File indexing completed on 2025-07-11 08:15:25
0001
0002
0003
0004
0005
0006 #ifndef BOOST_MATH_SF_DIGAMMA_HPP
0007 #define BOOST_MATH_SF_DIGAMMA_HPP
0008
0009 #ifdef _MSC_VER
0010 #pragma once
0011 #pragma warning(push)
0012 #pragma warning(disable:4702)
0013 #endif
0014
0015 #include <boost/math/special_functions/math_fwd.hpp>
0016 #include <boost/math/tools/rational.hpp>
0017 #include <boost/math/tools/series.hpp>
0018 #include <boost/math/tools/promotion.hpp>
0019 #include <boost/math/policies/error_handling.hpp>
0020 #include <boost/math/constants/constants.hpp>
0021 #include <boost/math/tools/big_constant.hpp>
0022
0023 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
0024
0025
0026
0027
0028
0029
0030 #pragma GCC system_header
0031 #endif
0032
0033 namespace boost{
0034 namespace math{
0035 namespace detail{
0036
0037
0038
0039
0040 inline unsigned digamma_large_lim(const std::integral_constant<int, 0>*)
0041 { return 20; }
0042 inline unsigned digamma_large_lim(const std::integral_constant<int, 113>*)
0043 { return 20; }
0044 inline unsigned digamma_large_lim(const void*)
0045 { return 10; }
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056 template <class T>
0057 inline T digamma_imp_large(T x, const std::integral_constant<int, 113>*)
0058 {
0059 BOOST_MATH_STD_USING
0060 static const T P[] = {
0061 BOOST_MATH_BIG_CONSTANT(T, 113, 0.083333333333333333333333333333333333333333333333333),
0062 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0083333333333333333333333333333333333333333333333333),
0063 BOOST_MATH_BIG_CONSTANT(T, 113, 0.003968253968253968253968253968253968253968253968254),
0064 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0041666666666666666666666666666666666666666666666667),
0065 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0075757575757575757575757575757575757575757575757576),
0066 BOOST_MATH_BIG_CONSTANT(T, 113, -0.021092796092796092796092796092796092796092796092796),
0067 BOOST_MATH_BIG_CONSTANT(T, 113, 0.083333333333333333333333333333333333333333333333333),
0068 BOOST_MATH_BIG_CONSTANT(T, 113, -0.44325980392156862745098039215686274509803921568627),
0069 BOOST_MATH_BIG_CONSTANT(T, 113, 3.0539543302701197438039543302701197438039543302701),
0070 BOOST_MATH_BIG_CONSTANT(T, 113, -26.456212121212121212121212121212121212121212121212),
0071 BOOST_MATH_BIG_CONSTANT(T, 113, 281.4601449275362318840579710144927536231884057971),
0072 BOOST_MATH_BIG_CONSTANT(T, 113, -3607.510546398046398046398046398046398046398046398),
0073 BOOST_MATH_BIG_CONSTANT(T, 113, 54827.583333333333333333333333333333333333333333333),
0074 BOOST_MATH_BIG_CONSTANT(T, 113, -974936.82385057471264367816091954022988505747126437),
0075 BOOST_MATH_BIG_CONSTANT(T, 113, 20052695.796688078946143462272494530559046688078946),
0076 BOOST_MATH_BIG_CONSTANT(T, 113, -472384867.72162990196078431372549019607843137254902),
0077 BOOST_MATH_BIG_CONSTANT(T, 113, 12635724795.916666666666666666666666666666666666667)
0078 };
0079 x -= 1;
0080 T result = log(x);
0081 result += 1 / (2 * x);
0082 T z = 1 / (x*x);
0083 result -= z * tools::evaluate_polynomial(P, z);
0084 return result;
0085 }
0086
0087
0088
0089 template <class T>
0090 inline T digamma_imp_large(T x, const std::integral_constant<int, 64>*)
0091 {
0092 BOOST_MATH_STD_USING
0093 static const T P[] = {
0094 BOOST_MATH_BIG_CONSTANT(T, 64, 0.083333333333333333333333333333333333333333333333333),
0095 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0083333333333333333333333333333333333333333333333333),
