File indexing completed on 2025-09-15 08:40:10
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015 #ifndef BOOST_MATH_ELLINT_2_HPP
0016 #define BOOST_MATH_ELLINT_2_HPP
0017
0018 #ifdef _MSC_VER
0019 #pragma once
0020 #endif
0021
0022 #include <boost/math/tools/config.hpp>
0023 #include <boost/math/tools/numeric_limits.hpp>
0024 #include <boost/math/tools/type_traits.hpp>
0025 #include <boost/math/special_functions/math_fwd.hpp>
0026 #include <boost/math/special_functions/ellint_rf.hpp>
0027 #include <boost/math/special_functions/ellint_rd.hpp>
0028 #include <boost/math/special_functions/ellint_rg.hpp>
0029 #include <boost/math/constants/constants.hpp>
0030 #include <boost/math/policies/error_handling.hpp>
0031 #include <boost/math/tools/workaround.hpp>
0032 #include <boost/math/special_functions/round.hpp>
0033
0034
0035
0036
0037 namespace boost { namespace math {
0038
0039 template <class T1, class T2, class Policy>
0040 BOOST_MATH_GPU_ENABLED typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const Policy& pol);
0041
0042 namespace detail{
0043
0044 template <typename T, typename Policy>
0045 BOOST_MATH_GPU_ENABLED BOOST_MATH_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, const boost::math::integral_constant<int, 0>&);
0046 template <typename T, typename Policy>
0047 BOOST_MATH_GPU_ENABLED BOOST_MATH_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, const boost::math::integral_constant<int, 1>&);
0048 template <typename T, typename Policy>
0049 BOOST_MATH_GPU_ENABLED BOOST_MATH_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, const boost::math::integral_constant<int, 2>&);
0050
0051
0052 template <typename T, typename Policy>
0053 BOOST_MATH_GPU_ENABLED T ellint_e_imp(T phi, T k, const Policy& pol)
0054 {
0055 BOOST_MATH_STD_USING
0056 using namespace boost::math::tools;
0057 using namespace boost::math::constants;
0058
0059 bool invert = false;
0060 if (phi == 0)
0061 return 0;
0062
0063 if(phi < 0)
0064 {
0065 phi = fabs(phi);
0066 invert = true;
0067 }
0068
0069 T result;
0070
0071 if(phi >= tools::max_value<T>())
0072 {
0073
0074 result = policies::raise_overflow_error<T>("boost::math::ellint_e<%1%>(%1%,%1%)", nullptr, pol);
0075 }
0076 else if(phi > 1 / tools::epsilon<T>())
0077 {
0078 typedef boost::math::integral_constant<int,
0079 boost::math::is_floating_point<T>::value&& boost::math::numeric_limits<T>::digits && (boost::math::numeric_limits<T>::digits <= 54) ? 0 :
0080 boost::math::is_floating_point<T>::value && boost::math::numeric_limits<T>::digits && (boost::math::numeric_limits<T>::digits <= 64) ? 1 : 2
0081 > precision_tag_type;
0082
0083
0084 result = 2 * phi * ellint_e_imp(k, pol, precision_tag_type()) / constants::pi<T>();
0085 }
0086 else if(k == 0)
0087 {
0088 return invert ? T(-phi) : phi;
0089 }
0090 else if(fabs(k) == 1)
0091 {
0092
0093
0094
0095
0096
0097
0098
0099 T m = boost::math::round(phi / boost::math::constants::pi<T>());
0100 T remains = phi - m * boost::math::constants::pi<T>();
0101 T value = 2 * m + sin(remains);
0102
0103
0104 return invert ? -value : value;
0105 }
0106 else
0107 {
0108
0109
0110
0111
0112
0113
0114
0115 T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
