File indexing completed on 2025-10-18 08:50:09
0001
0002
0003
0004
0005
0006
0007 #ifndef BOOST_MATH_EXPINT_HPP
0008 #define BOOST_MATH_EXPINT_HPP
0009
0010 #ifdef _MSC_VER
0011 #pragma once
0012 #pragma warning(push)
0013 #pragma warning(disable:4702)
0014 #endif
0015
0016 #include <boost/math/tools/config.hpp>
0017 #include <boost/math/tools/cstdint.hpp>
0018 #include <boost/math/tools/type_traits.hpp>
0019 #include <boost/math/tools/tuple.hpp>
0020 #include <boost/math/tools/precision.hpp>
0021 #include <boost/math/tools/promotion.hpp>
0022 #include <boost/math/tools/fraction.hpp>
0023 #include <boost/math/tools/series.hpp>
0024 #include <boost/math/policies/error_handling.hpp>
0025 #include <boost/math/special_functions/math_fwd.hpp>
0026 #include <boost/math/special_functions/digamma.hpp>
0027 #include <boost/math/special_functions/log1p.hpp>
0028
0029 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
0030
0031
0032
0033
0034
0035
0036 #pragma GCC system_header
0037 #endif
0038
0039 namespace boost{ namespace math{
0040
0041 template <class T, class Policy>
0042 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
0043 expint(unsigned n, T z, const Policy& );
0044
0045 namespace detail{
0046
0047 template <class T>
0048 BOOST_MATH_GPU_ENABLED inline T expint_1_rational(const T& z, const boost::math::integral_constant<int, 0>&)
0049 {
0050
0051 BOOST_MATH_ASSERT(0);
0052 return z;
0053 }
0054
0055 template <class T>
0056 BOOST_MATH_GPU_ENABLED T expint_1_rational(const T& z, const boost::math::integral_constant<int, 53>&)
0057 {
0058 BOOST_MATH_STD_USING
0059 T result;
0060 if(z <= 1)
0061 {
0062
0063
0064
0065 static const T Y = 0.66373538970947265625F;
0066 static const T P[6] = {
0067 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0865197248079397976498),
0068 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0320913665303559189999),
0069 BOOST_MATH_BIG_CONSTANT(T, 53, -0.245088216639761496153),
0070 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0368031736257943745142),
0071 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00399167106081113256961),
0072 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000111507792921197858394)
0073 };
0074 static const T Q[6] = {
0075 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
0076 BOOST_MATH_BIG_CONSTANT(T, 53, 0.37091387659397013215),
0077 BOOST_MATH_BIG_CONSTANT(T, 53, 0.056770677104207528384),
0078 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00427347600017103698101),
0079 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000131049900798434683324),
0080 BOOST_MATH_BIG_CONSTANT(T, 53, -0.528611029520217142048e-6)
0081 };
0082 result = tools::evaluate_polynomial(P, z)
0083 / tools::evaluate_polynomial(Q, z);
0084 result += z - log(z) - Y;
0085 }
0086 else if(z < -boost::math::tools::log_min_value<T>())
0087 {
0088
0089
0090 static const T P[11] = {
0091 BOOST_MATH_BIG_CONSTANT(T, 53, -0.121013190657725568138e-18),
0092 BOOST_MATH_BIG_CONSTANT(T, 53, -0.999999999999998811143),
0093 BOOST_MATH_BIG_CONSTANT(T, 53, -43.3058660811817946037),
0094 BOOST_MATH_BIG_CONSTANT(T, 53, -724.581482791462469795),
0095 BOOST_MATH_BIG_CONSTANT(T, 53, -6046.8250112711035463),
0096 BOOST_MATH_BIG_CONSTANT(T, 53, -27182.6254466733970467),
0097 BOOST_MATH_BIG_CONSTANT(T, 53, -66598.2652345418633509),
0098 BOOST_MATH_BIG_CONSTANT(T, 53, -86273.1567711649528784),
0099 BOOST_MATH_BIG_CONSTANT(T, 53, -54844.4587226402067411),
0100 BOOST_MATH_BIG_CONSTANT(T, 53, -14751.4895786128450662),
0101 BOOST_MATH_BIG_CONSTANT(T, 53, -1185.45720315201027667)
0102 };
0103 static const T Q[12] = {
0104 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
0105 BOOST_MATH_BIG_CONSTANT(T, 53, 45.3058660811801465927),
0106 BOOST_MATH_BIG_CONSTANT(T, 53, 809.193214954550328455),
0107 BOOST_MATH_BIG_CONSTANT(T, 53, 7417.37624454689546708),
0108 BOOST_MATH_BIG_CONSTANT(T, 53, 38129.5594484818471461),
0109 BOOST_MATH_BIG_CONSTANT(T, 53, 113057.05869159631492),
0110 BOOST_MATH_BIG_CONSTANT(T, 53, 192104.047790227984431),
0111 BOOST_MATH_BIG_CONSTANT(T, 53, 180329.498380501819718),
0112 BOOST_MATH_BIG_CONSTANT(T, 53, 86722.3403467334749201),
0113 BOOST_MATH_BIG_CONSTANT(T, 53, 18455.4124737722049515),
0114 BOOST_MATH_BIG_CONSTANT(T, 53, 1229.20784182403048905),
0115 BOOST_MATH_BIG_CONSTANT(T, 53, -0.776491285282330997549)
0116 };
0117 T recip = 1 / z;
0118 result = 1 + tools::evaluate_polynomial(P, recip)
0119 / tools::evaluate_polynomial(Q, recip);
0120 result *= exp(-z) * recip;
0121 }
0122 else
0123 {
0124 result = 0;
0125 }
0126 return result;
0127 }
0128
0129 template <class T>
0130 BOOST_MATH_GPU_ENABLED T expint_1_rational(const T& z, const boost::math::integral_constant<int, 64>&)
0131 {
0132 BOOST_MATH_STD_USING
0133 T result;
0134 if(z <= 1)
0135 {
0136
0137
0138
0139
0140 static const T Y = 0.66373538970947265625F;
0141 static const T P[6] = {
0142 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0865197248079397956816),
0143 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0275114007037026844633),
0144 BOOST_MATH_BIG_CONSTANT(T, 64, -0.246594388074877139824),
0145 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0237624819878732642231),
0146 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00259113319641673986276),
0147 BOOST_MATH_BIG_CONSTANT(T, 64, 0.30853660894346057053e-4)
0148 };
0149 static const T Q[7] = {
0150 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0151 BOOST_MATH_BIG_CONSTANT(T, 64, 0.317978365797784100273),
0152 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0393622602554758722511),
0153 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00204062029115966323229),
0154 BOOST_MATH_BIG_CONSTANT(T, 64, 0.732512107100088047854e-5),
0155 BOOST_MATH_BIG_CONSTANT(T, 64, -0.202872781770207871975e-5),
0156 BOOST_MATH_BIG_CONSTANT(T, 64, 0.52779248094603709945e-7)
0157 };
0158 result = tools::evaluate_polynomial(P, z)
0159 / tools::evaluate_polynomial(Q, z);
0160 result += z - log(z) - Y;
0161 }
0162 else if(z < -boost::math::tools::log_min_value<T>())
0163 {
0164
0165
0166 static const T P[14] = {
0167 BOOST_MATH_BIG_CONSTANT(T, 64, -0.534401189080684443046e-23),
0168 BOOST_MATH_BIG_CONSTANT(T, 64, -0.999999999999999999905),
0169 BOOST_MATH_BIG_CONSTANT(T, 64, -62.1517806091379402505),
0170 BOOST_MATH_BIG_CONSTANT(T, 64, -1568.45688271895145277),
0171 BOOST_MATH_BIG_CONSTANT(T, 64, -21015.3431990874009619),
0172 BOOST_MATH_BIG_CONSTANT(T, 64, -164333.011755931661949),
0173 BOOST_MATH_BIG_CONSTANT(T, 64, -777917.270775426696103),
0174 BOOST_MATH_BIG_CONSTANT(T, 64, -2244188.56195255112937),
0175 BOOST_MATH_BIG_CONSTANT(T, 64, -3888702.98145335643429),
0176 BOOST_MATH_BIG_CONSTANT(T, 64, -3909822.65621952648353),
0177 BOOST_MATH_BIG_CONSTANT(T, 64, -2149033.9538897398457),
0178 BOOST_MATH_BIG_CONSTANT(T, 64, -584705.537139793925189),
0179 BOOST_MATH_BIG_CONSTANT(T, 64, -65815.2605361889477244),
0180 BOOST_MATH_BIG_CONSTANT(T, 64, -2038.82870680427258038)
0181 };
0182 static const T Q[14] = {
0183 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0184 BOOST_MATH_BIG_CONSTANT(T, 64, 64.1517806091379399478),
0185 BOOST_MATH_BIG_CONSTANT(T, 64, 1690.76044393722763785),
0186 BOOST_MATH_BIG_CONSTANT(T, 64, 24035.9534033068949426),
0187 BOOST_MATH_BIG_CONSTANT(T, 64, 203679.998633572361706),
0188 BOOST_MATH_BIG_CONSTANT(T, 64, 1074661.58459976978285),
0189 BOOST_MATH_BIG_CONSTANT(T, 64, 3586552.65020899358773),
0190 BOOST_MATH_BIG_CONSTANT(T, 64, 7552186.84989547621411),
0191 BOOST_MATH_BIG_CONSTANT(T, 64, 9853333.79353054111434),
0192 BOOST_MATH_BIG_CONSTANT(T, 64, 7689642.74550683631258),
0193 BOOST_MATH_BIG_CONSTANT(T, 64, 3385553.35146759180739),
0194 BOOST_MATH_BIG_CONSTANT(T, 64, 763218.072732396428725),
0195 BOOST_MATH_BIG_CONSTANT(T, 64, 73930.2995984054930821),
0196 BOOST_MATH_BIG_CONSTANT(T, 64, 2063.86994219629165937)
0197 };
0198 T recip = 1 / z;
0199 result = 1 + tools::evaluate_polynomial(P, recip)
0200 / tools::evaluate_polynomial(Q, recip);
0201 result *= exp(-z) * recip;
0202 }
0203 else
0204 {
0205 result = 0;
0206 }
0207 return result;
0208 }
0209
0210 template <class T>
0211 BOOST_MATH_GPU_ENABLED T expint_1_rational(const T& z, const boost::math::integral_constant<int, 113>&)
0212 {
0213 BOOST_MATH_STD_USING
0214 T result;
0215 if(z <= 1)
0216 {
0217
0218
0219
0220
0221 static const T Y = 0.66373538970947265625F;
0222 static const T P[10] = {
0223 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0865197248079397956434879099175975937),
0224 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0369066175910795772830865304506087759),
0225 BOOST_MATH_BIG_CONSTANT(T, 113, -0.24272036838415474665971599314725545),
0226 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0502166331248948515282379137550178307),
0227 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00768384138547489410285101483730424919),
0228 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000612574337702109683505224915484717162),
0229 BOOST_MATH_BIG_CONSTANT(T, 113, -0.380207107950635046971492617061708534e-4),
0230 BOOST_MATH_BIG_CONSTANT(T, 113, -0.136528159460768830763009294683628406e-5),
0231 BOOST_MATH_BIG_CONSTANT(T, 113, -0.346839106212658259681029388908658618e-7),
0232 BOOST_MATH_BIG_CONSTANT(T, 113, -0.340500302777838063940402160594523429e-9)