0096 BOOST_MATH_BIG_CONSTANT(T, 64, 0.003968253968253968253968253968253968253968253968254),
0097 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0041666666666666666666666666666666666666666666666667),
0098 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0075757575757575757575757575757575757575757575757576),
0099 BOOST_MATH_BIG_CONSTANT(T, 64, -0.021092796092796092796092796092796092796092796092796),
0100 BOOST_MATH_BIG_CONSTANT(T, 64, 0.083333333333333333333333333333333333333333333333333),
0101 BOOST_MATH_BIG_CONSTANT(T, 64, -0.44325980392156862745098039215686274509803921568627),
0102 BOOST_MATH_BIG_CONSTANT(T, 64, 3.0539543302701197438039543302701197438039543302701),
0103 BOOST_MATH_BIG_CONSTANT(T, 64, -26.456212121212121212121212121212121212121212121212),
0104 BOOST_MATH_BIG_CONSTANT(T, 64, 281.4601449275362318840579710144927536231884057971),
0105 };
0106 x -= 1;
0107 T result = log(x);
0108 result += 1 / (2 * x);
0109 T z = 1 / (x*x);
0110 result -= z * tools::evaluate_polynomial(P, z);
0111 return result;
0112 }
0113
0114
0115
0116 template <class T>
0117 inline T digamma_imp_large(T x, const std::integral_constant<int, 53>*)
0118 {
0119 BOOST_MATH_STD_USING
0120 static const T P[] = {
0121 0.083333333333333333333333333333333333333333333333333,
0122 -0.0083333333333333333333333333333333333333333333333333,
0123 0.003968253968253968253968253968253968253968253968254,
0124 -0.0041666666666666666666666666666666666666666666666667,
0125 0.0075757575757575757575757575757575757575757575757576,
0126 -0.021092796092796092796092796092796092796092796092796,
0127 0.083333333333333333333333333333333333333333333333333,
0128 -0.44325980392156862745098039215686274509803921568627
0129 };
0130 x -= 1;
0131 T result = log(x);
0132 result += 1 / (2 * x);
0133 T z = 1 / (x*x);
0134 result -= z * tools::evaluate_polynomial(P, z);
0135 return result;
0136 }
0137
0138
0139
0140 template <class T>
0141 inline T digamma_imp_large(T x, const std::integral_constant<int, 24>*)
0142 {
0143 BOOST_MATH_STD_USING
0144 static const T P[] = {
0145 0.083333333333333333333333333333333333333333333333333f,
0146 -0.0083333333333333333333333333333333333333333333333333f,
0147 0.003968253968253968253968253968253968253968253968254f
0148 };
0149 x -= 1;
0150 T result = log(x);
0151 result += 1 / (2 * x);
0152 T z = 1 / (x*x);
0153 result -= z * tools::evaluate_polynomial(P, z);
0154 return result;
0155 }
0156
0157
0158
0159
0160 template <class T>
0161 struct digamma_series_func
0162 {
0163 private:
0164 int k;
0165 T xx;
0166 T term;
0167 public:
0168 digamma_series_func(T x) : k(1), xx(x * x), term(1 / (x * x)) {}
0169 T operator()()
0170 {
0171 T result = term * boost::math::bernoulli_b2n<T>(k) / (2 * k);
0172 term /= xx;
0173 ++k;
0174 return result;
0175 }
0176 typedef T result_type;
0177 };
0178
0179 template <class T, class Policy>
0180 inline T digamma_imp_large(T x, const Policy& pol, const std::integral_constant<int, 0>*)
0181 {
0182 BOOST_MATH_STD_USING
0183 digamma_series_func<T> s(x);
0184 T result = log(x) - 1 / (2 * x);
0185 std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
0186 result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, -result);
0187 result = -result;
0188 policies::check_series_iterations<T>("boost::math::digamma<%1%>(%1%)", max_iter, pol);
0189 return result;
0190 }
0191
0192
0193
0194
0195
0196 template <class T>
0197 T digamma_imp_1_2(T x, const std::integral_constant<int, 113>*)
0198 {
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212 static const float Y = 0.99558162689208984375F;
0213