0116 T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
0117 int s = 1;
0118 if(boost::math::tools::fmod_workaround(m, T(2)) > T(0.5))
0119 {
0120 m += 1;
0121 s = -1;
0122 rphi = constants::half_pi<T>() - rphi;
0123 }
0124 T k2 = k * k;
0125 if(boost::math::pow<3>(rphi) * k2 / 6 < tools::epsilon<T>() * fabs(rphi))
0126 {
0127
0128 result = s * rphi;
0129 }
0130 else
0131 {
0132
0133 T sinp = sin(rphi);
0134 if (k2 * sinp * sinp >= 1)
0135 {
0136 return policies::raise_domain_error<T>("boost::math::ellint_2<%1%>(%1%, %1%)", "The parameter k is out of range, got k = %1%", k, pol);
0137 }
0138 T cosp = cos(rphi);
0139 T c = 1 / (sinp * sinp);
0140 T cm1 = cosp * cosp / (sinp * sinp);
0141 result = s * ((1 - k2) * ellint_rf_imp(cm1, T(c - k2), c, pol) + k2 * (1 - k2) * ellint_rd(cm1, c, T(c - k2), pol) / 3 + k2 * sqrt(cm1 / (c * (c - k2))));
0142 }
0143 if (m != 0)
0144 {
0145 typedef boost::math::integral_constant<int,
0146 boost::math::is_floating_point<T>::value&& boost::math::numeric_limits<T>::digits && (boost::math::numeric_limits<T>::digits <= 54) ? 0 :
0147 boost::math::is_floating_point<T>::value && boost::math::numeric_limits<T>::digits && (boost::math::numeric_limits<T>::digits <= 64) ? 1 : 2
0148 > precision_tag_type;
0149 result += m * ellint_e_imp(k, pol, precision_tag_type());
0150 }
0151 }
0152 return invert ? T(-result) : result;
0153 }
0154
0155
0156 template <typename T, typename Policy>
0157 BOOST_MATH_GPU_ENABLED T ellint_e_imp(T k, const Policy& pol, boost::math::integral_constant<int, 2> const&)
0158 {
0159 BOOST_MATH_STD_USING
0160 using namespace boost::math::tools;
0161
0162 if (abs(k) > 1)
0163 {
0164 return policies::raise_domain_error<T>("boost::math::ellint_e<%1%>(%1%)", "Got k = %1%, function requires |k| <= 1", k, pol);
0165 }
0166 if (abs(k) == 1)
0167 {
0168 return static_cast<T>(1);
0169 }
0170
0171 T x = 0;
0172 T t = k * k;
0173 T y = 1 - t;
0174 T z = 1;
0175 T value = 2 * ellint_rg_imp(x, y, z, pol);
0176
0177 return value;
0178 }
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194 template <typename T, typename Policy>
0195 BOOST_MATH_GPU_ENABLED BOOST_MATH_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, boost::math::integral_constant<int, 0> const&)
0196 {
0197 BOOST_MATH_STD_USING
0198 using namespace boost::math::tools;
0199
0200 T m = k * k;
0201 switch (static_cast<int>(20 * m))
0202 {
0203 case 0:
0204 case 1:
0205
0206 {
0207 constexpr T coef[] =
0208 {
0209 static_cast<T>(1.550973351780472328),
0210 -static_cast<T>(0.400301020103198524),
0211 -static_cast<T>(0.078498619442941939),
0212 -static_cast<T>(0.034318853117591992),
0213 -static_cast<T>(0.019718043317365499),
0214 -static_cast<T>(0.013059507731993309),
0215 -static_cast<T>(0.009442372874146547),
0216 -static_cast<T>(0.007246728512402157),
0217 -static_cast<T>(0.005807424012956090),
0218 -static_cast<T>(0.004809187786009338),
0219 -static_cast<T>(0.004086399233255150)
0220 };
0221 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.05));
0222 }
0223 case 2:
0224 case 3:
0225
0226 {
0227 constexpr T coef[] =
0228 {
0229 static_cast<T>(1.510121832092819728),
0230 -static_cast<T>(0.417116333905867549),