0233 };
0234 static const T Q[10] = {
0235 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0236 BOOST_MATH_BIG_CONSTANT(T, 113, 0.426568827778942588160423015589537302),
0237 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0841384046470893490592450881447510148),
0238 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0100557215850668029618957359471132995),
0239 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000799334870474627021737357294799839363),
0240 BOOST_MATH_BIG_CONSTANT(T, 113, 0.434452090903862735242423068552687688e-4),
0241 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15829674748799079874182885081231252e-5),
0242 BOOST_MATH_BIG_CONSTANT(T, 113, 0.354406206738023762100882270033082198e-7),
0243 BOOST_MATH_BIG_CONSTANT(T, 113, 0.369373328141051577845488477377890236e-9),
0244 BOOST_MATH_BIG_CONSTANT(T, 113, -0.274149801370933606409282434677600112e-12)
0245 };
0246 result = tools::evaluate_polynomial(P, z)
0247 / tools::evaluate_polynomial(Q, z);
0248 result += z - log(z) - Y;
0249 }
0250 else if(z <= 4)
0251 {
0252
0253
0254
0255 static const T Y = 0.70190334320068359375F;
0256
0257 static const T P[16] = {
0258 BOOST_MATH_BIG_CONSTANT(T, 113, 0.298096656795020369955077350585959794),
0259 BOOST_MATH_BIG_CONSTANT(T, 113, 12.9314045995266142913135497455971247),
0260 BOOST_MATH_BIG_CONSTANT(T, 113, 226.144334921582637462526628217345501),
0261 BOOST_MATH_BIG_CONSTANT(T, 113, 2070.83670924261732722117682067381405),
0262 BOOST_MATH_BIG_CONSTANT(T, 113, 10715.1115684330959908244769731347186),
0263 BOOST_MATH_BIG_CONSTANT(T, 113, 30728.7876355542048019664777316053311),
0264 BOOST_MATH_BIG_CONSTANT(T, 113, 38520.6078609349855436936232610875297),
0265 BOOST_MATH_BIG_CONSTANT(T, 113, -27606.0780981527583168728339620565165),
0266 BOOST_MATH_BIG_CONSTANT(T, 113, -169026.485055785605958655247592604835),
0267 BOOST_MATH_BIG_CONSTANT(T, 113, -254361.919204983608659069868035092282),
0268 BOOST_MATH_BIG_CONSTANT(T, 113, -195765.706874132267953259272028679935),
0269 BOOST_MATH_BIG_CONSTANT(T, 113, -83352.6826013533205474990119962408675),
0270 BOOST_MATH_BIG_CONSTANT(T, 113, -19251.6828496869586415162597993050194),
0271 BOOST_MATH_BIG_CONSTANT(T, 113, -2226.64251774578542836725386936102339),
0272 BOOST_MATH_BIG_CONSTANT(T, 113, -109.009437301400845902228611986479816),
0273 BOOST_MATH_BIG_CONSTANT(T, 113, -1.51492042209561411434644938098833499)
0274 };
0275 static const T Q[16] = {
0276 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0277 BOOST_MATH_BIG_CONSTANT(T, 113, 46.734521442032505570517810766704587),
0278 BOOST_MATH_BIG_CONSTANT(T, 113, 908.694714348462269000247450058595655),
0279 BOOST_MATH_BIG_CONSTANT(T, 113, 9701.76053033673927362784882748513195),
0280 BOOST_MATH_BIG_CONSTANT(T, 113, 63254.2815292641314236625196594947774),
0281 BOOST_MATH_BIG_CONSTANT(T, 113, 265115.641285880437335106541757711092),
0282 BOOST_MATH_BIG_CONSTANT(T, 113, 732707.841188071900498536533086567735),
0283 BOOST_MATH_BIG_CONSTANT(T, 113, 1348514.02492635723327306628712057794),
0284 BOOST_MATH_BIG_CONSTANT(T, 113, 1649986.81455283047769673308781585991),
0285 BOOST_MATH_BIG_CONSTANT(T, 113, 1326000.828522976970116271208812099),
0286 BOOST_MATH_BIG_CONSTANT(T, 113, 683643.09490612171772350481773951341),
0287 BOOST_MATH_BIG_CONSTANT(T, 113, 217640.505137263607952365685653352229),
0288 BOOST_MATH_BIG_CONSTANT(T, 113, 40288.3467237411710881822569476155485),
0289 BOOST_MATH_BIG_CONSTANT(T, 113, 3932.89353979531632559232883283175754),
0290 BOOST_MATH_BIG_CONSTANT(T, 113, 169.845369689596739824177412096477219),
0291 BOOST_MATH_BIG_CONSTANT(T, 113, 2.17607292280092201170768401876895354)
0292 };
0293 T recip = 1 / z;
0294 result = Y + tools::evaluate_polynomial(P, recip)
0295 / tools::evaluate_polynomial(Q, recip);
0296 result *= exp(-z) * recip;
0297 }
0298 else if(z < -boost::math::tools::log_min_value<T>())
0299 {
0300
0301
0302
0303 static const T P[19] = {
0304 BOOST_MATH_BIG_CONSTANT(T, 113, -0.559148411832951463689610809550083986e-40),
0305 BOOST_MATH_BIG_CONSTANT(T, 113, -0.999999999999999999999999999999999997),
0306 BOOST_MATH_BIG_CONSTANT(T, 113, -166.542326331163836642960118190147367),
0307 BOOST_MATH_BIG_CONSTANT(T, 113, -12204.639128796330005065904675153652),
0308 BOOST_MATH_BIG_CONSTANT(T, 113, -520807.069767086071806275022036146855),
0309 BOOST_MATH_BIG_CONSTANT(T, 113, -14435981.5242137970691490903863125326),
0310 BOOST_MATH_BIG_CONSTANT(T, 113, -274574945.737064301247496460758654196),
0311 BOOST_MATH_BIG_CONSTANT(T, 113, -3691611582.99810039356254671781473079),
0312 BOOST_MATH_BIG_CONSTANT(T, 113, -35622515944.8255047299363690814678763),
0313 BOOST_MATH_BIG_CONSTANT(T, 113, -248040014774.502043161750715548451142),
0314 BOOST_MATH_BIG_CONSTANT(T, 113, -1243190389769.53458416330946622607913),
0315 BOOST_MATH_BIG_CONSTANT(T, 113, -4441730126135.54739052731990368425339),
0316 BOOST_MATH_BIG_CONSTANT(T, 113, -11117043181899.7388524310281751971366),
0317 BOOST_MATH_BIG_CONSTANT(T, 113, -18976497615396.9717776601813519498961),
0318 BOOST_MATH_BIG_CONSTANT(T, 113, -21237496819711.1011661104761906067131),
0319 BOOST_MATH_BIG_CONSTANT(T, 113, -14695899122092.5161620333466757812848),
0320 BOOST_MATH_BIG_CONSTANT(T, 113, -5737221535080.30569711574295785864903),
0321 BOOST_MATH_BIG_CONSTANT(T, 113, -1077042281708.42654526404581272546244),
0322 BOOST_MATH_BIG_CONSTANT(T, 113, -68028222642.1941480871395695677675137)
0323 };
0324 static const T Q[20] = {
0325 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0326 BOOST_MATH_BIG_CONSTANT(T, 113, 168.542326331163836642960118190147311),
0327 BOOST_MATH_BIG_CONSTANT(T, 113, 12535.7237814586576783518249115343619),
0328 BOOST_MATH_BIG_CONSTANT(T, 113, 544891.263372016404143120911148640627),
0329 BOOST_MATH_BIG_CONSTANT(T, 113, 15454474.7241010258634446523045237762),
0330 BOOST_MATH_BIG_CONSTANT(T, 113, 302495899.896629522673410325891717381),
0331 BOOST_MATH_BIG_CONSTANT(T, 113, 4215565948.38886507646911672693270307),
0332 BOOST_MATH_BIG_CONSTANT(T, 113, 42552409471.7951815668506556705733344),
0333 BOOST_MATH_BIG_CONSTANT(T, 113, 313592377066.753173979584098301610186),
0334 BOOST_MATH_BIG_CONSTANT(T, 113, 1688763640223.4541980740597514904542),
0335 BOOST_MATH_BIG_CONSTANT(T, 113, 6610992294901.59589748057620192145704),
0336 BOOST_MATH_BIG_CONSTANT(T, 113, 18601637235659.6059890851321772682606),
0337 BOOST_MATH_BIG_CONSTANT(T, 113, 36944278231087.2571020964163402941583),
0338 BOOST_MATH_BIG_CONSTANT(T, 113, 50425858518481.7497071917028793820058),
0339 BOOST_MATH_BIG_CONSTANT(T, 113, 45508060902865.0899967797848815980644),
0340 BOOST_MATH_BIG_CONSTANT(T, 113, 25649955002765.3817331501988304758142),
0341 BOOST_MATH_BIG_CONSTANT(T, 113, 8259575619094.6518520988612711292331),
0342 BOOST_MATH_BIG_CONSTANT(T, 113, 1299981487496.12607474362723586264515),
0343 BOOST_MATH_BIG_CONSTANT(T, 113, 70242279152.8241187845178443118302693),
0344 BOOST_MATH_BIG_CONSTANT(T, 113, -37633302.9409263839042721539363416685)
0345 };
0346 T recip = 1 / z;
0347 result = 1 + tools::evaluate_polynomial(P, recip)
0348 / tools::evaluate_polynomial(Q, recip);
0349 result *= exp(-z) * recip;
0350 }
0351 else
0352 {
0353 result = 0;
0354 }
0355 return result;
0356 }
0357
0358
0359 template <class T>
0360 struct expint_fraction
0361 {
0362 typedef boost::math::pair<T,T> result_type;
0363 BOOST_MATH_GPU_ENABLED expint_fraction(unsigned n_, T z_) : b(n_ + z_), i(-1), n(n_){}
0364 BOOST_MATH_GPU_ENABLED boost::math::pair<T,T> operator()()
0365 {
0366 boost::math::pair<T,T> result = boost::math::make_pair(-static_cast<T>((i+1) * (n+i)), b);
0367 b += 2;
0368 ++i;
0369 return result;
0370 }
0371 private:
0372 T b;
0373 int i;
0374 unsigned n;
0375 };
0376
0377 template <class T, class Policy>
0378 BOOST_MATH_GPU_ENABLED inline T expint_as_fraction(unsigned n, T z, const Policy& pol)
0379 {
0380 BOOST_MATH_STD_USING
0381 BOOST_MATH_INSTRUMENT_VARIABLE(z)
0382 boost::math::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
0383 expint_fraction<T> f(n, z);
0384 T result = tools::continued_fraction_b(
0385 f,
0386 boost::math::policies::get_epsilon<T, Policy>(),
0387 max_iter);
0388 policies::check_series_iterations<T>("boost::math::expint_continued_fraction<%1%>(unsigned,%1%)", max_iter, pol);
0389 BOOST_MATH_INSTRUMENT_VARIABLE(result)
0390 BOOST_MATH_INSTRUMENT_VARIABLE(max_iter)
0391 result = exp(-z) / result;
0392 BOOST_MATH_INSTRUMENT_VARIABLE(result)
0393 return result;
0394 }
0395
0396 template <class T>
0397 struct expint_series
0398 {
0399 typedef T result_type;
0400 BOOST_MATH_GPU_ENABLED expint_series(unsigned k_, T z_, T x_k_, T denom_, T fact_)
0401 : k(k_), z(z_), x_k(x_k_), denom(denom_), fact(fact_){}
0402 BOOST_MATH_GPU_ENABLED T operator()()
0403 {
0404 x_k *= -z;
0405 denom += 1;
0406 fact *= ++k;
0407 return x_k / (denom * fact);
0408 }
0409 private:
0410 unsigned k;
0411 T z;
0412 T x_k;
0413 T denom;
0414 T fact;
0415 };
0416
0417 template <class T, class Policy>
0418 BOOST_MATH_GPU_ENABLED inline T expint_as_series(unsigned n, T z, const Policy& pol)
0419 {
0420 BOOST_MATH_STD_USING
0421 boost::math::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
0422
0423 BOOST_MATH_INSTRUMENT_VARIABLE(z)
0424
0425 T result = 0;
0426 T x_k = -1;
0427 T denom = T(1) - n;