0214 static const T root1 = T(1569415565) / 1073741824uL;
0215 static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL;
0216 static const T root3 = ((T(111616537) / 1073741824uL) / 1073741824uL) / 1073741824uL;
0217 static const T root4 = (((T(503992070) / 1073741824uL) / 1073741824uL) / 1073741824uL) / 1073741824uL;
0218 static const T root5 = BOOST_MATH_BIG_CONSTANT(T, 113, 0.52112228569249997894452490385577338504019838794544e-36);
0219
0220 static const T P[] = {
0221 BOOST_MATH_BIG_CONSTANT(T, 113, 0.25479851061131551526977464225335883769),
0222 BOOST_MATH_BIG_CONSTANT(T, 113, -0.18684290534374944114622235683619897417),
0223 BOOST_MATH_BIG_CONSTANT(T, 113, -0.80360876047931768958995775910991929922),
0224 BOOST_MATH_BIG_CONSTANT(T, 113, -0.67227342794829064330498117008564270136),
0225 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26569010991230617151285010695543858005),
0226 BOOST_MATH_BIG_CONSTANT(T, 113, -0.05775672694575986971640757748003553385),
0227 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0071432147823164975485922555833274240665),
0228 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00048740753910766168912364555706064993274),
0229 BOOST_MATH_BIG_CONSTANT(T, 113, -0.16454996865214115723416538844975174761e-4),
0230 BOOST_MATH_BIG_CONSTANT(T, 113, -0.20327832297631728077731148515093164955e-6)
0231 };
0232 static const T Q[] = {
0233 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0234 BOOST_MATH_BIG_CONSTANT(T, 113, 2.6210924610812025425088411043163287646),
0235 BOOST_MATH_BIG_CONSTANT(T, 113, 2.6850757078559596612621337395886392594),
0236 BOOST_MATH_BIG_CONSTANT(T, 113, 1.4320913706209965531250495490639289418),
0237 BOOST_MATH_BIG_CONSTANT(T, 113, 0.4410872083455009362557012239501953402),
0238 BOOST_MATH_BIG_CONSTANT(T, 113, 0.081385727399251729505165509278152487225),
0239 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0089478633066857163432104815183858149496),
0240 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00055861622855066424871506755481997374154),
0241 BOOST_MATH_BIG_CONSTANT(T, 113, 0.1760168552357342401304462967950178554e-4),
0242 BOOST_MATH_BIG_CONSTANT(T, 113, 0.20585454493572473724556649516040874384e-6),
0243 BOOST_MATH_BIG_CONSTANT(T, 113, -0.90745971844439990284514121823069162795e-11),
0244 BOOST_MATH_BIG_CONSTANT(T, 113, 0.48857673606545846774761343500033283272e-13),
0245 };
0246
0247 T g = x - root1;
0248 g -= root2;
0249 g -= root3;
0250 g -= root4;
0251 g -= root5;
0252 T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
0253 T result = g * Y + g * r;
0254
0255 return result;
0256 }
0257
0258
0259
0260 template <class T>
0261 T digamma_imp_1_2(T x, const std::integral_constant<int, 64>*)
0262 {
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276 static const float Y = 0.99558162689208984375F;
0277
0278 static const T root1 = T(1569415565) / 1073741824uL;
0279 static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL;
0280 static const T root3 = BOOST_MATH_BIG_CONSTANT(T, 64, 0.9016312093258695918615325266959189453125e-19);
0281
0282 static const T P[] = {
0283 BOOST_MATH_BIG_CONSTANT(T, 64, 0.254798510611315515235),
0284 BOOST_MATH_BIG_CONSTANT(T, 64, -0.314628554532916496608),
0285 BOOST_MATH_BIG_CONSTANT(T, 64, -0.665836341559876230295),
0286 BOOST_MATH_BIG_CONSTANT(T, 64, -0.314767657147375752913),
0287 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0541156266153505273939),
0288 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00289268368333918761452)
0289 };
0290 static const T Q[] = {