0231 -static_cast<T>(0.090123820404774569),
0232 -static_cast<T>(0.043729944019084312),
0233 -static_cast<T>(0.027965493064761785),
0234 -static_cast<T>(0.020644781177568105),
0235 -static_cast<T>(0.016650786739707238),
0236 -static_cast<T>(0.014261960828842520),
0237 -static_cast<T>(0.012759847429264803),
0238 -static_cast<T>(0.011799303775587354),
0239 -static_cast<T>(0.011197445703074968)
0240 };
0241 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.15));
0242 }
0243 case 4:
0244 case 5:
0245
0246 {
0247 constexpr T coef[] =
0248 {
0249 static_cast<T>(1.467462209339427155),
0250 -static_cast<T>(0.436576290946337775),
0251 -static_cast<T>(0.105155557666942554),
0252 -static_cast<T>(0.057371843593241730),
0253 -static_cast<T>(0.041391627727340220),
0254 -static_cast<T>(0.034527728505280841),
0255 -static_cast<T>(0.031495443512532783),
0256 -static_cast<T>(0.030527000890325277),
0257 -static_cast<T>(0.030916984019238900),
0258 -static_cast<T>(0.032371395314758122),
0259 -static_cast<T>(0.034789960386404158)
0260 };
0261 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.25));
0262 }
0263 case 6:
0264 case 7:
0265
0266 {
0267 constexpr T coef[] =
0268 {
0269 static_cast<T>(1.422691133490879171),
0270 -static_cast<T>(0.459513519621048674),
0271 -static_cast<T>(0.125250539822061878),
0272 -static_cast<T>(0.078138545094409477),
0273 -static_cast<T>(0.064714278472050002),
0274 -static_cast<T>(0.062084339131730311),
0275 -static_cast<T>(0.065197032815572477),
0276 -static_cast<T>(0.072793895362578779),
0277 -static_cast<T>(0.084959075171781003),
0278 -static_cast<T>(0.102539850131045997),
0279 -static_cast<T>(0.127053585157696036),
0280 -static_cast<T>(0.160791120691274606)
0281 };
0282 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.35));
0283 }
0284 case 8:
0285 case 9:
0286
0287 {
0288 constexpr T coef[] =
0289 {
0290 static_cast<T>(1.375401971871116291),
0291 -static_cast<T>(0.487202183273184837),
0292 -static_cast<T>(0.153311701348540228),
0293 -static_cast<T>(0.111849444917027833),
0294 -static_cast<T>(0.108840952523135768),
0295 -static_cast<T>(0.122954223120269076),
0296 -static_cast<T>(0.152217163962035047),
0297 -static_cast<T>(0.200495323642697339),
0298 -static_cast<T>(0.276174333067751758),
0299 -static_cast<T>(0.393513114304375851),
0300 -static_cast<T>(0.575754406027879147),
0301 -static_cast<T>(0.860523235727239756),
0302 -static_cast<T>(1.308833205758540162)
0303 };
0304 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.45));
0305 }
0306 case 10:
0307 case 11:
0308
0309 {
0310 constexpr T coef[] =
0311 {
0312 static_cast<T>(1.325024497958230082),
0313 -static_cast<T>(0.521727647557566767),
0314 -static_cast<T>(0.194906430482126213),
0315 -static_cast<T>(0.171623726822011264),
0316 -static_cast<T>(0.202754652926419141),
0317 -static_cast<T>(0.278798953118534762),
0318 -static_cast<T>(0.420698457281005762),
0319 -static_cast<T>(0.675948400853106021),
0320 -static_cast<T>(1.136343121839229244),
0321 -static_cast<T>(1.976721143954398261),
0322 -static_cast<T>(3.531696773095722506),
0323 -static_cast<T>(6.446753640156048150),
0324 -static_cast<T>(11.97703130208884026)
0325 };
0326 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.55));
