
2137       f1 = exp(f1);
2138    }
2139    else
2140       f1 /= x;
2141 
2142    return f1;
2143 }
2144 
2145 template <class T, class Policy>
2146 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
2147    tgamma(T z, const Policy& /* pol */, const boost::math::true_type)
2148 {
2149    BOOST_FPU_EXCEPTION_GUARD
2150    typedef typename tools::promote_args<T>::type result_type;
2151    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2152    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2153    typedef typename policies::normalise<
2154       Policy,
2155       policies::promote_float<false>,
2156       policies::promote_double<false>,
2157       policies::discrete_quantile<>,
2158       policies::assert_undefined<> >::type forwarding_policy;
2159    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma<%1%>(%1%)");
2160 }
2161 
2162 template <class T, class Policy>
2163 struct igamma_initializer
2164 {
2165    struct init
2166    {
2167       BOOST_MATH_GPU_ENABLED init()
2168       {
2169          typedef typename policies::precision<T, Policy>::type precision_type;
2170 
2171          typedef boost::math::integral_constant<int,
2172             precision_type::value <= 0 ? 0 :
2173             precision_type::value <= 53 ? 53 :
2174             precision_type::value <= 64 ? 64 :
2175             precision_type::value <= 113 ? 113 : 0
2176          > tag_type;
2177 
2178          do_init(tag_type());
2179       }
2180       template <int N>
2181       BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, N>&)
2182       {
2183          // If std::numeric_limits<T>::digits is zero, we must not call
2184          // our initialization code here as the precision presumably
2185          // varies at runtime, and will not have been set yet.  Plus the
2186          // code requiring initialization isn't called when digits == 0.
2187          if (boost::math::numeric_limits<T>::digits)
2188          {
2189             boost::math::gamma_p(static_cast<T>(400), static_cast<T>(400), Policy());
2190          }
2191       }
2192       BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 53>&){}
2193       BOOST_MATH_GPU_ENABLED void force_instantiate()const{}
2194    };
2195    BOOST_MATH_STATIC const init initializer;
2196    BOOST_MATH_GPU_ENABLED static void force_instantiate()
2197    {
2198       #ifndef BOOST_MATH_HAS_GPU_SUPPORT
2199       initializer.force_instantiate();
2200       #endif
2201    }
2202 };
2203 
2204 template <class T, class Policy>
2205 const typename igamma_initializer<T, Policy>::init igamma_initializer<T, Policy>::initializer;
2206 
2207 template <class T, class Policy>
2208 struct lgamma_initializer
2209 {
2210    struct init
2211    {
2212       BOOST_MATH_GPU_ENABLED init()
2213       {
2214          typedef typename policies::precision<T, Policy>::type precision_type;
2215          typedef boost::math::integral_constant<int,
2216             precision_type::value <= 0 ? 0 :
2217             precision_type::value <= 64 ? 64 :
2218             precision_type::value <= 113 ? 113 : 0
2219          > tag_type;
2220 
2221          do_init(tag_type());
2222       }
2223       BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 64>&)
2224       {
2225          boost::math::lgamma(static_cast<T>(2.5), Policy());
2226          boost::math::lgamma(static_cast<T>(1.25), Policy());
2227          boost::math::lgamma(static_cast<T>(1.75), Policy());
2228       }
2229       BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 113>&)
2230       {
2231          boost::math::lgamma(static_cast<T>(2.5), Policy());
2232          boost::math::lgamma(static_cast<T>(1.25), Policy());
2233          boost::math::lgamma(static_cast<T>(1.5), Policy());
2234          boost::math::lgamma(static_cast<T>(1.75), Policy());
2235       }
2236       BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 0>&)
2237       {
2238       }
2239       BOOST_MATH_GPU_ENABLED void force_instantiate()const{}
2240    };
2241    BOOST_MATH_STATIC const init initializer;
2242    BOOST_MATH_GPU_ENABLED static void force_instantiate()
2243    {
2244       #ifndef BOOST_MATH_HAS_GPU_SUPPORT
2245       initializer.force_instantiate();
2246       #endif
2247    }
2248 };
2249 
2250 template <class T, class Policy>
2251 const typename lgamma_initializer<T, Policy>::init lgamma_initializer<T, Policy>::initializer;
2252 
2253 template <class T1, class T2, class Policy>
2254 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2255    tgamma(T1 a, T2 z, const Policy&, const boost::math::false_type)
2256 {
2257    BOOST_FPU_EXCEPTION_GUARD
2258    typedef tools::promote_args_t<T1, T2> result_type;
2259    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2260    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2261    typedef typename policies::normalise<
2262       Policy,
2263       policies::promote_float<false>,
2264       policies::promote_double<false>,
2265       policies::discrete_quantile<>,
2266       policies::assert_undefined<> >::type forwarding_policy;
2267 
2268    igamma_initializer<value_type, forwarding_policy>::force_instantiate();
2269 
2270    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
2271       detail::gamma_incomplete_imp(static_cast<value_type>(a),
2272       static_cast<value_type>(z), false, true,
2273       forwarding_policy(), static_cast<value_type*>(nullptr)), "boost::math::tgamma<%1%>(%1%, %1%)");
2274 }
2275 