0291 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0292 BOOST_MATH_BIG_CONSTANT(T, 64, 2.1195759927055347547),
0293 BOOST_MATH_BIG_CONSTANT(T, 64, 1.54350554664961128724),
0294 BOOST_MATH_BIG_CONSTANT(T, 64, 0.486986018231042975162),
0295 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0660481487173569812846),
0296 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00298999662592323990972),
0297 BOOST_MATH_BIG_CONSTANT(T, 64, -0.165079794012604905639e-5),
0298 BOOST_MATH_BIG_CONSTANT(T, 64, 0.317940243105952177571e-7)
0299 };
0300
0301 T g = x - root1;
0302 g -= root2;
0303 g -= root3;
0304 T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
0305 T result = g * Y + g * r;
0306
0307 return result;
0308 }
0309
0310
0311
0312 template <class T>
0313 T digamma_imp_1_2(T x, const std::integral_constant<int, 53>*)
0314 {
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328 static const float Y = 0.99558162689208984F;
0329
0330 static const T root1 = T(1569415565) / 1073741824uL;
0331 static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL;
0332 static const T root3 = BOOST_MATH_BIG_CONSTANT(T, 53, 0.9016312093258695918615325266959189453125e-19);
0333
0334 static const T P[] = {
0335 BOOST_MATH_BIG_CONSTANT(T, 53, 0.25479851061131551),
0336 BOOST_MATH_BIG_CONSTANT(T, 53, -0.32555031186804491),
0337 BOOST_MATH_BIG_CONSTANT(T, 53, -0.65031853770896507),
0338 BOOST_MATH_BIG_CONSTANT(T, 53, -0.28919126444774784),
0339 BOOST_MATH_BIG_CONSTANT(T, 53, -0.045251321448739056),
0340 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0020713321167745952)
0341 };
0342 static const T Q[] = {
0343 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
0344 BOOST_MATH_BIG_CONSTANT(T, 53, 2.0767117023730469),
0345 BOOST_MATH_BIG_CONSTANT(T, 53, 1.4606242909763515),
0346 BOOST_MATH_BIG_CONSTANT(T, 53, 0.43593529692665969),
0347 BOOST_MATH_BIG_CONSTANT(T, 53, 0.054151797245674225),
0348 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0021284987017821144),
0349 BOOST_MATH_BIG_CONSTANT(T, 53, -0.55789841321675513e-6)
0350 };
0351
0352 T g = x - root1;
0353 g -= root2;
0354 g -= root3;
0355 T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
0356 T result = g * Y + g * r;
0357
0358 return result;
0359 }
0360
0361
0362
0363 template <class T>
0364 inline T digamma_imp_1_2(T x, const std::integral_constant<int, 24>*)
0365 {
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379 static const float Y = 0.99558162689208984f;
0380 static const T root = 1532632.0f / 1048576;
0381 static const T root_minor = static_cast<T>(0.3700660185912626595423257213284682051735604e-6L);
0382 static const T P[] = {
0383 0.25479851023250261e0f,
0384 -0.44981331915268368e0f,
0385 -0.43916936919946835e0f,
0386 -0.61041765350579073e-1f
0387 };
0388 static const T Q[] = {
0389 0.1e1f,
0390 0.15890202430554952e1f,
0391 0.65341249856146947e0f,
0392 0.63851690523355715e-1f
0393 };
0394
0395 T g = x - root;
0396 g -= root_minor;
0397 T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
0398 T result = g * Y + g * r;
0399
0400 return result;
0401 }
0402
0403 template <class T, class Tag, class Policy>
0404 T digamma_imp(T x, const Tag* t, const Policy& pol)
0405 {
0406
0407
0408
0409
0410 BOOST_MATH_STD_USING
0411
0412 T result = 0;
0413
0414
0415
0416 if(x <= -1)
0417 {
0418
0419 x = 1 - x;
0420
0421 T remainder = x - floor(x);
0422
0423 if(remainder > T(0.5))
0424 {
0425 remainder -= 1;
0426 }
0427
0428
0429
0430 if(remainder == 0)
0431 {
0432 return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", nullptr, (1-x), pol);