0327 }
0328 case 12:
0329 case 13:
0330
0331 {
0332 constexpr T coef[] =
0333 {
0334 static_cast<T>(1.270707479650149744),
0335 -static_cast<T>(0.566839168287866583),
0336 -static_cast<T>(0.262160793432492598),
0337 -static_cast<T>(0.292244173533077419),
0338 -static_cast<T>(0.440397840850423189),
0339 -static_cast<T>(0.774947641381397458),
0340 -static_cast<T>(1.498870837987561088),
0341 -static_cast<T>(3.089708310445186667),
0342 -static_cast<T>(6.667595903381001064),
0343 -static_cast<T>(14.89436036517319078),
0344 -static_cast<T>(34.18120574251449024),
0345 -static_cast<T>(80.15895841905397306),
0346 -static_cast<T>(191.3489480762984920),
0347 -static_cast<T>(463.5938853480342030),
0348 -static_cast<T>(1137.380822169360061)
0349 };
0350 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.65));
0351 }
0352 case 14:
0353 case 15:
0354
0355 {
0356 constexpr T coef[] =
0357 {
0358 static_cast<T>(1.211056027568459525),
0359 -static_cast<T>(0.630306413287455807),
0360 -static_cast<T>(0.387166409520669145),
0361 -static_cast<T>(0.592278235311934603),
0362 -static_cast<T>(1.237555584513049844),
0363 -static_cast<T>(3.032056661745247199),
0364 -static_cast<T>(8.181688221573590762),
0365 -static_cast<T>(23.55507217389693250),
0366 -static_cast<T>(71.04099935893064956),
0367 -static_cast<T>(221.8796853192349888),
0368 -static_cast<T>(712.1364793277635425),
0369 -static_cast<T>(2336.125331440396407),
0370 -static_cast<T>(7801.945954775964673),
0371 -static_cast<T>(26448.19586059191933),
0372 -static_cast<T>(90799.48341621365251),
0373 -static_cast<T>(315126.0406449163424),
0374 -static_cast<T>(1104011.344311591159)
0375 };
0376 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.75));
0377 }
0378 case 16:
0379
0380 {
0381 constexpr T coef[] =
0382 {
0383 static_cast<T>(1.161307152196282836),
0384 -static_cast<T>(0.701100284555289548),
0385 -static_cast<T>(0.580551474465437362),
0386 -static_cast<T>(1.243693061077786614),
0387 -static_cast<T>(3.679383613496634879),
0388 -static_cast<T>(12.81590924337895775),
0389 -static_cast<T>(49.25672530759985272),
0390 -static_cast<T>(202.1818735434090269),
0391 -static_cast<T>(869.8602699308701437),
0392 -static_cast<T>(3877.005847313289571),
0393 -static_cast<T>(17761.70710170939814),
0394 -static_cast<T>(83182.69029154232061),
0395 -static_cast<T>(396650.4505013548170),
0396 -static_cast<T>(1920033.413682634405)
0397 };
0398 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.825));
0399 }
0400 case 17:
0401
0402 {
0403 constexpr T coef[] =
0404 {
0405 static_cast<T>(1.124617325119752213),
0406 -static_cast<T>(0.770845056360909542),
0407 -static_cast<T>(0.844794053644911362),
0408 -static_cast<T>(2.490097309450394453),
0409 -static_cast<T>(10.23971741154384360),
0410 -static_cast<T>(49.74900546551479866),
0411 -static_cast<T>(267.0986675195705196),
0412 -static_cast<T>(1532.665883825229947),
0413 -static_cast<T>(9222.313478526091951),
0414 -static_cast<T>(57502.51612140314030),
0415 -static_cast<T>(368596.1167416106063),
0416 -static_cast<T>(2415611.088701091428),
0417 -static_cast<T>(16120097.81581656797),
0418 -static_cast<T>(109209938.5203089915),
0419 -static_cast<T>(749380758.1942496220),
