File indexing completed on 2025-01-18 09:40:07
0001
0002
0003
0004
0005
0006
0007 #ifndef BOOST_MATH_SF_DETAIL_INV_T_HPP
0008 #define BOOST_MATH_SF_DETAIL_INV_T_HPP
0009
0010 #ifdef _MSC_VER
0011 #pragma once
0012 #endif
0013
0014 #include <boost/math/special_functions/cbrt.hpp>
0015 #include <boost/math/special_functions/round.hpp>
0016 #include <boost/math/special_functions/trunc.hpp>
0017
0018 namespace boost{ namespace math{ namespace detail{
0019
0020
0021
0022
0023
0024
0025
0026 template <class T, class Policy>
0027 T inverse_students_t_hill(T ndf, T u, const Policy& pol)
0028 {
0029 BOOST_MATH_STD_USING
0030 BOOST_MATH_ASSERT(u <= 0.5);
0031
0032 T a, b, c, d, q, x, y;
0033
0034 if (ndf > 1e20f)
0035 return -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
0036
0037 a = 1 / (ndf - 0.5f);
0038 b = 48 / (a * a);
0039 c = ((20700 * a / b - 98) * a - 16) * a + 96.36f;
0040 d = ((94.5f / (b + c) - 3) / b + 1) * sqrt(a * constants::pi<T>() / 2) * ndf;
0041 y = pow(d * 2 * u, 2 / ndf);
0042
0043 if (y > (0.05f + a))
0044 {
0045
0046
0047
0048 x = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
0049 y = x * x;
0050
0051 if (ndf < 5)
0052 c += 0.3f * (ndf - 4.5f) * (x + 0.6f);
0053 c += (((0.05f * d * x - 5) * x - 7) * x - 2) * x + b;
0054 y = (((((0.4f * y + 6.3f) * y + 36) * y + 94.5f) / c - y - 3) / b + 1) * x;
0055 y = boost::math::expm1(a * y * y, pol);
0056 }
0057 else
0058 {
0059 y = static_cast<T>(((1 / (((ndf + 6) / (ndf * y) - 0.089f * d - 0.822f)
0060 * (ndf + 2) * 3) + 0.5 / (ndf + 4)) * y - 1)
0061 * (ndf + 1) / (ndf + 2) + 1 / y);
0062 }
0063 q = sqrt(ndf * y);
0064
0065 return -q;
0066 }
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076 template <class T, class Policy>
0077 T inverse_students_t_tail_series(T df, T v, const Policy& pol)
0078 {
0079 BOOST_MATH_STD_USING
0080
0081
0082 T w = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol)
0083 * sqrt(df * constants::pi<T>()) * v;
0084
0085 T np2 = df + 2;
0086 T np4 = df + 4;
0087 T np6 = df + 6;
0088
0089
0090
0091
0092
0093 T d[7] = { 1, };
0094 d[1] = -(df + 1) / (2 * np2);
0095 np2 *= (df + 2);
0096 d[2] = -df * (df + 1) * (df + 3) / (8 * np2 * np4);
0097 np2 *= df + 2;
0098 d[3] = -df * (df + 1) * (df + 5) * (((3 * df) + 7) * df -2) / (48 * np2 * np4 * np6);
0099 np2 *= (df + 2);
0100 np4 *= (df + 4);
0101 d[4] = -df * (df + 1) * (df + 7) *
0102 ( (((((15 * df) + 154) * df + 465) * df + 286) * df - 336) * df + 64 )
0103 / (384 * np2 * np4 * np6 * (df + 8));
0104 np2 *= (df + 2);
0105 d[5] = -df * (df + 1) * (df + 3) * (df + 9)
0106 * (((((((35 * df + 452) * df + 1573) * df + 600) * df - 2020) * df) + 928) * df -128)
0107 / (1280 * np2 * np4 * np6 * (df + 8) * (df + 10));
0108 np2 *= (df + 2);
0109 np4 *= (df + 4);
0110 np6 *= (df + 6);
0111 d[6] = -df * (df + 1) * (df + 11)
0112 * ((((((((((((945 * df) + 31506) * df + 425858) * df + 2980236) * df + 11266745) * df + 20675018) * df + 7747124) * df - 22574632) * df - 8565600) * df + 18108416) * df - 7099392) * df + 884736)
0113 / (46080 * np2 * np4 * np6 * (df + 8) * (df + 10) * (df +12));
0114
0115
0116
0117
0118 T rn = sqrt(df);
0119 T div = pow(rn * w, 1 / df);
0120 T power = div * div;
0121 T result = tools::evaluate_polynomial<7, T, T>(d, power);