0428 T fact = 1;
0429 unsigned k = 0;
0430 for(; k < n - 1;)
0431 {
0432 result += x_k / (denom * fact);
0433 denom += 1;
0434 x_k *= -z;
0435 fact *= ++k;
0436 }
0437 BOOST_MATH_INSTRUMENT_VARIABLE(result)
0438 result += pow(-z, static_cast<T>(n - 1))
0439 * (boost::math::digamma(static_cast<T>(n), pol) - log(z)) / fact;
0440 BOOST_MATH_INSTRUMENT_VARIABLE(result)
0441
0442 expint_series<T> s(k, z, x_k, denom, fact);
0443 result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, result);
0444 policies::check_series_iterations<T>("boost::math::expint_series<%1%>(unsigned,%1%)", max_iter, pol);
0445 BOOST_MATH_INSTRUMENT_VARIABLE(result)
0446 BOOST_MATH_INSTRUMENT_VARIABLE(max_iter)
0447 return result;
0448 }
0449
0450 template <class T, class Policy, class Tag>
0451 BOOST_MATH_GPU_ENABLED T expint_imp(unsigned n, T z, const Policy& pol, const Tag& tag)
0452 {
0453 BOOST_MATH_STD_USING
0454 constexpr auto function = "boost::math::expint<%1%>(unsigned, %1%)";
0455 if(z < 0)
0456 return policies::raise_domain_error<T>(function, "Function requires z >= 0 but got %1%.", z, pol);
0457 if(z == 0)
0458 return n == 1 ? policies::raise_overflow_error<T>(function, nullptr, pol) : T(1 / (static_cast<T>(n - 1)));
0459
0460 T result;
0461
0462 bool f;
0463 if(n < 3)
0464 {
0465 f = z < T(0.5);
0466 }
0467 else
0468 {
0469 f = z < (static_cast<T>(n - 2) / static_cast<T>(n - 1));
0470 }
0471 #ifdef _MSC_VER
0472 # pragma warning(push)
0473 # pragma warning(disable:4127)
0474 #endif
0475 if(n == 0)
0476 {
0477 result = exp(-z) / z;
0478 }
0479 else if((n == 1) && (Tag::value))
0480 {
0481 result = expint_1_rational(z, tag);
0482 }
0483 else if(f)
0484 {
0485 result = expint_as_series(n, z, pol);
0486 }
0487 else
0488 {
0489 result = expint_as_fraction(n, z, pol);
0490 }
0491 #ifdef _MSC_VER
0492 # pragma warning(pop)
0493 #endif
0494
0495 return result;
0496 }
0497
0498 template <class T>
0499 struct expint_i_series
0500 {
0501 typedef T result_type;
0502 BOOST_MATH_GPU_ENABLED expint_i_series(T z_) : k(0), z_k(1), z(z_){}
0503 BOOST_MATH_GPU_ENABLED T operator()()
0504 {
0505 z_k *= z / ++k;
0506 return z_k / k;
0507 }
0508 private:
0509 unsigned k;
0510 T z_k;
0511 T z;
0512 };
0513
0514 template <class T, class Policy>
0515 BOOST_MATH_GPU_ENABLED T expint_i_as_series(T z, const Policy& pol)
0516 {
0517 BOOST_MATH_STD_USING
0518 T result = log(z);
0519 result += constants::euler<T>();
0520 expint_i_series<T> s(z);
0521 boost::math::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
0522 result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, result);
0523 policies::check_series_iterations<T>("boost::math::expint_i_series<%1%>(%1%)", max_iter, pol);
0524 return result;
0525 }
0526
0527 template <class T, class Policy, class Tag>
0528 BOOST_MATH_GPU_ENABLED T expint_i_imp(T z, const Policy& pol, const Tag& tag)
0529 {
0530 constexpr auto function = "boost::math::expint<%1%>(%1%)";
0531 if(z < 0)
0532 return -expint_imp(1, T(-z), pol, tag);
0533 if(z == 0)
0534 return -policies::raise_overflow_error<T>(function, nullptr, pol);
0535 return expint_i_as_series(z, pol);
0536 }
0537
0538 template <class T, class Policy>
0539 BOOST_MATH_GPU_ENABLED T expint_i_imp(T z, const Policy& pol, const boost::math::integral_constant<int, 53>& tag)
0540 {
0541 BOOST_MATH_STD_USING
0542 constexpr auto function = "boost::math::expint<%1%>(%1%)";
0543 if(z < 0)
0544 return -expint_imp(1, T(-z), pol, tag);
0545 if(z == 0)
0546 return -policies::raise_overflow_error<T>(function, nullptr, pol);
0547
0548 T result;
0549
0550 if(z <= 6)
0551 {
0552
0553
0554
0555 BOOST_MATH_STATIC const T P[10] = {
0556 BOOST_MATH_BIG_CONSTANT(T, 53, 2.98677224343598593013),
0557 BOOST_MATH_BIG_CONSTANT(T, 53, 0.356343618769377415068),
0558 BOOST_MATH_BIG_CONSTANT(T, 53, 0.780836076283730801839),
0559 BOOST_MATH_BIG_CONSTANT(T, 53, 0.114670926327032002811),
0560 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0499434773576515260534),
0561 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00726224593341228159561),
0562 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00115478237227804306827),
0563 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000116419523609765200999),
0564 BOOST_MATH_BIG_CONSTANT(T, 53, 0.798296365679269702435e-5),
0565 BOOST_MATH_BIG_CONSTANT(T, 53, 0.2777056254402008721e-6)
0566 };
0567 BOOST_MATH_STATIC const T Q[8] = {
0568 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
0569 BOOST_MATH_BIG_CONSTANT(T, 53, -1.17090412365413911947),
0570 BOOST_MATH_BIG_CONSTANT(T, 53, 0.62215109846016746276),
0571 BOOST_MATH_BIG_CONSTANT(T, 53, -0.195114782069495403315),
0572 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0391523431392967238166),
0573 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00504800158663705747345),
0574 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000389034007436065401822),
0575 BOOST_MATH_BIG_CONSTANT(T, 53, -0.138972589601781706598e-4)
0576 };
0577
0578 BOOST_MATH_STATIC_LOCAL_VARIABLE const T c1 = BOOST_MATH_BIG_CONSTANT(T, 53, 1677624236387711.0);
0579 BOOST_MATH_STATIC_LOCAL_VARIABLE const T c2 = BOOST_MATH_BIG_CONSTANT(T, 53, 4503599627370496.0);
0580 BOOST_MATH_STATIC_LOCAL_VARIABLE const T r1 = static_cast<T>(c1 / c2);
0581 BOOST_MATH_STATIC_LOCAL_VARIABLE const T r2 = BOOST_MATH_BIG_CONSTANT(T, 53, 0.131401834143860282009280387409357165515556574352422001206362e-16);
0582 BOOST_MATH_STATIC_LOCAL_VARIABLE const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 53, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
0583 T t = (z / 3) - 1;
0584 result = tools::evaluate_polynomial(P, t)
0585 / tools::evaluate_polynomial(Q, t);
0586 t = (z - r1) - r2;
0587 result *= t;
0588 if(fabs(t) < T(0.1))
0589 {
0590 result += boost::math::log1p(t / r, pol);
0591 }
0592 else
0593 {
0594 result += log(z / r);
0595 }
0596 }
0597 else if (z <= 10)
0598 {
0599
0600
0601
0602 BOOST_MATH_STATIC_LOCAL_VARIABLE const T Y = 1.158985137939453125F;
0603 BOOST_MATH_STATIC const T P[8] = {
0604 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00139324086199402804173),
0605 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0349921221823888744966),
0606 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0264095520754134848538),
0607 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00761224003005476438412),
0608 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00247496209592143627977),
0609 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000374885917942100256775),
0610 BOOST_MATH_BIG_CONSTANT(T, 53, -0.554086272024881826253e-4),
0611 BOOST_MATH_BIG_CONSTANT(T, 53, -0.396487648924804510056e-5)
0612 };
0613 BOOST_MATH_STATIC const T Q[8] = {
0614 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
0615 BOOST_MATH_BIG_CONSTANT(T, 53, 0.744625566823272107711),
0616 BOOST_MATH_BIG_CONSTANT(T, 53, 0.329061095011767059236),
0617 BOOST_MATH_BIG_CONSTANT(T, 53, 0.100128624977313872323),
0618 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0223851099128506347278),
0619 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00365334190742316650106),
0620 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000402453408512476836472),
0621 BOOST_MATH_BIG_CONSTANT(T, 53, 0.263649630720255691787e-4)
0622 };
0623 T t = z / 2 - 4;
0624 result = Y + tools::evaluate_polynomial(P, t)
0625 / tools::evaluate_polynomial(Q, t);
0626 result *= exp(z) / z;
0627 result += z;
0628 }
0629 else if(z <= 20)
0630 {
0631
0632
0633
0634
0635 BOOST_MATH_STATIC_LOCAL_VARIABLE const T Y = 1.0869731903076171875F;
0636 BOOST_MATH_STATIC const T P[9] = {
0637 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00893891094356945667451),
0638 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0484607730127134045806),
0639 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0652810444222236895772),
0640 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0478447572647309671455),
0641 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0226059218923777094596),
0642 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00720603636917482065907),
0643 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00155941947035972031334),
0644 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000209750022660200888349),
0645 BOOST_MATH_BIG_CONSTANT(T, 53, -0.138652200349182596186e-4)
0646 };
0647 BOOST_MATH_STATIC const T Q[9] = {
0648 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
0649 BOOST_MATH_BIG_CONSTANT(T, 53, 1.97017214039061194971),
0650 BOOST_MATH_BIG_CONSTANT(T, 53, 1.86232465043073157508),
0651 BOOST_MATH_BIG_CONSTANT(T, 53, 1.09601437090337519977),
0652 BOOST_MATH_BIG_CONSTANT(T, 53, 0.438873285773088870812),
0653 BOOST_MATH_BIG_CONSTANT(T, 53, 0.122537731979686102756),
0654 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0233458478275769288159),
0655 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00278170769163303669021),
0656 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000159150281166108755531)
0657 };
0658 T t = z / 5 - 3;
0659 result = Y + tools::evaluate_polynomial(P, t)
0660 / tools::evaluate_polynomial(Q, t);
0661 result *= exp(z) / z;
0662 result += z;
0663 }
0664 else if(z <= 40)
0665 {
0666
0667
0668
0669
0670
0671 BOOST_MATH_STATIC_LOCAL_VARIABLE const T Y = 1.03937530517578125F;