0433 }
0434 result = constants::pi<T>() / tan(constants::pi<T>() * remainder);
0435 }
0436 if(x == 0)
0437 return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", nullptr, x, pol);
0438
0439
0440
0441
0442 if(x >= digamma_large_lim(t))
0443 {
0444 result += digamma_imp_large(x, t);
0445 }
0446 else
0447 {
0448
0449
0450
0451 while(x > 2)
0452 {
0453 x -= 1;
0454 result += 1/x;
0455 }
0456
0457
0458
0459 while(x < 1)
0460 {
0461 result -= 1/x;
0462 x += 1;
0463 }
0464 result += digamma_imp_1_2(x, t);
0465 }
0466 return result;
0467 }
0468
0469 template <class T, class Policy>
0470 T digamma_imp(T x, const std::integral_constant<int, 0>* t, const Policy& pol)
0471 {
0472
0473
0474
0475
0476
0477
0478
0479
0480 BOOST_MATH_STD_USING
0481
0482 T result = 0;
0483
0484
0485
0486 if(x <= -1)
0487 {
0488
0489 x = 1 - x;
0490
0491 T remainder = x - floor(x);
0492
0493 if(remainder > T(0.5))
0494 {
0495 remainder -= 1;
0496 }
0497
0498
0499
0500 if(remainder == 0)
0501 {
0502 return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", nullptr, (1 - x), pol);
0503 }
0504 result = constants::pi<T>() / tan(constants::pi<T>() * remainder);
0505 }
0506 if(x == 0)
0507 return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", nullptr, x, pol);
0508
0509
0510
0511
0512
0513
0514
0515 int lim = 10 + ((tools::digits<T>() - 50) * 240L) / 950;
0516 T two_x = ldexp(x, 1);
0517 if(x >= lim)
0518 {
0519 result += digamma_imp_large(x, pol, t);
0520 }
0521 else if(floor(x) == x)
0522 {
0523
0524
0525
0526
0527 result = -constants::euler<T, Policy>();
0528 T val = 1;
0529 while(val < x)
0530 {
0531 result += 1 / val;
0532 val += 1;
0533 }
0534 }
0535 else if(floor(two_x) == two_x)
0536 {
0537
0538
0539
0540
0541 result = -2 * constants::ln_two<T, Policy>() - constants::euler<T, Policy>();
0542 int n = itrunc(x);
0543 if(n)
0544 {
0545 for(int k = 1; k < n; ++k)
0546 result += 1 / T(k);
0547 for(int k = n; k <= 2 * n - 1; ++k)
0548 result += 2 / T(k);
0549 }
0550 }
0551 else
0552 {
0553
0554
0555
0556 while(x < lim)
0557 {
0558 result -= 1 / x;
0559 x += 1;
0560 }
0561 result += digamma_imp_large(x, pol, t);
0562 }
0563 return result;
0564
0565 }
0566
0567 }
0568
0569 template <class T, class Policy>
0570 inline typename tools::promote_args<T>::type
0571 digamma(T x, const Policy&)
0572 {
0573 typedef typename tools::promote_args<T>::type result_type;
0574 typedef typename policies::evaluation<result_type, Policy>::type value_type;
0575 typedef typename policies::precision<T, Policy>::type precision_type;
0576 typedef std::integral_constant<int,
0577 (precision_type::value <= 0) || (precision_type::value > 113) ? 0 :
0578 precision_type::value <= 24 ? 24 :
0579 precision_type::value <= 53 ? 53 :
0580 precision_type::value <= 64 ? 64 :
0581 precision_type::value <= 113 ? 113 : 0 > tag_type;
0582 typedef typename policies::normalise<
0583 Policy,
0584 policies::promote_float<false>,
0585 policies::promote_double<false>,
0586 policies::discrete_quantile<>,
0587 policies::assert_undefined<> >::type forwarding_policy;
0588
0589 return policies::checked_narrowing_cast<result_type, Policy>(detail::digamma_imp(
0590 static_cast<value_type>(x),
0591 static_cast<const tag_type*>(nullptr), forwarding_policy()), "boost::math::digamma<%1%>(%1%)");
0592 }
0593
0594 template <class T>
0595 inline typename tools::promote_args<T>::type
0596 digamma(T x)
0597 {
0598 return digamma(x, policies::policy<>());
0599 }
0600
0601 }
0602 }
0603
0604 #ifdef _MSC_VER
0605 #pragma warning(pop)
0606 #endif
0607
0608 #endif
0609