0122 result *= rn;
0123 result /= div;
0124 return -result;
0125 }
0126
0127 template <class T, class Policy>
0128 T inverse_students_t_body_series(T df, T u, const Policy& pol)
0129 {
0130 BOOST_MATH_STD_USING
0131
0132
0133
0134
0135
0136 T v = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol)
0137 * sqrt(df * constants::pi<T>()) * (u - constants::half<T>());
0138
0139
0140
0141 T c[11] = { 0, 1, };
0142
0143
0144
0145
0146 T in = 1 / df;
0147 c[2] = static_cast<T>(0.16666666666666666667 + 0.16666666666666666667 * in);
0148 c[3] = static_cast<T>((0.0083333333333333333333 * in
0149 + 0.066666666666666666667) * in
0150 + 0.058333333333333333333);
0151 c[4] = static_cast<T>(((0.00019841269841269841270 * in
0152 + 0.0017857142857142857143) * in
0153 + 0.026785714285714285714) * in
0154 + 0.025198412698412698413);
0155 c[5] = static_cast<T>((((2.7557319223985890653e-6 * in
0156 + 0.00037477954144620811287) * in
0157 - 0.0011078042328042328042) * in
0158 + 0.010559964726631393298) * in
0159 + 0.012039792768959435626);
0160 c[6] = static_cast<T>(((((2.5052108385441718775e-8 * in
0161 - 0.000062705427288760622094) * in
0162 + 0.00059458674042007375341) * in
0163 - 0.0016095979637646304313) * in
0164 + 0.0061039211560044893378) * in
0165 + 0.0038370059724226390893);
0166 c[7] = static_cast<T>((((((1.6059043836821614599e-10 * in
0167 + 0.000015401265401265401265) * in
0168 - 0.00016376804137220803887) * in
0169 + 0.00069084207973096861986) * in
0170 - 0.0012579159844784844785) * in
0171 + 0.0010898206731540064873) * in
0172 + 0.0032177478835464946576);
0173 c[8] = static_cast<T>(((((((7.6471637318198164759e-13 * in
0174 - 3.9851014346715404916e-6) * in
0175 + 0.000049255746366361445727) * in
0176 - 0.00024947258047043099953) * in
0177 + 0.00064513046951456342991) * in
0178 - 0.00076245135440323932387) * in
0179 + 0.000033530976880017885309) * in
0180 + 0.0017438262298340009980);
0181 c[9] = static_cast<T>((((((((2.8114572543455207632e-15 * in
0182 + 1.0914179173496789432e-6) * in
0183 - 0.000015303004486655377567) * in
0184 + 0.000090867107935219902229) * in
0185 - 0.00029133414466938067350) * in
0186 + 0.00051406605788341121363) * in
0187 - 0.00036307660358786885787) * in
0188 - 0.00031101086326318780412) * in
0189 + 0.00096472747321388644237);
0190 c[10] = static_cast<T>(((((((((8.2206352466243297170e-18 * in
0191 - 3.1239569599829868045e-7) * in
0192 + 4.8903045291975346210e-6) * in
0193 - 0.000033202652391372058698) * in
0194 + 0.00012645437628698076975) * in
0195 - 0.00028690924218514613987) * in
0196 + 0.00035764655430568632777) * in
0197 - 0.00010230378073700412687) * in
0198 - 0.00036942667800009661203) * in
0199 + 0.00054229262813129686486);
0200
0201
0202
0203 return tools::evaluate_odd_polynomial<11, T, T>(c, v);
0204 }
0205
0206 template <class T, class Policy>
0207 T inverse_students_t(T df, T u, T v, const Policy& pol, bool* pexact = nullptr)
0208 {
0209
0210
0211
0212
0213
0214
0215 BOOST_MATH_STD_USING
0216 bool invert = false;
0217 T result = 0;
0218 if(pexact)
0219 *pexact = false;
0220 if(u > v)
0221 {
0222
0223 std::swap(u, v);
0224 invert = true;
0225 }
0226 if((floor(df) == df) && (df < 20))
0227 {
0228
0229
0230
0231
0232 T tolerance = ldexp(1.0f, (2 * policies::digits<T, Policy>()) / 3);