0672 BOOST_MATH_STATIC const T P[9] = {
0673 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00356165148914447597995),
0674 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0229930320357982333406),
0675 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0449814350482277917716),
0676 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0453759383048193402336),
0677 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0272050837209380717069),
0678 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00994403059883350813295),
0679 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00207592267812291726961),
0680 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000192178045857733706044),
0681 BOOST_MATH_BIG_CONSTANT(T, 53, -0.113161784705911400295e-9)
0682 };
0683 BOOST_MATH_STATIC const T Q[9] = {
0684 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
0685 BOOST_MATH_BIG_CONSTANT(T, 53, 2.84354408840148561131),
0686 BOOST_MATH_BIG_CONSTANT(T, 53, 3.6599610090072393012),
0687 BOOST_MATH_BIG_CONSTANT(T, 53, 2.75088464344293083595),
0688 BOOST_MATH_BIG_CONSTANT(T, 53, 1.2985244073998398643),
0689 BOOST_MATH_BIG_CONSTANT(T, 53, 0.383213198510794507409),
0690 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0651165455496281337831),
0691 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00488071077519227853585)
0692 };
0693 T t = z / 10 - 3;
0694 result = Y + tools::evaluate_polynomial(P, t)
0695 / tools::evaluate_polynomial(Q, t);
0696 result *= exp(z) / z;
0697 result += z;
0698 }
0699 else
0700 {
0701
0702 BOOST_MATH_STATIC_LOCAL_VARIABLE const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 53, 2.35385266837019985407899910749034804508871617254555467236651e17));
0703 BOOST_MATH_STATIC_LOCAL_VARIABLE const T Y= 1.013065338134765625F;
0704 BOOST_MATH_STATIC const T P[6] = {
0705 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0130653381347656243849),
0706 BOOST_MATH_BIG_CONSTANT(T, 53, 0.19029710559486576682),
0707 BOOST_MATH_BIG_CONSTANT(T, 53, 94.7365094537197236011),
0708 BOOST_MATH_BIG_CONSTANT(T, 53, -2516.35323679844256203),
0709 BOOST_MATH_BIG_CONSTANT(T, 53, 18932.0850014925993025),
0710 BOOST_MATH_BIG_CONSTANT(T, 53, -38703.1431362056714134)
0711 };
0712 BOOST_MATH_STATIC const T Q[7] = {
0713 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
0714 BOOST_MATH_BIG_CONSTANT(T, 53, 61.9733592849439884145),
0715 BOOST_MATH_BIG_CONSTANT(T, 53, -2354.56211323420194283),
0716 BOOST_MATH_BIG_CONSTANT(T, 53, 22329.1459489893079041),
0717 BOOST_MATH_BIG_CONSTANT(T, 53, -70126.245140396567133),
0718 BOOST_MATH_BIG_CONSTANT(T, 53, 54738.2833147775537106),
0719 BOOST_MATH_BIG_CONSTANT(T, 53, 8297.16296356518409347)
0720 };
0721 T t = 1 / z;
0722 result = Y + tools::evaluate_polynomial(P, t)
0723 / tools::evaluate_polynomial(Q, t);
0724 if(z < 41)
0725 result *= exp(z) / z;
0726 else
0727 {
0728
0729 t = z - 40;
0730 if(t > tools::log_max_value<T>())
0731 {
0732 result = policies::raise_overflow_error<T>(function, nullptr, pol);
0733 }
0734 else
0735 {
0736 result *= exp(z - 40) / z;
0737 if(result > tools::max_value<T>() / exp40)
0738 {
0739 result = policies::raise_overflow_error<T>(function, nullptr, pol);
0740 }
0741 else
0742 {
0743 result *= exp40;
0744 }
0745 }
0746 }
0747 result += z;
0748 }
0749 return result;
0750 }
0751
0752 template <class T, class Policy>
0753 BOOST_MATH_GPU_ENABLED T expint_i_imp(T z, const Policy& pol, const boost::math::integral_constant<int, 64>& tag)
0754 {
0755 BOOST_MATH_STD_USING
0756 constexpr auto function = "boost::math::expint<%1%>(%1%)";
0757 if(z < 0)
0758 return -expint_imp(1, T(-z), pol, tag);
0759 if(z == 0)
0760 return -policies::raise_overflow_error<T>(function, nullptr, pol);
0761
0762 T result;
0763
0764 if(z <= 6)
0765 {
0766
0767
0768
0769
0770 static const T P[11] = {
0771 BOOST_MATH_BIG_CONSTANT(T, 64, 2.98677224343598593764),
0772 BOOST_MATH_BIG_CONSTANT(T, 64, 0.25891613550886736592),
0773 BOOST_MATH_BIG_CONSTANT(T, 64, 0.789323584998672832285),
0774 BOOST_MATH_BIG_CONSTANT(T, 64, 0.092432587824602399339),
0775 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0514236978728625906656),
0776 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00658477469745132977921),
0777 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00124914538197086254233),
0778 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000131429679565472408551),
0779 BOOST_MATH_BIG_CONSTANT(T, 64, 0.11293331317982763165e-4),
0780 BOOST_MATH_BIG_CONSTANT(T, 64, 0.629499283139417444244e-6),
0781 BOOST_MATH_BIG_CONSTANT(T, 64, 0.177833045143692498221e-7)
0782 };
0783 static const T Q[9] = {
0784 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0785 BOOST_MATH_BIG_CONSTANT(T, 64, -1.20352377969742325748),
0786 BOOST_MATH_BIG_CONSTANT(T, 64, 0.66707904942606479811),
0787 BOOST_MATH_BIG_CONSTANT(T, 64, -0.223014531629140771914),
0788 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0493340022262908008636),
0789 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00741934273050807310677),
0790 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00074353567782087939294),
0791 BOOST_MATH_BIG_CONSTANT(T, 64, -0.455861727069603367656e-4),
0792 BOOST_MATH_BIG_CONSTANT(T, 64, 0.131515429329812837701e-5)
0793 };
0794
0795 static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 64, 1677624236387711.0);
0796 static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 64, 4503599627370496.0);
0797 static const T r1 = c1 / c2;
0798 static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 64, 0.131401834143860282009280387409357165515556574352422001206362e-16);
0799 static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
0800 T t = (z / 3) - 1;
0801 result = tools::evaluate_polynomial(P, t)
0802 / tools::evaluate_polynomial(Q, t);
0803 t = (z - r1) - r2;
0804 result *= t;
0805 if(fabs(t) < T(0.1))
0806 {
0807 result += boost::math::log1p(t / r, pol);
0808 }
0809 else
0810 {
0811 result += log(z / r);
0812 }
0813 }
0814 else if (z <= 10)
0815 {
0816
0817
0818
0819
0820 static const T Y = 1.158985137939453125F;
0821 static const T P[9] = {
0822 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00139324086199409049399),
0823 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0345238388952337563247),
0824 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0382065278072592940767),
0825 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0156117003070560727392),
0826 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00383276012430495387102),
0827 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000697070540945496497992),
0828 BOOST_MATH_BIG_CONSTANT(T, 64, -0.877310384591205930343e-4),
0829 BOOST_MATH_BIG_CONSTANT(T, 64, -0.623067256376494930067e-5),
0830 BOOST_MATH_BIG_CONSTANT(T, 64, -0.377246883283337141444e-6)
0831 };
0832 static const T Q[10] = {
0833 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0834 BOOST_MATH_BIG_CONSTANT(T, 64, 1.08073635708902053767),
0835 BOOST_MATH_BIG_CONSTANT(T, 64, 0.553681133533942532909),
0836 BOOST_MATH_BIG_CONSTANT(T, 64, 0.176763647137553797451),
0837 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0387891748253869928121),
0838 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0060603004848394727017),
0839 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000670519492939992806051),
0840 BOOST_MATH_BIG_CONSTANT(T, 64, 0.4947357050100855646e-4),
0841 BOOST_MATH_BIG_CONSTANT(T, 64, 0.204339282037446434827e-5),
0842 BOOST_MATH_BIG_CONSTANT(T, 64, 0.146951181174930425744e-7)
0843 };
0844 T t = z / 2 - 4;
0845 result = Y + tools::evaluate_polynomial(P, t)
0846 / tools::evaluate_polynomial(Q, t);
0847 result *= exp(z) / z;
0848 result += z;
0849 }
0850 else if(z <= 20)
0851 {
0852
0853
0854
0855
0856
0857 static const T Y = 1.0869731903076171875F;
0858 static const T P[10] = {
0859 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00893891094356946995368),
0860 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0487562980088748775943),
0861 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0670568657950041926085),
0862 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509577352851442932713),
0863 BOOST_MATH_BIG_CONSTANT(T, 64, -0.02551800927409034206),
0864 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00892913759760086687083),
0865 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00224469630207344379888),
0866 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000392477245911296982776),
0867 BOOST_MATH_BIG_CONSTANT(T, 64, -0.44424044184395578775e-4),
0868 BOOST_MATH_BIG_CONSTANT(T, 64, -0.252788029251437017959e-5)
0869 };
0870 static const T Q[10] = {
0871 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0872 BOOST_MATH_BIG_CONSTANT(T, 64, 2.00323265503572414261),
0873 BOOST_MATH_BIG_CONSTANT(T, 64, 1.94688958187256383178),
0874 BOOST_MATH_BIG_CONSTANT(T, 64, 1.19733638134417472296),
0875 BOOST_MATH_BIG_CONSTANT(T, 64, 0.513137726038353385661),
0876 BOOST_MATH_BIG_CONSTANT(T, 64, 0.159135395578007264547),
0877 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0358233587351620919881),
0878 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0056716655597009417875),
0879 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000577048986213535829925),