2276 template <class T1, class T2>
2277 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2278    tgamma(T1 a, T2 z, const boost::math::false_type& tag)
2279 {
2280    return tgamma(a, z, policies::policy<>(), tag);
2281 }
2282 
2283 
2284 } // namespace detail
2285 
2286 template <class T, class Policy>
2287 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
2288    lgamma(T z, int* sign, const Policy&)
2289 {
2290    BOOST_FPU_EXCEPTION_GUARD
2291    typedef typename tools::promote_args<T>::type result_type;
2292    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2293    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2294    typedef typename policies::normalise<
2295       Policy,
2296       policies::promote_float<false>,
2297       policies::promote_double<false>,
2298       policies::discrete_quantile<>,
2299       policies::assert_undefined<> >::type forwarding_policy;
2300 
2301    detail::lgamma_initializer<value_type, forwarding_policy>::force_instantiate();
2302 
2303    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::lgamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type(), sign), "boost::math::lgamma<%1%>(%1%)");
2304 }
2305 
2306 template <class T>
2307 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
2308    lgamma(T z, int* sign)
2309 {
2310    return lgamma(z, sign, policies::policy<>());
2311 }
2312 
2313 template <class T, class Policy>
2314 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
2315    lgamma(T x, const Policy& pol)
2316 {
2317    return ::boost::math::lgamma(x, nullptr, pol);
2318 }
2319 
2320 template <class T>
2321 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
2322    lgamma(T x)
2323 {
2324    return ::boost::math::lgamma(x, nullptr, policies::policy<>());
2325 }
2326 
2327 template <class T, class Policy>
2328 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
2329    tgamma1pm1(T z, const Policy& /* pol */)
2330 {
2331    BOOST_FPU_EXCEPTION_GUARD
2332    typedef typename tools::promote_args<T>::type result_type;
2333    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2334    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2335    typedef typename policies::normalise<
2336       Policy,
2337       policies::promote_float<false>,
2338       policies::promote_double<false>,
2339       policies::discrete_quantile<>,
2340       policies::assert_undefined<> >::type forwarding_policy;
2341 
2342    return policies::checked_narrowing_cast<typename boost::math::remove_cv<result_type>::type, forwarding_policy>(detail::tgammap1m1_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma1pm1<%!%>(%1%)");
2343 }
2344 
2345 template <class T>
2346 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
2347    tgamma1pm1(T z)
2348 {
2349    return tgamma1pm1(z, policies::policy<>());
2350 }
2351 
2352 //
2353 // Full upper incomplete gamma:
2354 //
2355 template <class T1, class T2>
2356 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2357    tgamma(T1 a, T2 z)
2358 {
2359    //
2360    // Type T2 could be a policy object, or a value, select the
2361    // right overload based on T2:
2362    //
2363    using maybe_policy = typename policies::is_policy<T2>::type;
2364    using result_type = tools::promote_args_t<T1, T2>;
2365    return static_cast<result_type>(detail::tgamma(a, z, maybe_policy()));
2366 }
2367 template <class T1, class T2, class Policy>
2368 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2369    tgamma(T1 a, T2 z, const Policy& pol)
2370 {
2371    using result_type = tools::promote_args_t<T1, T2>;
2372    return static_cast<result_type>(detail::tgamma(a, z, pol, boost::math::false_type()));
2373 }
2374 template <class T>
2375 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
2376    tgamma(T z)
2377 {
2378    return tgamma(z, policies::policy<>());
2379 }
2380 //
2381 // Full lower incomplete gamma:
2382 //
2383 template <class T1, class T2, class Policy>
2384 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2385    tgamma_lower(T1 a, T2 z, const Policy&)
2386 {
2387    BOOST_FPU_EXCEPTION_GUARD
2388    typedef tools::promote_args_t<T1, T2> result_type;
2389    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2390    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2391    typedef typename policies::normalise<
2392       Policy,
2393       policies::promote_float<false>,
2394       policies::promote_double<false>,
2395       policies::discrete_quantile<>,
2396       policies::assert_undefined<> >::type forwarding_policy;
2397 
2398    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
2399 
2400    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
2401       detail::gamma_incomplete_imp(static_cast<value_type>(a),
2402       static_cast<value_type>(z), false, false,
2403       forwarding_policy(), static_cast<value_type*>(nullptr)), "tgamma_lower<%1%>(%1%, %1%)");
2404 }
2405 template <class T1, class T2>
2406 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2407    tgamma_lower(T1 a, T2 z)
2408 {
2409    return tgamma_lower(a, z, policies::policy<>());
2410 }
2411 //
2412 // Regularised upper incomplete gamma:
2413 //
2414 template <class T1, class T2, class Policy>
2415 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2416    gamma_q(T1 a, T2 z, const Policy& /* pol */)
2417 {
2418    BOOST_FPU_EXCEPTION_GUARD
2419    typedef tools::promote_args_t<T1, T2> result_type;