0233
0234 switch(itrunc(df, Policy()))
0235 {
0236 case 1:
0237 {
0238
0239
0240
0241
0242 if(u == 0.5)
0243 result = 0;
0244 else
0245 result = -cos(constants::pi<T>() * u) / sin(constants::pi<T>() * u);
0246 if(pexact)
0247 *pexact = true;
0248 break;
0249 }
0250 case 2:
0251 {
0252
0253
0254
0255 result =(2 * u - 1) / sqrt(2 * u * v);
0256 if(pexact)
0257 *pexact = true;
0258 break;
0259 }
0260 case 4:
0261 {
0262
0263
0264
0265 T alpha = 4 * u * v;
0266 T root_alpha = sqrt(alpha);
0267 T r = 4 * cos(acos(root_alpha) / 3) / root_alpha;
0268 T x = sqrt(r - 4);
0269 result = u - 0.5f < 0 ? (T)-x : x;
0270 if(pexact)
0271 *pexact = true;
0272 break;
0273 }
0274 case 6:
0275 {
0276
0277
0278
0279 if(u < 1e-150)
0280 return (invert ? -1 : 1) * inverse_students_t_hill(df, u, pol);
0281
0282
0283
0284
0285
0286 T a = 4 * (u - u * u);
0287 T b = boost::math::cbrt(a, pol);
0288 static const T c = static_cast<T>(0.85498797333834849467655443627193);
0289 T p = 6 * (1 + c * (1 / b - 1));
0290 T p0;
0291 do{
0292 T p2 = p * p;
0293 T p4 = p2 * p2;
0294 T p5 = p * p4;
0295 p0 = p;
0296
0297 p = 2 * (8 * a * p5 - 270 * p2 + 2187) / (5 * (4 * a * p4 - 216 * p - 243));
0298 }while(fabs((p - p0) / p) > tolerance);
0299
0300
0301
0302 p = sqrt(p - df);
0303 result = (u - 0.5f) < 0 ? (T)-p : p;
0304 break;
0305 }
0306 #if 0
0307
0308
0309
0310
0311
0312
0313
0314 case 8:
0315 {
0316
0317
0318
0319
0320
0321 static const T c8 = 0.85994765706259820318168359251872L;
0322 T a = 4 * (u - u * u);
0323 T b = pow(a, T(1) / 4);
0324 T p = 8 * (1 + c8 * (1 / b - 1));
0325 T p0 = p;
0326 do{
0327 T p5 = p * p;
0328 p5 *= p5 * p;
0329 p0 = p;
0330
0331 p = 2 * (3 * p + (640 * (160 + p * (24 + p * (p + 4)))) / (-5120 + p * (-2048 - 960 * p + a * p5))) / 7;
0332 }while(fabs((p - p0) / p) > tolerance);
0333
0334
0335
0336 p = sqrt(p - df);
0337 result = (u - 0.5f) < 0 ? -p : p;
0338 break;
0339 }
0340 case 10:
0341 {
0342
0343
0344
0345
0346
0347 static const T c10 = 0.86781292867813396759105692122285L;
0348 T a = 4 * (u - u * u);
0349 T b = pow(a, T(1) / 5);
0350 T p = 10 * (1 + c10 * (1 / b - 1));
0351 T p0;
0352 do{
0353 T p6 = p * p;
0354 p6 *= p6 * p6;
0355 p0 = p;
0356
0357 p = (8 * p) / 9 + (218750 * (21875 + 4 * p * (625 + p * (75 + 2 * p * (5 + p))))) /
0358 (9 * (-68359375 + 8 * p * (-2343750 + p * (-546875 - 175000 * p + 8 * a * p6))));
0359 }while(fabs((p - p0) / p) > tolerance);
0360
0361
0362
0363 p = sqrt(p - df);
0364 result = (u - 0.5f) < 0 ? -p : p;
0365 break;
0366 }
0367 #endif
0368 default:
0369 goto calculate_real;
0370 }
0371 }
0372 else
0373 {
0374 calculate_real:
0375 if(df > 0x10000000)
0376 {
0377 result = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
0378 if((pexact) && (df >= 1e20))
0379 *pexact = true;
0380 }
0381 else if(df < 3)
0382 {
0383
0384
0385
0386
0387 T crossover = 0.2742f - df * 0.0242143f;
0388 if(u > crossover)
0389 {
0390 result = boost::math::detail::inverse_students_t_body_series(df, u, pol);
0391 }
0392 else
0393 {
0394 result = boost::math::detail::inverse_students_t_tail_series(df, u, pol);
0395 }
0396 }
0397 else
0398 {
0399
0400
0401
0402
0403
0404 T crossover = ldexp(1.0f, iround(T(df / -0.654f), typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type()));