0420 -static_cast<T>(5198725846.725541393),
0421 -static_cast<T>(36409256888.12139973)
0422 };
0423 return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.875));
0424 }
0425 default:
0426
0427
0428
0429
0430 return ellint_e_imp(k, pol, boost::math::integral_constant<int, 2>());
0431 }
0432 }
0433 template <typename T, typename Policy>
0434 BOOST_MATH_GPU_ENABLED BOOST_MATH_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, boost::math::integral_constant<int, 1> const&)
0435 {
0436 BOOST_MATH_STD_USING
0437 using namespace boost::math::tools;
0438
0439 T m = k * k;
0440 switch (static_cast<int>(20 * m))
0441 {
0442 case 0:
0443 case 1:
0444
0445 {
0446 constexpr T coef[] =
0447 {
0448 1.5509733517804723277L,
0449 -0.40030102010319852390L,
0450 -0.078498619442941939212L,
0451 -0.034318853117591992417L,
0452 -0.019718043317365499309L,
0453 -0.013059507731993309191L,
0454 -0.0094423728741465473894L,
0455 -0.0072467285124021568126L,
0456 -0.0058074240129560897940L,
0457 -0.0048091877860093381762L,
0458 -0.0040863992332551506768L,
0459 -0.0035450302604139562644L,
0460 -0.0031283511188028336315L
0461 };
0462 return boost::math::tools::evaluate_polynomial(coef, m - 0.05L);
0463 }
0464 case 2:
0465 case 3:
0466
0467 {
0468 constexpr T coef[] =
0469 {
0470 1.5101218320928197276L,
0471 -0.41711633390586754922L,
0472 -0.090123820404774568894L,
0473 -0.043729944019084311555L,
0474 -0.027965493064761784548L,
0475 -0.020644781177568105268L,
0476 -0.016650786739707238037L,
0477 -0.014261960828842519634L,
0478 -0.012759847429264802627L,
0479 -0.011799303775587354169L,
0480 -0.011197445703074968018L,
0481 -0.010850368064799902735L,
0482 -0.010696133481060989818L
0483 };
0484 return boost::math::tools::evaluate_polynomial(coef, m - 0.15L);
0485 }
0486 case 4:
0487 case 5:
0488
0489 {
0490 constexpr T coef[] =
0491 {
0492 1.4674622093394271555L,
0493 -0.43657629094633777482L,
0494 -0.10515555766694255399L,
0495 -0.057371843593241729895L,
0496 -0.041391627727340220236L,
0497 -0.034527728505280841188L,
0498 -0.031495443512532782647L,
0499 -0.030527000890325277179L,
0500 -0.030916984019238900349L,
0501 -0.032371395314758122268L,
0502 -0.034789960386404158240L,
0503 -0.038182654612387881967L,
0504 -0.042636187648900252525L,
0505 -0.048302272505241634467
0506 };
0507 return boost::math::tools::evaluate_polynomial(coef, m - 0.25L);
0508 }
0509 case 6:
0510 case 7:
0511
0512 {
0513 constexpr T coef[] =
0514 {
0515 1.4226911334908791711L,
0516 -0.45951351962104867394L,
0517 -0.12525053982206187849L,
0518 -0.078138545094409477156L,
0519 -0.064714278472050001838L,
0520 -0.062084339131730310707L,
0521 -0.065197032815572476910L,
0522 -0.072793895362578779473L,
0523 -0.084959075171781003264L,
0524 -0.10253985013104599679L,
0525 -0.12705358515769603644L,
0526 -0.16079112069127460621L,
0527 -0.20705400012405941376L,
0528 -0.27053164884730888948L
0529 };
0530 return boost::math::tools::evaluate_polynomial(coef, m - 0.35L);
0531 }
0532 case 8:
0533 case 9:
0534
0535 {
0536 constexpr T coef[] =
0537 {
0538 1.3754019718711162908L,
0539 -0.48720218327318483652L,
0540 -0.15331170134854022753L,
0541 -0.11184944491702783273L,
0542 -0.10884095252313576755L,
