File indexing completed on 2025-09-13 08:39:31
0001
0002
0003
0004
0005
0006
0007 #ifndef BOOST_MATH_EXPM1_INCLUDED
0008 #define BOOST_MATH_EXPM1_INCLUDED
0009
0010 #ifdef _MSC_VER
0011 #pragma once
0012 #endif
0013
0014 #include <boost/math/tools/config.hpp>
0015
0016 #ifndef BOOST_MATH_HAS_NVRTC
0017
0018 #include <boost/math/tools/series.hpp>
0019 #include <boost/math/tools/precision.hpp>
0020 #include <boost/math/tools/big_constant.hpp>
0021 #include <boost/math/policies/error_handling.hpp>
0022 #include <boost/math/tools/rational.hpp>
0023 #include <boost/math/special_functions/math_fwd.hpp>
0024 #include <boost/math/tools/assert.hpp>
0025 #include <boost/math/tools/numeric_limits.hpp>
0026 #include <boost/math/tools/type_traits.hpp>
0027 #include <boost/math/tools/cstdint.hpp>
0028
0029 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
0030
0031
0032
0033
0034
0035
0036 #pragma GCC system_header
0037 #endif
0038
0039 namespace boost{ namespace math{
0040
0041 namespace detail
0042 {
0043
0044
0045
0046
0047 template <class T>
0048 struct expm1_series
0049 {
0050 typedef T result_type;
0051
0052 BOOST_MATH_GPU_ENABLED expm1_series(T x)
0053 : k(0), m_x(x), m_term(1) {}
0054
0055 BOOST_MATH_GPU_ENABLED T operator()()
0056 {
0057 ++k;
0058 m_term *= m_x;
0059 m_term /= k;
0060 return m_term;
0061 }
0062
0063 BOOST_MATH_GPU_ENABLED int count()const
0064 {
0065 return k;
0066 }
0067
0068 private:
0069 int k;
0070 const T m_x;
0071 T m_term;
0072 expm1_series(const expm1_series&) = delete;
0073 expm1_series& operator=(const expm1_series&) = delete;
0074 };
0075
0076 template <class T, class Policy, class tag>
0077 struct expm1_initializer
0078 {
0079 struct init
0080 {
0081 BOOST_MATH_GPU_ENABLED init()
0082 {
0083 do_init(tag());
0084 }
0085 template <int N>
0086 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, N>&){}
0087 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 64>&)
0088 {
0089 expm1(T(0.5));
0090 }
0091 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 113>&)
0092 {
0093 expm1(T(0.5));
0094 }
0095 BOOST_MATH_GPU_ENABLED void force_instantiate()const{}
0096 };
0097 BOOST_MATH_STATIC const init initializer;
0098 BOOST_MATH_GPU_ENABLED static void force_instantiate()
0099 {
0100 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
0101 initializer.force_instantiate();
0102 #endif
0103 }
0104 };
0105
0106 template <class T, class Policy, class tag>
0107 const typename expm1_initializer<T, Policy, tag>::init expm1_initializer<T, Policy, tag>::initializer;
0108
0109
0110
0111
0112
0113
0114 template <class T, class Policy>
0115 T expm1_imp(T x, const boost::math::integral_constant<int, 0>&, const Policy& pol)
0116 {
0117 BOOST_MATH_STD_USING
0118
0119 T a = fabs(x);
0120 if((boost::math::isnan)(a))
0121 {
0122 return policies::raise_domain_error<T>("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", a, pol);
0123 }
0124 if(a > T(0.5f))
0125 {
0126 if(a >= tools::log_max_value<T>())
0127 {
0128 if(x > 0)
0129 return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", nullptr, pol);
0130 return -1;
0131 }
0132 return exp(x) - T(1);
0133 }
0134 if(a < tools::epsilon<T>())
0135 return x;
0136 detail::expm1_series<T> s(x);
0137 boost::math::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
0138
0139 T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter);
0140
0141 policies::check_series_iterations<T>("boost::math::expm1<%1%>(%1%)", max_iter, pol);
0142 return result;
0143 }
0144
0145 template <class T, class P>
0146 BOOST_MATH_GPU_ENABLED T expm1_imp(T x, const boost::math::integral_constant<int, 53>&, const P& pol)
0147 {
0148 BOOST_MATH_STD_USING
0149
0150 T a = fabs(x);
0151 if(a > T(0.5L))
0152 {
0153 if(a >= tools::log_max_value<T>())
0154 {
0155 if(x > 0)
0156 return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", nullptr, pol);