0880 BOOST_MATH_BIG_CONSTANT(T, 64, 0.290976943033493216793e-4)
0881 };
0882 T t = z / 5 - 3;
0883 result = Y + tools::evaluate_polynomial(P, t)
0884 / tools::evaluate_polynomial(Q, t);
0885 result *= exp(z) / z;
0886 result += z;
0887 }
0888 else if(z <= 40)
0889 {
0890
0891
0892
0893
0894 static const T Y = 1.03937530517578125F;
0895 static const T P[12] = {
0896 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00356165148914447278177),
0897 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0240235006148610849678),
0898 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0516699967278057976119),
0899 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0586603078706856245674),
0900 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0409960120868776180825),
0901 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0185485073689590665153),
0902 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00537842101034123222417),
0903 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000920988084778273760609),
0904 BOOST_MATH_BIG_CONSTANT(T, 64, -0.716742618812210980263e-4),
0905 BOOST_MATH_BIG_CONSTANT(T, 64, -0.504623302166487346677e-9),
0906 BOOST_MATH_BIG_CONSTANT(T, 64, 0.712662196671896837736e-10),
0907 BOOST_MATH_BIG_CONSTANT(T, 64, -0.533769629702262072175e-11)
0908 };
0909 static const T Q[9] = {
0910 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0911 BOOST_MATH_BIG_CONSTANT(T, 64, 3.13286733695729715455),
0912 BOOST_MATH_BIG_CONSTANT(T, 64, 4.49281223045653491929),
0913 BOOST_MATH_BIG_CONSTANT(T, 64, 3.84900294427622911374),
0914 BOOST_MATH_BIG_CONSTANT(T, 64, 2.15205199043580378211),
0915 BOOST_MATH_BIG_CONSTANT(T, 64, 0.802912186540269232424),
0916 BOOST_MATH_BIG_CONSTANT(T, 64, 0.194793170017818925388),
0917 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280128013584653182994),
0918 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00182034930799902922549)
0919 };
0920 T t = z / 10 - 3;
0921 result = Y + tools::evaluate_polynomial(P, t)
0922 / tools::evaluate_polynomial(Q, t);
0923 BOOST_MATH_INSTRUMENT_VARIABLE(result)
0924 result *= exp(z) / z;
0925 BOOST_MATH_INSTRUMENT_VARIABLE(result)
0926 result += z;
0927 BOOST_MATH_INSTRUMENT_VARIABLE(result)
0928 }
0929 else
0930 {
0931
0932
0933
0934 static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.35385266837019985407899910749034804508871617254555467236651e17));
0935 static const T Y= 1.013065338134765625F;
0936 static const T P[9] = {
0937 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0130653381347656250004),
0938 BOOST_MATH_BIG_CONSTANT(T, 64, 0.644487780349757303739),
0939 BOOST_MATH_BIG_CONSTANT(T, 64, 143.995670348227433964),
0940 BOOST_MATH_BIG_CONSTANT(T, 64, -13918.9322758014173709),
0941 BOOST_MATH_BIG_CONSTANT(T, 64, 476260.975133624194484),
0942 BOOST_MATH_BIG_CONSTANT(T, 64, -7437102.15135982802122),
0943 BOOST_MATH_BIG_CONSTANT(T, 64, 53732298.8764767916542),
0944 BOOST_MATH_BIG_CONSTANT(T, 64, -160695051.957997452509),
0945 BOOST_MATH_BIG_CONSTANT(T, 64, 137839271.592778020028)
0946 };
0947 static const T Q[9] = {
0948 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0949 BOOST_MATH_BIG_CONSTANT(T, 64, 27.2103343964943718802),
0950 BOOST_MATH_BIG_CONSTANT(T, 64, -8785.48528692879413676),
0951 BOOST_MATH_BIG_CONSTANT(T, 64, 397530.290000322626766),
0952 BOOST_MATH_BIG_CONSTANT(T, 64, -7356441.34957799368252),
0953 BOOST_MATH_BIG_CONSTANT(T, 64, 63050914.5343400957524),
0954 BOOST_MATH_BIG_CONSTANT(T, 64, -246143779.638307701369),
0955 BOOST_MATH_BIG_CONSTANT(T, 64, 384647824.678554961174),
0956 BOOST_MATH_BIG_CONSTANT(T, 64, -166288297.874583961493)
0957 };
0958 T t = 1 / z;
0959 result = Y + tools::evaluate_polynomial(P, t)
0960 / tools::evaluate_polynomial(Q, t);
0961 if(z < 41)
0962 result *= exp(z) / z;
0963 else
0964 {
0965
0966 t = z - 40;
0967 if(t > tools::log_max_value<T>())
0968 {
0969 result = policies::raise_overflow_error<T>(function, nullptr, pol);
0970 }
0971 else
0972 {
0973 result *= exp(z - 40) / z;
0974 if(result > tools::max_value<T>() / exp40)
0975 {
0976 result = policies::raise_overflow_error<T>(function, nullptr, pol);
0977 }
0978 else
0979 {
0980 result *= exp40;
0981 }
0982 }
0983 }
0984 result += z;
0985 }
0986 return result;
0987 }
0988
0989 template <class T, class Policy>
0990 BOOST_MATH_GPU_ENABLED void expint_i_imp_113a(T& result, const T& z, const Policy& pol)
0991 {
0992 BOOST_MATH_STD_USING
0993
0994
0995
0996
0997
0998 static const T P[15] = {
0999 BOOST_MATH_BIG_CONSTANT(T, 113, 2.98677224343598593765287235997328555),
1000 BOOST_MATH_BIG_CONSTANT(T, 113, -0.333256034674702967028780537349334037),
1001 BOOST_MATH_BIG_CONSTANT(T, 113, 0.851831522798101228384971644036708463),
1002 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0657854833494646206186773614110374948),
1003 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0630065662557284456000060708977935073),
1004 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00311759191425309373327784154659649232),
1005 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00176213568201493949664478471656026771),
1006 BOOST_MATH_BIG_CONSTANT(T, 113, -0.491548660404172089488535218163952295e-4),
1007 BOOST_MATH_BIG_CONSTANT(T, 113, 0.207764227621061706075562107748176592e-4),
1008 BOOST_MATH_BIG_CONSTANT(T, 113, -0.225445398156913584846374273379402765e-6),
1009 BOOST_MATH_BIG_CONSTANT(T, 113, 0.996939977231410319761273881672601592e-7),
1010 BOOST_MATH_BIG_CONSTANT(T, 113, 0.212546902052178643330520878928100847e-9),
1011 BOOST_MATH_BIG_CONSTANT(T, 113, 0.154646053060262871360159325115980023e-9),
1012 BOOST_MATH_BIG_CONSTANT(T, 113, 0.143971277122049197323415503594302307e-11),
1013 BOOST_MATH_BIG_CONSTANT(T, 113, 0.306243138978114692252817805327426657e-13)
1014 };
1015 static const T Q[15] = {
1016 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1017 BOOST_MATH_BIG_CONSTANT(T, 113, -1.40178870313943798705491944989231793),
1018 BOOST_MATH_BIG_CONSTANT(T, 113, 0.943810968269701047641218856758605284),
1019 BOOST_MATH_BIG_CONSTANT(T, 113, -0.405026631534345064600850391026113165),
1020 BOOST_MATH_BIG_CONSTANT(T, 113, 0.123924153524614086482627660399122762),
1021 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0286364505373369439591132549624317707),
1022 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00516148845910606985396596845494015963),
1023 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000738330799456364820380739850924783649),
1024 BOOST_MATH_BIG_CONSTANT(T, 113, 0.843737760991856114061953265870882637e-4),
1025 BOOST_MATH_BIG_CONSTANT(T, 113, -0.767957673431982543213661388914587589e-5),
1026 BOOST_MATH_BIG_CONSTANT(T, 113, 0.549136847313854595809952100614840031e-6),
1027 BOOST_MATH_BIG_CONSTANT(T, 113, -0.299801381513743676764008325949325404e-7),
1028 BOOST_MATH_BIG_CONSTANT(T, 113, 0.118419479055346106118129130945423483e-8),
1029 BOOST_MATH_BIG_CONSTANT(T, 113, -0.30372295663095470359211949045344607e-10),
1030 BOOST_MATH_BIG_CONSTANT(T, 113, 0.382742953753485333207877784720070523e-12)
1031 };
1032
1033 static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 113, 1677624236387711.0);
1034 static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
1035 static const T c3 = BOOST_MATH_BIG_CONSTANT(T, 113, 266514582277687.0);
1036 static const T c4 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
1037 static const T c5 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
1038 static const T r1 = c1 / c2;
1039 static const T r2 = c3 / c4 / c5;
1040 static const T r3 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 0.283806480836357377069325311780969887585024578164571984232357e-31));
1041 static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
1042 T t = (z / 3) - 1;
1043 result = tools::evaluate_polynomial(P, t)
1044 / tools::evaluate_polynomial(Q, t);
1045 t = ((z - r1) - r2) - r3;
1046 result *= t;
1047 if(fabs(t) < 0.1)
1048 {
1049 result += boost::math::log1p(t / r, pol);
1050 }
1051 else
1052 {
1053 result += log(z / r);
1054 }
1055 }
1056
1057 template <class T>
1058 BOOST_MATH_GPU_ENABLED void expint_i_113b(T& result, const T& z)
1059 {
1060 BOOST_MATH_STD_USING
1061
1062
1063
1064
1065 static const T Y = 1.158985137939453125F;
1066 static const T P[15] = {
1067 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139324086199409049282472239613554817),
1068 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338173111691991289178779840307998955),
1069 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0555972290794371306259684845277620556),
1070 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0378677976003456171563136909186202177),
1071 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0152221583517528358782902783914356667),
1072 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00428283334203873035104248217403126905),
1073 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000922782631491644846511553601323435286),
1074 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000155513428088853161562660696055496696),
1075 BOOST_MATH_BIG_CONSTANT(T, 113, -0.205756580255359882813545261519317096e-4),
1076 BOOST_MATH_BIG_CONSTANT(T, 113, -0.220327406578552089820753181821115181e-5),
1077 BOOST_MATH_BIG_CONSTANT(T, 113, -0.189483157545587592043421445645377439e-6),