0543 -0.12295422312026907610L,
0544 -0.15221716396203504746L,
0545 -0.20049532364269733857L,
0546 -0.27617433306775175837L,
0547 -0.39351311430437585139L,
0548 -0.57575440602787914711L,
0549 -0.86052323572723975634L,
0550 -1.3088332057585401616L,
0551 -2.0200280559452241745L,
0552 -3.1566019548237606451L
0553 };
0554 return boost::math::tools::evaluate_polynomial(coef, m - 0.45L);
0555 }
0556 case 10:
0557 case 11:
0558
0559 {
0560 constexpr T coef[] =
0561 {
0562 1.3250244979582300818L,
0563 -0.52172764755756676713L,
0564 -0.19490643048212621262L,
0565 -0.17162372682201126365L,
0566 -0.20275465292641914128L,
0567 -0.27879895311853476205L,
0568 -0.42069845728100576224L,
0569 -0.67594840085310602110L,
0570 -1.1363431218392292440L,
0571 -1.9767211439543982613L,
0572 -3.5316967730957225064L,
0573 -6.4467536401560481499L,
0574 -11.977031302088840261L,
0575 -22.581360948073964469L,
0576 -43.109479829481450573L,
0577 -83.186290908288807424L
0578 };
0579 return boost::math::tools::evaluate_polynomial(coef, m - 0.55L);
0580 }
0581 case 12:
0582 case 13:
0583
0584 {
0585 constexpr T coef[] =
0586 {
0587 1.2707074796501497440L,
0588 -0.56683916828786658286L,
0589 -0.26216079343249259779L,
0590 -0.29224417353307741931L,
0591 -0.44039784085042318909L,
0592 -0.77494764138139745824L,
0593 -1.4988708379875610880L,
0594 -3.0897083104451866665L,
0595 -6.6675959033810010645L,
0596 -14.894360365173190775L,
0597 -34.181205742514490240L,
0598 -80.158958419053973056L,
0599 -191.34894807629849204L,
0600 -463.59388534803420301L,
0601 -1137.3808221693600606L,
0602 -2820.7073786352269339L,
0603 -7061.1382244658715621L,
0604 -17821.809331816437058L,
0605 -45307.849987201897801L
0606 };
0607 return boost::math::tools::evaluate_polynomial(coef, m - 0.65L);
0608 }
0609 case 14:
0610 case 15:
0611
0612 {
0613 constexpr T coef[] =
0614 {
0615 1.2110560275684595248L,
0616 -0.63030641328745580709L,
0617 -0.38716640952066914514L,
0618 -0.59227823531193460257L,
0619 -1.2375555845130498445L,
0620 -3.0320566617452471986L,
0621 -8.1816882215735907624L,
0622 -23.555072173896932503L,
0623 -71.040999358930649565L,
0624 -221.87968531923498875L,
0625 -712.13647932776354253L,
0626 -2336.1253314403964072L,
0627 -7801.9459547759646726L,
0628 -26448.195860591919335L,
0629 -90799.483416213652512L,
0630 -315126.04064491634241L,
0631 -1.1040113443115911589e6L,
0632 -3.8998018348056769095e6L,
0633 -1.3876249116223745041e7L,
0634 -4.9694982823537861149e7L,
0635 -1.7900668836197342979e8L,
0636 -6.4817399873722371964e8L
0637 };
0638 return boost::math::tools::evaluate_polynomial(coef, m - 0.75L);
0639 }
0640 case 16:
0641
0642 {
0643 constexpr T coef[] =
0644 {
0645 1.1613071521962828360L,
0646 -0.70110028455528954752L,
0647 -0.58055147446543736163L,
0648 -1.2436930610777866138L,
0649 -3.6793836134966348789L,
0650 -12.815909243378957753L,
0651 -49.256725307599852720L,
0652 -202.18187354340902693L,
0653 -869.86026993087014372L,
0654 -3877.0058473132895713L,
0655 -17761.707101709398174L,
0656 -83182.690291542320614L,
0657 -396650.45050135481698L,
0658 -1.9200334136826344054e6L,
0659 -9.4131321779500838352e6L,
0660 -4.6654858837335370627e7L,
0661 -2.3343549352617609390e8L,