0157 return -1;
0158 }
0159 return exp(x) - T(1);
0160 }
0161 if(a < tools::epsilon<T>())
0162 return x;
0163
0164 BOOST_MATH_STATIC const float Y = 0.10281276702880859e1f;
0165 BOOST_MATH_STATIC const T n[] = { static_cast<T>(-0.28127670288085937e-1), static_cast<T>(0.51278186299064534e0), static_cast<T>(-0.6310029069350198e-1), static_cast<T>(0.11638457975729296e-1), static_cast<T>(-0.52143390687521003e-3), static_cast<T>(0.21491399776965688e-4) };
0166 BOOST_MATH_STATIC const T d[] = { 1, static_cast<T>(-0.45442309511354755e0), static_cast<T>(0.90850389570911714e-1), static_cast<T>(-0.10088963629815502e-1), static_cast<T>(0.63003407478692265e-3), static_cast<T>(-0.17976570003654402e-4) };
0167
0168 T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
0169 return result;
0170 }
0171
0172 template <class T, class P>
0173 BOOST_MATH_GPU_ENABLED T expm1_imp(T x, const boost::math::integral_constant<int, 64>&, const P& pol)
0174 {
0175 BOOST_MATH_STD_USING
0176
0177 T a = fabs(x);
0178 if(a > T(0.5L))
0179 {
0180 if(a >= tools::log_max_value<T>())
0181 {
0182 if(x > 0)
0183 return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", nullptr, pol);
0184 return -1;
0185 }
0186 return exp(x) - T(1);
0187 }
0188 if(a < tools::epsilon<T>())
0189 return x;
0190
0191 BOOST_MATH_STATIC const float Y = 0.10281276702880859375e1f;
0192 BOOST_MATH_STATIC const T n[] = {
0193 BOOST_MATH_BIG_CONSTANT(T, 64, -0.281276702880859375e-1),
0194 BOOST_MATH_BIG_CONSTANT(T, 64, 0.512980290285154286358e0),
0195 BOOST_MATH_BIG_CONSTANT(T, 64, -0.667758794592881019644e-1),
0196 BOOST_MATH_BIG_CONSTANT(T, 64, 0.131432469658444745835e-1),
0197 BOOST_MATH_BIG_CONSTANT(T, 64, -0.72303795326880286965e-3),
0198 BOOST_MATH_BIG_CONSTANT(T, 64, 0.447441185192951335042e-4),
0199 BOOST_MATH_BIG_CONSTANT(T, 64, -0.714539134024984593011e-6)
0200 };
0201 BOOST_MATH_STATIC const T d[] = {
0202 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0203 BOOST_MATH_BIG_CONSTANT(T, 64, -0.461477618025562520389e0),
0204 BOOST_MATH_BIG_CONSTANT(T, 64, 0.961237488025708540713e-1),
0205 BOOST_MATH_BIG_CONSTANT(T, 64, -0.116483957658204450739e-1),
0206 BOOST_MATH_BIG_CONSTANT(T, 64, 0.873308008461557544458e-3),
0207 BOOST_MATH_BIG_CONSTANT(T, 64, -0.387922804997682392562e-4),
0208 BOOST_MATH_BIG_CONSTANT(T, 64, 0.807473180049193557294e-6)
0209 };
0210
0211 T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
0212 return result;
0213 }
0214
0215 template <class T, class P>
0216 BOOST_MATH_GPU_ENABLED T expm1_imp(T x, const boost::math::integral_constant<int, 113>&, const P& pol)
0217 {
0218 BOOST_MATH_STD_USING
0219
0220 T a = fabs(x);
0221 if(a > T(0.5L))
0222 {
0223 if(a >= tools::log_max_value<T>())
0224 {
0225 if(x > 0)
0226 return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", nullptr, pol);
0227 return -1;
0228 }
0229 return exp(x) - T(1);
0230 }
0231 if(a < tools::epsilon<T>())
0232 return x;
0233
0234 static const float Y = 0.10281276702880859375e1f;
0235 static const T n[] = {
0236 BOOST_MATH_BIG_CONSTANT(T, 113, -0.28127670288085937499999999999999999854e-1),
0237 BOOST_MATH_BIG_CONSTANT(T, 113, 0.51278156911210477556524452177540792214e0),
0238 BOOST_MATH_BIG_CONSTANT(T, 113, -0.63263178520747096729500254678819588223e-1),
0239 BOOST_MATH_BIG_CONSTANT(T, 113, 0.14703285606874250425508446801230572252e-1),
0240 BOOST_MATH_BIG_CONSTANT(T, 113, -0.8675686051689527802425310407898459386e-3),
0241 BOOST_MATH_BIG_CONSTANT(T, 113, 0.88126359618291165384647080266133492399e-4),
0242 BOOST_MATH_BIG_CONSTANT(T, 113, -0.25963087867706310844432390015463138953e-5),
0243 BOOST_MATH_BIG_CONSTANT(T, 113, 0.14226691087800461778631773363204081194e-6),
0244 BOOST_MATH_BIG_CONSTANT(T, 113, -0.15995603306536496772374181066765665596e-8),