1078 BOOST_MATH_BIG_CONSTANT(T, 113, -0.122426571518570587750898968123803867e-7),
1079 BOOST_MATH_BIG_CONSTANT(T, 113, -0.635187358949437991465353268374523944e-9),
1080 BOOST_MATH_BIG_CONSTANT(T, 113, -0.203015132965870311935118337194860863e-10),
1081 BOOST_MATH_BIG_CONSTANT(T, 113, -0.384276705503357655108096065452950822e-12)
1082 };
1083 static const T Q[15] = {
1084 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1085 BOOST_MATH_BIG_CONSTANT(T, 113, 1.58784732785354597996617046880946257),
1086 BOOST_MATH_BIG_CONSTANT(T, 113, 1.18550755302279446339364262338114098),
1087 BOOST_MATH_BIG_CONSTANT(T, 113, 0.55598993549661368604527040349702836),
1088 BOOST_MATH_BIG_CONSTANT(T, 113, 0.184290888380564236919107835030984453),
1089 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0459658051803613282360464632326866113),
1090 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0089505064268613225167835599456014705),
1091 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139042673882987693424772855926289077),
1092 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000174210708041584097450805790176479012),
1093 BOOST_MATH_BIG_CONSTANT(T, 113, 0.176324034009707558089086875136647376e-4),
1094 BOOST_MATH_BIG_CONSTANT(T, 113, 0.142935845999505649273084545313710581e-5),
1095 BOOST_MATH_BIG_CONSTANT(T, 113, 0.907502324487057260675816233312747784e-7),
1096 BOOST_MATH_BIG_CONSTANT(T, 113, 0.431044337808893270797934621235918418e-8),
1097 BOOST_MATH_BIG_CONSTANT(T, 113, 0.139007266881450521776529705677086902e-9),
1098 BOOST_MATH_BIG_CONSTANT(T, 113, 0.234715286125516430792452741830364672e-11)
1099 };
1100 T t = z / 2 - 4;
1101 result = Y + tools::evaluate_polynomial(P, t)
1102 / tools::evaluate_polynomial(Q, t);
1103 result *= exp(z) / z;
1104 result += z;
1105 }
1106
1107 template <class T>
1108 BOOST_MATH_GPU_ENABLED void expint_i_113c(T& result, const T& z)
1109 {
1110 BOOST_MATH_STD_USING
1111
1112
1113
1114
1115
1116 static const T Y = 1.091579437255859375F;
1117 static const T P[17] = {
1118 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00685089599550151282724924894258520532),
1119 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0443313550253580053324487059748497467),
1120 BOOST_MATH_BIG_CONSTANT(T, 113, -0.071538561252424027443296958795814874),
1121 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0622923153354102682285444067843300583),
1122 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0361631270264607478205393775461208794),
1123 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0153192826839624850298106509601033261),
1124 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00496967904961260031539602977748408242),
1125 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126989079663425780800919171538920589),
1126 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000258933143097125199914724875206326698),
1127 BOOST_MATH_BIG_CONSTANT(T, 113, -0.422110326689204794443002330541441956e-4),
1128 BOOST_MATH_BIG_CONSTANT(T, 113, -0.546004547590412661451073996127115221e-5),
1129 BOOST_MATH_BIG_CONSTANT(T, 113, -0.546775260262202177131068692199272241e-6),
1130 BOOST_MATH_BIG_CONSTANT(T, 113, -0.404157632825805803833379568956559215e-7),
1131 BOOST_MATH_BIG_CONSTANT(T, 113, -0.200612596196561323832327013027419284e-8),
1132 BOOST_MATH_BIG_CONSTANT(T, 113, -0.502538501472133913417609379765434153e-10),
1133 BOOST_MATH_BIG_CONSTANT(T, 113, -0.326283053716799774936661568391296584e-13),
1134 BOOST_MATH_BIG_CONSTANT(T, 113, 0.869226483473172853557775877908693647e-15)
1135 };
1136 static const T Q[15] = {
1137 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1138 BOOST_MATH_BIG_CONSTANT(T, 113, 2.23227220874479061894038229141871087),
1139 BOOST_MATH_BIG_CONSTANT(T, 113, 2.40221000361027971895657505660959863),
1140 BOOST_MATH_BIG_CONSTANT(T, 113, 1.65476320985936174728238416007084214),
1141 BOOST_MATH_BIG_CONSTANT(T, 113, 0.816828602963895720369875535001248227),
1142 BOOST_MATH_BIG_CONSTANT(T, 113, 0.306337922909446903672123418670921066),
1143 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0902400121654409267774593230720600752),
1144 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0212708882169429206498765100993228086),
1145 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00404442626252467471957713495828165491),
1146 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0006195601618842253612635241404054589),
1147 BOOST_MATH_BIG_CONSTANT(T, 113, 0.755930932686543009521454653994321843e-4),
1148 BOOST_MATH_BIG_CONSTANT(T, 113, 0.716004532773778954193609582677482803e-5),
1149 BOOST_MATH_BIG_CONSTANT(T, 113, 0.500881663076471627699290821742924233e-6),
1150 BOOST_MATH_BIG_CONSTANT(T, 113, 0.233593219218823384508105943657387644e-7),
1151 BOOST_MATH_BIG_CONSTANT(T, 113, 0.554900353169148897444104962034267682e-9)
1152 };
1153 T t = z / 4 - 3.5;
1154 result = Y + tools::evaluate_polynomial(P, t)
1155 / tools::evaluate_polynomial(Q, t);
1156 result *= exp(z) / z;
1157 result += z;
1158 }
1159
1160 template <class T>
1161 BOOST_MATH_GPU_ENABLED void expint_i_113d(T& result, const T& z)
1162 {
1163 BOOST_MATH_STD_USING
1164
1165
1166
1167
1168 static const T Y = 1.051731109619140625F;
1169 static const T P[14] = {
1170 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00144552494420652573815404828020593565),
1171 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126747451594545338365684731262912741),
1172 BOOST_MATH_BIG_CONSTANT(T, 113, -0.01757394877502366717526779263438073),
1173 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126838952395506921945756139424722588),
1174 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0060045057928894974954756789352443522),
1175 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00205349237147226126653803455793107903),
1176 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000532606040579654887676082220195624207),
1177 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000107344687098019891474772069139014662),
1178 BOOST_MATH_BIG_CONSTANT(T, 113, -0.169536802705805811859089949943435152e-4),
1179 BOOST_MATH_BIG_CONSTANT(T, 113, -0.20863311729206543881826553010120078e-5),
1180 BOOST_MATH_BIG_CONSTANT(T, 113, -0.195670358542116256713560296776654385e-6),
1181 BOOST_MATH_BIG_CONSTANT(T, 113, -0.133291168587253145439184028259772437e-7),
1182 BOOST_MATH_BIG_CONSTANT(T, 113, -0.595500337089495614285777067722823397e-9),
1183 BOOST_MATH_BIG_CONSTANT(T, 113, -0.133141358866324100955927979606981328e-10)
1184 };
1185 static const T Q[14] = {
1186 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1187 BOOST_MATH_BIG_CONSTANT(T, 113, 1.72490783907582654629537013560044682),
1188 BOOST_MATH_BIG_CONSTANT(T, 113, 1.44524329516800613088375685659759765),
1189 BOOST_MATH_BIG_CONSTANT(T, 113, 0.778241785539308257585068744978050181),
1190 BOOST_MATH_BIG_CONSTANT(T, 113, 0.300520486589206605184097270225725584),
1191 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0879346899691339661394537806057953957),
1192 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0200802415843802892793583043470125006),
1193 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00362842049172586254520256100538273214),
1194 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000519731362862955132062751246769469957),
1195 BOOST_MATH_BIG_CONSTANT(T, 113, 0.584092147914050999895178697392282665e-4),
1196 BOOST_MATH_BIG_CONSTANT(T, 113, 0.501851497707855358002773398333542337e-5),
1197 BOOST_MATH_BIG_CONSTANT(T, 113, 0.313085677467921096644895738538865537e-6),
1198 BOOST_MATH_BIG_CONSTANT(T, 113, 0.127552010539733113371132321521204458e-7),
1199 BOOST_MATH_BIG_CONSTANT(T, 113, 0.25737310826983451144405899970774587e-9)
1200 };
1201 T t = z / 4 - 5.5;
1202 result = Y + tools::evaluate_polynomial(P, t)
1203 / tools::evaluate_polynomial(Q, t);
1204 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1205 result *= exp(z) / z;
1206 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1207 result += z;
1208 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1209 }
1210
1211 template <class T>
1212 BOOST_MATH_GPU_ENABLED void expint_i_113e(T& result, const T& z)
1213 {
1214 BOOST_MATH_STD_USING
1215
1216
1217
1218
1219 static const T Y = 1.032726287841796875F;
1220 static const T P[15] = {
1221 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00141056919297307534690895009969373233),
1222 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0123384175302540291339020257071411437),
1223 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0298127270706864057791526083667396115),
1224 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0390686759471630584626293670260768098),
1225 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338226792912607409822059922949035589),
1226 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0211659736179834946452561197559654582),
1227 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100428887460879377373158821400070313),
1228 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00370717396015165148484022792801682932),
1229 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0010768667551001624764329000496561659),
1230 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000246127328761027039347584096573123531),