0662 -1.1776928223045913454e9L,
0663 -5.9850851892915740401e9L,
0664 -3.0614702984618644983e10L
0665 };
0666 return boost::math::tools::evaluate_polynomial(coef, m - 0.825L);
0667 }
0668 case 17:
0669
0670 {
0671 constexpr T coef[] =
0672 {
0673 1.1246173251197522132L,
0674 -0.77084505636090954218L,
0675 -0.84479405364491136236L,
0676 -2.4900973094503944527L,
0677 -10.239717411543843601L,
0678 -49.749005465514798660L,
0679 -267.09866751957051961L,
0680 -1532.6658838252299468L,
0681 -9222.3134785260919507L,
0682 -57502.516121403140303L,
0683 -368596.11674161060626L,
0684 -2.4156110887010914281e6L,
0685 -1.6120097815816567971e7L,
0686 -1.0920993852030899148e8L,
0687 -7.4938075819424962198e8L,
0688 -5.1987258467255413931e9L,
0689 -3.6409256888121399726e10L,
0690 -2.5711802891217393544e11L,
0691 -1.8290904062978796996e12L,
0692 -1.3096838781743248404e13L,
0693 -9.4325465851415135118e13L,
0694 -6.8291980829471896669e14L
0695 };
0696 return boost::math::tools::evaluate_polynomial(coef, m - 0.875L);
0697 }
0698 default:
0699
0700
0701
0702
0703 return ellint_e_imp(k, pol, boost::math::integral_constant<int, 2>());
0704 }
0705 }
0706
0707 template <typename T, typename Policy>
0708 BOOST_MATH_GPU_ENABLED typename tools::promote_args<T>::type ellint_2(T k, const Policy& pol, const boost::math::true_type&)
0709 {
0710 typedef typename tools::promote_args<T>::type result_type;
0711 typedef typename policies::evaluation<result_type, Policy>::type value_type;
0712 typedef boost::math::integral_constant<int,
0713 boost::math::is_floating_point<T>::value&& boost::math::numeric_limits<T>::digits && (boost::math::numeric_limits<T>::digits <= 54) ? 0 :
0714 boost::math::is_floating_point<T>::value && boost::math::numeric_limits<T>::digits && (boost::math::numeric_limits<T>::digits <= 64) ? 1 : 2
0715 > precision_tag_type;
0716 return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_e_imp(static_cast<value_type>(k), pol, precision_tag_type()), "boost::math::ellint_2<%1%>(%1%)");
0717 }
0718
0719
0720 template <class T1, class T2>
0721 BOOST_MATH_GPU_ENABLED typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const boost::math::false_type&)
0722 {
0723 return boost::math::ellint_2(k, phi, policies::policy<>());
0724 }
0725
0726 }
0727
0728
0729 template <class T1, class T2>
0730 BOOST_MATH_GPU_ENABLED typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi)
0731 {
0732 typedef typename policies::is_policy<T2>::type tag_type;
0733 return detail::ellint_2(k, phi, tag_type());
0734 }
0735
0736 template <class T1, class T2, class Policy>
0737 BOOST_MATH_GPU_ENABLED typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const Policy& pol)
0738 {
0739 typedef typename tools::promote_args<T1, T2>::type result_type;
0740 typedef typename policies::evaluation<result_type, Policy>::type value_type;
0741 return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_e_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_2<%1%>(%1%,%1%)");
0742 }
0743
0744
0745
0746 template <typename T>
0747 BOOST_MATH_GPU_ENABLED typename tools::promote_args<T>::type ellint_2(T k)
0748 {
0749 return ellint_2(k, policies::policy<>());
0750 }
0751
0752
0753 }}
0754
0755 #endif
0756