0245 BOOST_MATH_BIG_CONSTANT(T, 113, 0.45261820069007790520447958280473183582e-10)
0246 };
0247 static const T d[] = {
0248 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0249 BOOST_MATH_BIG_CONSTANT(T, 113, -0.45441264709074310514348137469214538853e0),
0250 BOOST_MATH_BIG_CONSTANT(T, 113, 0.96827131936192217313133611655555298106e-1),
0251 BOOST_MATH_BIG_CONSTANT(T, 113, -0.12745248725908178612540554584374876219e-1),
0252 BOOST_MATH_BIG_CONSTANT(T, 113, 0.11473613871583259821612766907781095472e-2),
0253 BOOST_MATH_BIG_CONSTANT(T, 113, -0.73704168477258911962046591907690764416e-4),
0254 BOOST_MATH_BIG_CONSTANT(T, 113, 0.34087499397791555759285503797256103259e-5),
0255 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11114024704296196166272091230695179724e-6),
0256 BOOST_MATH_BIG_CONSTANT(T, 113, 0.23987051614110848595909588343223896577e-8),
0257 BOOST_MATH_BIG_CONSTANT(T, 113, -0.29477341859111589208776402638429026517e-10),
0258 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13222065991022301420255904060628100924e-12)
0259 };
0260
0261 T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
0262 return result;
0263 }
0264
0265 }
0266
0267 template <class T, class Policy>
0268 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type expm1(T x, const Policy& )
0269 {
0270 typedef typename tools::promote_args<T>::type result_type;
0271 typedef typename policies::evaluation<result_type, Policy>::type value_type;
0272 typedef typename policies::precision<result_type, Policy>::type precision_type;
0273 typedef typename policies::normalise<
0274 Policy,
0275 policies::promote_float<false>,
0276 policies::promote_double<false>,
0277 policies::discrete_quantile<>,
0278 policies::assert_undefined<> >::type forwarding_policy;
0279
0280 typedef boost::math::integral_constant<int,
0281 precision_type::value <= 0 ? 0 :
0282 precision_type::value <= 53 ? 53 :
0283 precision_type::value <= 64 ? 64 :
0284 precision_type::value <= 113 ? 113 : 0
0285 > tag_type;
0286
0287 detail::expm1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
0288
0289 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expm1_imp(
0290 static_cast<value_type>(x),
0291 tag_type(), forwarding_policy()), "boost::math::expm1<%1%>(%1%)");
0292 }
0293
0294 #ifdef expm1
0295 # ifndef BOOST_HAS_expm1
0296 # define BOOST_HAS_expm1
0297 # endif
0298 # undef expm1
0299 #endif
0300
0301 #if defined(BOOST_HAS_EXPM1) && !(defined(__osf__) && defined(__DECCXX_VER))
0302 # ifdef BOOST_MATH_USE_C99
0303 BOOST_MATH_GPU_ENABLED inline float expm1(float x, const policies::policy<>&){ return ::expm1f(x); }
0304 # ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
0305 inline long double expm1(long double x, const policies::policy<>&){ return ::expm1l(x); }
0306 # endif
0307 # else
0308 inline float expm1(float x, const policies::policy<>&){ return static_cast<float>(::expm1(x)); }
0309 # endif
0310 BOOST_MATH_GPU_ENABLED inline double expm1(double x, const policies::policy<>&){ return ::expm1(x); }
0311 #endif
0312
0313 template <class T>
0314 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type expm1(T x)
0315 {
0316 return expm1(x, policies::policy<>());
0317 }
0318
0319 }
0320 }
0321
0322 #else
0323
0324 namespace boost {
0325 namespace math {
0326
0327 template <typename T>
0328 BOOST_MATH_GPU_ENABLED auto expm1(T x)
0329 {
0330 return ::expm1(x);
0331 }
0332
0333 template <>
0334 BOOST_MATH_GPU_ENABLED auto expm1(float x)
0335 {
0336 return ::expm1f(x);
0337 }
0338
0339 template <typename T, typename Policy>
0340 BOOST_MATH_GPU_ENABLED auto expm1(T x, const Policy&)
0341 {
0342 return ::expm1(x);
0343 }
0344
0345 template <typename Policy>
0346 BOOST_MATH_GPU_ENABLED auto expm1(float x, const Policy&)
0347 {
0348 return ::expm1f(x);
0349 }
0350
0351 }
0352 }
0353
0354 #endif
0355
0356 #endif
0357
0358
0359
0360