1231 BOOST_MATH_BIG_CONSTANT(T, 113, -0.437318110527818613580613051861991198e-4),
1232 BOOST_MATH_BIG_CONSTANT(T, 113, -0.587532682329299591501065482317771497e-5),
1233 BOOST_MATH_BIG_CONSTANT(T, 113, -0.565697065670893984610852937110819467e-6),
1234 BOOST_MATH_BIG_CONSTANT(T, 113, -0.350233957364028523971768887437839573e-7),
1235 BOOST_MATH_BIG_CONSTANT(T, 113, -0.105428907085424234504608142258423505e-8)
1236 };
1237 static const T Q[16] = {
1238 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1239 BOOST_MATH_BIG_CONSTANT(T, 113, 3.17261315255467581204685605414005525),
1240 BOOST_MATH_BIG_CONSTANT(T, 113, 4.85267952971640525245338392887217426),
1241 BOOST_MATH_BIG_CONSTANT(T, 113, 4.74341914912439861451492872946725151),
1242 BOOST_MATH_BIG_CONSTANT(T, 113, 3.31108463283559911602405970817931801),
1243 BOOST_MATH_BIG_CONSTANT(T, 113, 1.74657006336994649386607925179848899),
1244 BOOST_MATH_BIG_CONSTANT(T, 113, 0.718255607416072737965933040353653244),
1245 BOOST_MATH_BIG_CONSTANT(T, 113, 0.234037553177354542791975767960643864),
1246 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0607470145906491602476833515412605389),
1247 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0125048143774226921434854172947548724),
1248 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00201034366420433762935768458656609163),
1249 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000244823338417452367656368849303165721),
1250 BOOST_MATH_BIG_CONSTANT(T, 113, 0.213511655166983177960471085462540807e-4),
1251 BOOST_MATH_BIG_CONSTANT(T, 113, 0.119323998465870686327170541547982932e-5),
1252 BOOST_MATH_BIG_CONSTANT(T, 113, 0.322153582559488797803027773591727565e-7),
1253 BOOST_MATH_BIG_CONSTANT(T, 113, -0.161635525318683508633792845159942312e-16)
1254 };
1255 T t = z / 8 - 4.25;
1256 result = Y + tools::evaluate_polynomial(P, t)
1257 / tools::evaluate_polynomial(Q, t);
1258 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1259 result *= exp(z) / z;
1260 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1261 result += z;
1262 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1263 }
1264
1265 template <class T>
1266 BOOST_MATH_GPU_ENABLED void expint_i_113f(T& result, const T& z)
1267 {
1268 BOOST_MATH_STD_USING
1269
1270
1271
1272
1273 static const T Y = 1.0216197967529296875F;
1274 static const T P[12] = {
1275 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000322999116096627043476023926572650045),
1276 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00385606067447365187909164609294113346),
1277 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00686514524727568176735949971985244415),
1278 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00606260649593050194602676772589601799),
1279 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00334382362017147544335054575436194357),
1280 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126108534260253075708625583630318043),
1281 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000337881489347846058951220431209276776),
1282 BOOST_MATH_BIG_CONSTANT(T, 113, -0.648480902304640018785370650254018022e-4),
1283 BOOST_MATH_BIG_CONSTANT(T, 113, -0.87652644082970492211455290209092766e-5),
1284 BOOST_MATH_BIG_CONSTANT(T, 113, -0.794712243338068631557849449519994144e-6),
1285 BOOST_MATH_BIG_CONSTANT(T, 113, -0.434084023639508143975983454830954835e-7),
1286 BOOST_MATH_BIG_CONSTANT(T, 113, -0.107839681938752337160494412638656696e-8)
1287 };
1288 static const T Q[12] = {
1289 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1290 BOOST_MATH_BIG_CONSTANT(T, 113, 2.09913805456661084097134805151524958),
1291 BOOST_MATH_BIG_CONSTANT(T, 113, 2.07041755535439919593503171320431849),
1292 BOOST_MATH_BIG_CONSTANT(T, 113, 1.26406517226052371320416108604874734),
1293 BOOST_MATH_BIG_CONSTANT(T, 113, 0.529689923703770353961553223973435569),
1294 BOOST_MATH_BIG_CONSTANT(T, 113, 0.159578150879536711042269658656115746),
1295 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0351720877642000691155202082629857131),
1296 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00565313621289648752407123620997063122),
1297 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000646920278540515480093843570291218295),
1298 BOOST_MATH_BIG_CONSTANT(T, 113, 0.499904084850091676776993523323213591e-4),
1299 BOOST_MATH_BIG_CONSTANT(T, 113, 0.233740058688179614344680531486267142e-5),
1300 BOOST_MATH_BIG_CONSTANT(T, 113, 0.498800627828842754845418576305379469e-7)
1301 };
1302 T t = z / 7 - 7;
1303 result = Y + tools::evaluate_polynomial(P, t)
1304 / tools::evaluate_polynomial(Q, t);
1305 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1306 result *= exp(z) / z;
1307 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1308 result += z;
1309 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1310 }
1311
1312 template <class T>
1313 BOOST_MATH_GPU_ENABLED void expint_i_113g(T& result, const T& z)
1314 {
1315 BOOST_MATH_STD_USING
1316
1317
1318
1319
1320 static const T Y = 1.015148162841796875F;
1321 static const T P[11] = {
1322 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000435714784725086961464589957142615216),
1323 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00432114324353830636009453048419094314),
1324 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100740363285526177522819204820582424),
1325 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0116744115827059174392383504427640362),
1326 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00816145387784261141360062395898644652),
1327 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00371380272673500791322744465394211508),
1328 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00112958263488611536502153195005736563),
1329 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000228316462389404645183269923754256664),
1330 BOOST_MATH_BIG_CONSTANT(T, 113, -0.29462181955852860250359064291292577e-4),
1331 BOOST_MATH_BIG_CONSTANT(T, 113, -0.21972450610957417963227028788460299e-5),
1332 BOOST_MATH_BIG_CONSTANT(T, 113, -0.720558173805289167524715527536874694e-7)
1333 };
1334 static const T Q[11] = {
1335 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1336 BOOST_MATH_BIG_CONSTANT(T, 113, 2.95918362458402597039366979529287095),
1337 BOOST_MATH_BIG_CONSTANT(T, 113, 3.96472247520659077944638411856748924),
1338 BOOST_MATH_BIG_CONSTANT(T, 113, 3.15563251550528513747923714884142131),
1339 BOOST_MATH_BIG_CONSTANT(T, 113, 1.64674612007093983894215359287448334),
1340 BOOST_MATH_BIG_CONSTANT(T, 113, 0.58695020129846594405856226787156424),
1341 BOOST_MATH_BIG_CONSTANT(T, 113, 0.144358385319329396231755457772362793),
1342 BOOST_MATH_BIG_CONSTANT(T, 113, 0.024146911506411684815134916238348063),
1343 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026257132337460784266874572001650153),
1344 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000167479843750859222348869769094711093),
1345 BOOST_MATH_BIG_CONSTANT(T, 113, 0.475673638665358075556452220192497036e-5)
1346 };
1347 T t = z / 14 - 5;
1348 result = Y + tools::evaluate_polynomial(P, t)
1349 / tools::evaluate_polynomial(Q, t);
1350 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1351 result *= exp(z) / z;
1352 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1353 result += z;
1354 BOOST_MATH_INSTRUMENT_VARIABLE(result)
1355 }
1356
1357 template <class T>
1358 BOOST_MATH_GPU_ENABLED void expint_i_113h(T& result, const T& z)
1359 {
1360 BOOST_MATH_STD_USING
1361
1362
1363
1364
1365 static const T Y= 1.00849151611328125F;
1366 static const T P[9] = {
1367 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0084915161132812500000001440233607358),
1368 BOOST_MATH_BIG_CONSTANT(T, 113, 1.84479378737716028341394223076147872),
1369 BOOST_MATH_BIG_CONSTANT(T, 113, -130.431146923726715674081563022115568),
1370 BOOST_MATH_BIG_CONSTANT(T, 113, 4336.26945491571504885214176203512015),
1371 BOOST_MATH_BIG_CONSTANT(T, 113, -76279.0031974974730095170437591004177),
1372 BOOST_MATH_BIG_CONSTANT(T, 113, 729577.956271997673695191455111727774),
1373 BOOST_MATH_BIG_CONSTANT(T, 113, -3661928.69330208734947103004900349266),
1374 BOOST_MATH_BIG_CONSTANT(T, 113, 8570600.041606912735872059184527855),
1375 BOOST_MATH_BIG_CONSTANT(T, 113, -6758379.93672362080947905580906028645)
1376 };
1377 static const T Q[10] = {
1378 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1379 BOOST_MATH_BIG_CONSTANT(T, 113, -99.4868026047611434569541483506091713),
1380 BOOST_MATH_BIG_CONSTANT(T, 113, 3879.67753690517114249705089803055473),
1381 BOOST_MATH_BIG_CONSTANT(T, 113, -76495.82413252517165830203774900806),
1382 BOOST_MATH_BIG_CONSTANT(T, 113, 820773.726408311894342553758526282667),
1383 BOOST_MATH_BIG_CONSTANT(T, 113, -4803087.64956923577571031564909646579),
1384 BOOST_MATH_BIG_CONSTANT(T, 113, 14521246.227703545012713173740895477),
1385 BOOST_MATH_BIG_CONSTANT(T, 113, -19762752.0196769712258527849159393044),
1386 BOOST_MATH_BIG_CONSTANT(T, 113, 8354144.67882768405803322344185185517),
1387 BOOST_MATH_BIG_CONSTANT(T, 113, 355076.853106511136734454134915432571)
1388 };
1389 T t = 1 / z;
1390 result = Y + tools::evaluate_polynomial(P, t)
1391 / tools::evaluate_polynomial(Q, t);
1392 result *= exp(z) / z;
1393 result += z;
1394 }
1395
1396 template <class T, class Policy>