0405 if(u > crossover)
0406 {
0407 result = boost::math::detail::inverse_students_t_hill(df, u, pol);
0408 }
0409 else
0410 {
0411 result = boost::math::detail::inverse_students_t_tail_series(df, u, pol);
0412 }
0413 }
0414 }
0415 return invert ? (T)-result : result;
0416 }
0417
0418 template <class T, class Policy>
0419 inline T find_ibeta_inv_from_t_dist(T a, T p, T , T* py, const Policy& pol)
0420 {
0421 T u = p / 2;
0422 T v = 1 - u;
0423 T df = a * 2;
0424 T t = boost::math::detail::inverse_students_t(df, u, v, pol);
0425 *py = t * t / (df + t * t);
0426 return df / (df + t * t);
0427 }
0428
0429 template <class T, class Policy>
0430 inline T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const std::false_type*)
0431 {
0432 BOOST_MATH_STD_USING
0433
0434
0435
0436
0437 T probability = (p > 0.5) ? 1 - p : p;
0438 T t, x, y(0);
0439 x = ibeta_inv(df / 2, T(0.5), 2 * probability, &y, pol);
0440 if(df * y > tools::max_value<T>() * x)
0441 t = policies::raise_overflow_error<T>("boost::math::students_t_quantile<%1%>(%1%,%1%)", nullptr, pol);
0442 else
0443 t = sqrt(df * y / x);
0444
0445
0446
0447 if(p < 0.5)
0448 t = -t;
0449 return t;
0450 }
0451
0452 template <class T, class Policy>
0453 T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const std::true_type*)
0454 {
0455 BOOST_MATH_STD_USING
0456 bool invert = false;
0457 if((df < 2) && (floor(df) != df))
0458 return boost::math::detail::fast_students_t_quantile_imp(df, p, pol, static_cast<std::false_type*>(nullptr));
0459 if(p > 0.5)
0460 {
0461 p = 1 - p;
0462 invert = true;
0463 }
0464
0465
0466
0467 bool exact;
0468 T t = inverse_students_t(df, p, T(1-p), pol, &exact);
0469 if((t == 0) || exact)
0470 return invert ? -t : t;
0471
0472
0473
0474 T t2 = t * t;
0475 T xb = df / (df + t2);
0476 T y = t2 / (df + t2);
0477 T a = df / 2;
0478
0479
0480
0481
0482 if(xb == 0)
0483 return t;
0484
0485
0486
0487 T f1;
0488 T f0 = xb < y ? ibeta_imp(a, constants::half<T>(), xb, pol, false, true, &f1)
0489 : ibeta_imp(constants::half<T>(), a, y, pol, true, true, &f1);
0490
0491
0492 T p0 = f0 / 2 - p;
0493
0494 T p1 = f1 * sqrt(y * xb * xb * xb / df);
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516 T p2 = t * (df + 1) / (t * t + df);
0517
0518 t = fabs(t);
0519 t += p0 / (p1 + p0 * p2 / 2);
0520 return !invert ? -t : t;
0521 }
0522
0523 template <class T, class Policy>
0524 inline T fast_students_t_quantile(T df, T p, const Policy& pol)
0525 {
0526 typedef typename policies::evaluation<T, Policy>::type value_type;
0527 typedef typename policies::normalise<
0528 Policy,
0529 policies::promote_float<false>,
0530 policies::promote_double<false>,
0531 policies::discrete_quantile<>,
0532 policies::assert_undefined<> >::type forwarding_policy;
0533
0534 typedef std::integral_constant<bool,
0535 (std::numeric_limits<T>::digits <= 53)
0536 &&
0537 (std::numeric_limits<T>::is_specialized)
0538 &&
0539 (std::numeric_limits<T>::radix == 2)
0540 > tag_type;
0541 return policies::checked_narrowing_cast<T, forwarding_policy>(fast_students_t_quantile_imp(static_cast<value_type>(df), static_cast<value_type>(p), pol, static_cast<tag_type*>(nullptr)), "boost::math::students_t_quantile<%1%>(%1%,%1%,%1%)");
0542 }
0543
0544 }}}
0545
0546 #endif
0547
0548
0549