2420    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2421    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2422    typedef typename policies::normalise<
2423       Policy,
2424       policies::promote_float<false>,
2425       policies::promote_double<false>,
2426       policies::discrete_quantile<>,
2427       policies::assert_undefined<> >::type forwarding_policy;
2428 
2429    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
2430 
2431    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
2432       detail::gamma_incomplete_imp(static_cast<value_type>(a),
2433       static_cast<value_type>(z), true, true,
2434       forwarding_policy(), static_cast<value_type*>(nullptr)), "gamma_q<%1%>(%1%, %1%)");
2435 }
2436 template <class T1, class T2>
2437 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2438    gamma_q(T1 a, T2 z)
2439 {
2440    return gamma_q(a, z, policies::policy<>());
2441 }
2442 //
2443 // Regularised lower incomplete gamma:
2444 //
2445 template <class T1, class T2, class Policy>
2446 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2447    gamma_p(T1 a, T2 z, const Policy&)
2448 {
2449    BOOST_FPU_EXCEPTION_GUARD
2450    typedef tools::promote_args_t<T1, T2> result_type;
2451    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2452    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2453    typedef typename policies::normalise<
2454       Policy,
2455       policies::promote_float<false>,
2456       policies::promote_double<false>,
2457       policies::discrete_quantile<>,
2458       policies::assert_undefined<> >::type forwarding_policy;
2459 
2460    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
2461 
2462    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
2463       detail::gamma_incomplete_imp(static_cast<value_type>(a),
2464       static_cast<value_type>(z), true, false,
2465       forwarding_policy(), static_cast<value_type*>(nullptr)), "gamma_p<%1%>(%1%, %1%)");
2466 }
2467 template <class T1, class T2>
2468 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2469    gamma_p(T1 a, T2 z)
2470 {
2471    return gamma_p(a, z, policies::policy<>());
2472 }
2473 
2474 // ratios of gamma functions:
2475 template <class T1, class T2, class Policy>
2476 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2477    tgamma_delta_ratio(T1 z, T2 delta, const Policy& /* pol */)
2478 {
2479    BOOST_FPU_EXCEPTION_GUARD
2480    typedef tools::promote_args_t<T1, T2> result_type;
2481    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2482    typedef typename policies::normalise<
2483       Policy,
2484       policies::promote_float<false>,
2485       policies::promote_double<false>,
2486       policies::discrete_quantile<>,
2487       policies::assert_undefined<> >::type forwarding_policy;
2488 
2489    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_delta_ratio_imp(static_cast<value_type>(z), static_cast<value_type>(delta), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
2490 }
2491 template <class T1, class T2>
2492 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2493    tgamma_delta_ratio(T1 z, T2 delta)
2494 {
2495    return tgamma_delta_ratio(z, delta, policies::policy<>());
2496 }
2497 template <class T1, class T2, class Policy>
2498 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2499    tgamma_ratio(T1 a, T2 b, const Policy&)
2500 {
2501    typedef tools::promote_args_t<T1, T2> result_type;
2502    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2503    typedef typename policies::normalise<
2504       Policy,
2505       policies::promote_float<false>,
2506       policies::promote_double<false>,
2507       policies::discrete_quantile<>,
2508       policies::assert_undefined<> >::type forwarding_policy;
2509 
2510    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_ratio_imp(static_cast<value_type>(a), static_cast<value_type>(b), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
2511 }
2512 template <class T1, class T2>
2513 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2514    tgamma_ratio(T1 a, T2 b)
2515 {
2516    return tgamma_ratio(a, b, policies::policy<>());
2517 }
2518 
2519 template <class T1, class T2, class Policy>
2520 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2521    gamma_p_derivative(T1 a, T2 x, const Policy&)
2522 {
2523    BOOST_FPU_EXCEPTION_GUARD
2524    typedef tools::promote_args_t<T1, T2> result_type;
2525    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2526    typedef typename policies::normalise<
2527       Policy,
2528       policies::promote_float<false>,
2529       policies::promote_double<false>,
2530       policies::discrete_quantile<>,
2531       policies::assert_undefined<> >::type forwarding_policy;
2532 
2533    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_p_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(x), forwarding_policy()), "boost::math::gamma_p_derivative<%1%>(%1%, %1%)");
2534 }
2535 template <class T1, class T2>
2536 BOOST_MATH_GPU_ENABLED inline tools::promote_args_t<T1, T2>
2537    gamma_p_derivative(T1 a, T2 x)
2538 {
2539    return gamma_p_derivative(a, x, policies::policy<>());
2540 }
2541 
2542 } // namespace math
2543 } // namespace boost
2544 
2545 #ifdef _MSC_VER
2546 # pragma warning(pop)
2547 #endif
2548 
2549 #include <boost/math/special_functions/detail/igamma_inverse.hpp>
2550 #include <boost/math/special_functions/detail/gamma_inva.hpp>
2551 #include <boost/math/special_functions/erf.hpp>
2552 
2553 #endif // BOOST_MATH_SF_GAMMA_HPP