1397 BOOST_MATH_GPU_ENABLED T expint_i_imp(T z, const Policy& pol, const boost::math::integral_constant<int, 113>& tag)
1398 {
1399 BOOST_MATH_STD_USING
1400 constexpr auto function = "boost::math::expint<%1%>(%1%)";
1401 if(z < 0)
1402 return -expint_imp(1, T(-z), pol, tag);
1403 if(z == 0)
1404 return -policies::raise_overflow_error<T>(function, nullptr, pol);
1405
1406 T result;
1407
1408 if(z <= 6)
1409 {
1410 expint_i_imp_113a(result, z, pol);
1411 }
1412 else if (z <= 10)
1413 {
1414 expint_i_113b(result, z);
1415 }
1416 else if(z <= 18)
1417 {
1418 expint_i_113c(result, z);
1419 }
1420 else if(z <= 26)
1421 {
1422 expint_i_113d(result, z);
1423 }
1424 else if(z <= 42)
1425 {
1426 expint_i_113e(result, z);
1427 }
1428 else if(z <= 56)
1429 {
1430 expint_i_113f(result, z);
1431 }
1432 else if(z <= 84)
1433 {
1434 expint_i_113g(result, z);
1435 }
1436 else if(z <= 210)
1437 {
1438 expint_i_113h(result, z);
1439 }
1440 else
1441 {
1442
1443
1444
1445
1446 static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 2.35385266837019985407899910749034804508871617254555467236651e17));
1447 static const T Y= 1.00252532958984375F;
1448 static const T P[8] = {
1449 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00252532958984375000000000000000000085),
1450 BOOST_MATH_BIG_CONSTANT(T, 113, 1.16591386866059087390621952073890359),
1451 BOOST_MATH_BIG_CONSTANT(T, 113, -67.8483431314018462417456828499277579),
1452 BOOST_MATH_BIG_CONSTANT(T, 113, 1567.68688154683822956359536287575892),
1453 BOOST_MATH_BIG_CONSTANT(T, 113, -17335.4683325819116482498725687644986),
1454 BOOST_MATH_BIG_CONSTANT(T, 113, 93632.6567462673524739954389166550069),
1455 BOOST_MATH_BIG_CONSTANT(T, 113, -225025.189335919133214440347510936787),
1456 BOOST_MATH_BIG_CONSTANT(T, 113, 175864.614717440010942804684741336853)
1457 };
1458 static const T Q[9] = {
1459 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1460 BOOST_MATH_BIG_CONSTANT(T, 113, -65.6998869881600212224652719706425129),
1461 BOOST_MATH_BIG_CONSTANT(T, 113, 1642.73850032324014781607859416890077),
1462 BOOST_MATH_BIG_CONSTANT(T, 113, -19937.2610222467322481947237312818575),
1463 BOOST_MATH_BIG_CONSTANT(T, 113, 124136.267326632742667972126625064538),
1464 BOOST_MATH_BIG_CONSTANT(T, 113, -384614.251466704550678760562965502293),
1465 BOOST_MATH_BIG_CONSTANT(T, 113, 523355.035910385688578278384032026998),
1466 BOOST_MATH_BIG_CONSTANT(T, 113, -217809.552260834025885677791936351294),
1467 BOOST_MATH_BIG_CONSTANT(T, 113, -8555.81719551123640677261226549550872)
1468 };
1469 T t = 1 / z;
1470 result = Y + tools::evaluate_polynomial(P, t)
1471 / tools::evaluate_polynomial(Q, t);
1472 if(z < 41)
1473 result *= exp(z) / z;
1474 else
1475 {
1476
1477 t = z - 40;
1478 if(t > tools::log_max_value<T>())
1479 {
1480 result = policies::raise_overflow_error<T>(function, nullptr, pol);
1481 }
1482 else
1483 {
1484 result *= exp(z - 40) / z;
1485 if(result > tools::max_value<T>() / exp40)
1486 {
1487 result = policies::raise_overflow_error<T>(function, nullptr, pol);
1488 }
1489 else
1490 {
1491 result *= exp40;
1492 }
1493 }
1494 }
1495 result += z;
1496 }
1497 return result;
1498 }
1499
1500 template <class T, class Policy, class tag>
1501 struct expint_i_initializer
1502 {
1503 struct init
1504 {
1505 BOOST_MATH_GPU_ENABLED init()
1506 {
1507 do_init(tag());
1508 }
1509 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 0>&){}
1510 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 53>&)
1511 {
1512 boost::math::expint(T(5), Policy());
1513 boost::math::expint(T(7), Policy());
1514 boost::math::expint(T(18), Policy());
1515 boost::math::expint(T(38), Policy());
1516 boost::math::expint(T(45), Policy());
1517 }
1518 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 64>&)
1519 {
1520 boost::math::expint(T(5), Policy());
1521 boost::math::expint(T(7), Policy());
1522 boost::math::expint(T(18), Policy());
1523 boost::math::expint(T(38), Policy());
1524 boost::math::expint(T(45), Policy());
1525 }
1526 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 113>&)
1527 {
1528 boost::math::expint(T(5), Policy());
1529 boost::math::expint(T(7), Policy());
1530 boost::math::expint(T(17), Policy());
1531 boost::math::expint(T(25), Policy());
1532 boost::math::expint(T(40), Policy());
1533 boost::math::expint(T(50), Policy());
1534 boost::math::expint(T(80), Policy());
1535 boost::math::expint(T(200), Policy());
1536 boost::math::expint(T(220), Policy());
1537 }
1538 BOOST_MATH_GPU_ENABLED void force_instantiate()const{}
1539 };
1540 static const init initializer;
1541 BOOST_MATH_GPU_ENABLED static void force_instantiate()
1542 {
1543 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
1544 initializer.force_instantiate();
1545 #endif
1546 }
1547 };
1548
1549 template <class T, class Policy, class tag>
1550 const typename expint_i_initializer<T, Policy, tag>::init expint_i_initializer<T, Policy, tag>::initializer;
1551
1552 template <class T, class Policy, class tag>
1553 struct expint_1_initializer
1554 {
1555 struct init
1556 {
1557 BOOST_MATH_GPU_ENABLED init()
1558 {
1559 do_init(tag());
1560 }
1561 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 0>&){}
1562 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 53>&)
1563 {
1564 boost::math::expint(1, T(0.5), Policy());
1565 boost::math::expint(1, T(2), Policy());
1566 }
1567 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 64>&)
1568 {
1569 boost::math::expint(1, T(0.5), Policy());
1570 boost::math::expint(1, T(2), Policy());
1571 }
1572 BOOST_MATH_GPU_ENABLED static void do_init(const boost::math::integral_constant<int, 113>&)
1573 {
1574 boost::math::expint(1, T(0.5), Policy());
1575 boost::math::expint(1, T(2), Policy());
1576 boost::math::expint(1, T(6), Policy());
1577 }
1578 BOOST_MATH_GPU_ENABLED void force_instantiate()const{}
1579 };
1580 static const init initializer;
1581 BOOST_MATH_GPU_ENABLED static void force_instantiate()
1582 {
1583 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
1584 initializer.force_instantiate();
1585 #endif
1586 }
1587 };
1588
1589 template <class T, class Policy, class tag>
1590 const typename expint_1_initializer<T, Policy, tag>::init expint_1_initializer<T, Policy, tag>::initializer;
1591
1592 template <class T, class Policy>
1593 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
1594 expint_forwarder(T z, const Policy& , boost::math::true_type const&)
1595 {
1596 typedef typename tools::promote_args<T>::type result_type;
1597 typedef typename policies::evaluation<result_type, Policy>::type value_type;
1598 typedef typename policies::precision<result_type, Policy>::type precision_type;
1599 typedef typename policies::normalise<
1600 Policy,
1601 policies::promote_float<false>,
1602 policies::promote_double<false>,
1603 policies::discrete_quantile<>,
1604 policies::assert_undefined<> >::type forwarding_policy;
1605 typedef boost::math::integral_constant<int,
1606 precision_type::value <= 0 ? 0 :
1607 precision_type::value <= 53 ? 53 :
1608 precision_type::value <= 64 ? 64 :
1609 precision_type::value <= 113 ? 113 : 0
1610 > tag_type;
1611
1612 expint_i_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
1613
1614 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expint_i_imp(
1615 static_cast<value_type>(z),
1616 forwarding_policy(),
1617 tag_type()), "boost::math::expint<%1%>(%1%)");
1618 }
1619
1620 template <class T>
1621 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
1622 expint_forwarder(unsigned n, T z, const boost::math::false_type&)
1623 {
1624 return boost::math::expint(n, z, policies::policy<>());
1625 }
1626
1627 }
1628
1629 template <class T, class Policy>
1630 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
1631 expint(unsigned n, T z, const Policy& )
1632 {
1633 typedef typename tools::promote_args<T>::type result_type;
1634 typedef typename policies::evaluation<result_type, Policy>::type value_type;
1635 typedef typename policies::precision<result_type, Policy>::type precision_type;
1636 typedef typename policies::normalise<
1637 Policy,
1638 policies::promote_float<false>,
1639 policies::promote_double<false>,
1640 policies::discrete_quantile<>,
1641 policies::assert_undefined<> >::type forwarding_policy;
1642 typedef boost::math::integral_constant<int,
1643 precision_type::value <= 0 ? 0 :
1644 precision_type::value <= 53 ? 53 :
1645 precision_type::value <= 64 ? 64 :
1646 precision_type::value <= 113 ? 113 : 0
1647 > tag_type;
1648
1649 detail::expint_1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
1650
1651 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expint_imp(
1652 n,
1653 static_cast<value_type>(z),
1654 forwarding_policy(),
1655 tag_type()), "boost::math::expint<%1%>(unsigned, %1%)");
1656 }
1657
1658 template <class T, class U>
1659 BOOST_MATH_GPU_ENABLED inline typename detail::expint_result<T, U>::type
1660 expint(T const z, U const u)
1661 {
1662 typedef typename policies::is_policy<U>::type tag_type;
1663 return detail::expint_forwarder(z, u, tag_type());
1664 }
1665
1666 template <class T>
1667 BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
1668 expint(T z)
1669 {
1670 return expint(z, policies::policy<>());
1671 }
1672
1673 }}
1674
1675 #ifdef _MSC_VER
1676 #pragma warning(pop)
1677 #endif
1678
1679 #endif
1680
1681