File indexing completed on 2025-09-17 08:36:04
0001
0002
0003
0004
0005
0006
0007 #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
0008 #define BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
0009
0010 #ifdef _MSC_VER
0011 #pragma once
0012 #endif
0013
0014 #include <boost/math/tools/config.hpp>
0015 #include <boost/math/tools/big_constant.hpp>
0016 #include <boost/math/tools/type_traits.hpp>
0017 #include <boost/math/tools/precision.hpp>
0018 #include <boost/math/special_functions/lanczos.hpp>
0019
0020 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
0021
0022
0023
0024
0025
0026
0027 #pragma GCC system_header
0028 #endif
0029
0030 namespace boost{ namespace math{ namespace detail{
0031
0032
0033
0034
0035 template <class T, class Policy, class Lanczos>
0036 BOOST_MATH_GPU_ENABLED T gamma_imp(T z, const Policy& pol, const Lanczos& l);
0037 template <class T, class Policy>
0038 BOOST_MATH_GPU_ENABLED T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos& l);
0039
0040
0041
0042
0043 template <class T, class Policy, class Lanczos>
0044 BOOST_MATH_GPU_ENABLED T lgamma_small_imp(T z, T zm1, T zm2, const boost::math::integral_constant<int, 64>&, const Policy& , const Lanczos&)
0045 {
0046
0047
0048
0049
0050
0051 BOOST_MATH_STD_USING
0052 T result = 0;
0053 if(z < tools::epsilon<T>())
0054 {
0055 result = -log(z);
0056 }
0057 else if((zm1 == 0) || (zm2 == 0))
0058 {
0059
0060 }
0061 else if(z > 2)
0062 {
0063
0064
0065
0066
0067 if(z >= 3)
0068 {
0069 do
0070 {
0071 z -= 1;
0072 zm2 -= 1;
0073 result += log(z);
0074 }while(z >= 3);
0075
0076 zm2 = z - 2;
0077 }
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095 BOOST_MATH_STATIC const T P[] = {
0096 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.180355685678449379109e-1)),
0097 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25126649619989678683e-1)),
0098 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.494103151567532234274e-1)),
0099 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.172491608709613993966e-1)),
0100 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.259453563205438108893e-3)),
0101 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.541009869215204396339e-3)),
0102 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.324588649825948492091e-4))
0103 };
0104 BOOST_MATH_STATIC const T Q[] = {
0105 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
0106 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.196202987197795200688e1)),
0107 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.148019669424231326694e1)),
0108 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.541391432071720958364e0)),
0109 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.988504251128010129477e-1)),
0110 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.82130967464889339326e-2)),
0111 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.224936291922115757597e-3)),
0112 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.223352763208617092964e-6))
0113 };
0114
0115 constexpr float Y = 0.158963680267333984375e0f;
0116
0117 T r = zm2 * (z + 1);
0118 T R = tools::evaluate_polynomial(P, zm2);
0119 R /= tools::evaluate_polynomial(Q, zm2);
0120
0121 result += r * Y + r * R;
0122 }
0123 else
0124 {
0125
0126
0127
0128
0129 if(z < 1)
0130 {
0131 result += -log(z);
0132 zm2 = zm1;
0133 zm1 = z;
0134 z += 1;
0135 }
0136
0137
0138
0139
0140 if(z <= T(1.5))
0141 {
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160 constexpr float Y = 0.52815341949462890625f;
0161
0162 BOOST_MATH_STATIC const T P[] = {
0163 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.490622454069039543534e-1)),
0164 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.969117530159521214579e-1)),
0165 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.414983358359495381969e0)),
0166 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.406567124211938417342e0)),
0167 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.158413586390692192217e0)),
0168 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.240149820648571559892e-1)),
0169 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100346687696279557415e-2))
0170 };
0171 BOOST_MATH_STATIC const T Q[] = {
0172 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
0173 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.302349829846463038743e1)),
0174 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.348739585360723852576e1)),
0175 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.191415588274426679201e1)),
0176 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.507137738614363510846e0)),
0177 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.577039722690451849648e-1)),
0178 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.195768102601107189171e-2))
0179 };
0180
0181 T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
0182 T prefix = zm1 * zm2;
0183
0184 result += prefix * Y + prefix * r;
0185 }
0186 else
0187 {
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205 constexpr float Y = 0.452017307281494140625f;
0206
0207 BOOST_MATH_STATIC const T P[] = {
0208 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.292329721830270012337e-1)),
0209 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.144216267757192309184e0)),
0210 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.142440390738631274135e0)),
0211 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.542809694055053558157e-1)),
0212 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.850535976868336437746e-2)),
0213 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.431171342679297331241e-3))
0214 };
0215 BOOST_MATH_STATIC const T Q[] = {
0216 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
0217 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.150169356054485044494e1)),
0218 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.846973248876495016101e0)),
0219 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.220095151814995745555e0)),
0220 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25582797155975869989e-1)),
0221 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100666795539143372762e-2)),
0222 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.827193521891290553639e-6))
0223 };
0224 T r = zm2 * zm1;
0225 T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
0226
0227 result += r * Y + r * R;
0228 }
0229 }
0230 return result;
0231 }
0232
0233 #ifndef BOOST_MATH_HAS_GPU_SUPPORT
0234 template <class T, class Policy, class Lanczos>
0235 T lgamma_small_imp(T z, T zm1, T zm2, const boost::math::integral_constant<int, 113>&, const Policy& , const Lanczos&)
0236 {
0237
0238
0239
0240
0241
0242 BOOST_MATH_STD_USING
0243 T result = 0;
0244 if(z < tools::epsilon<T>())
0245 {
0246 result = -log(z);
0247 BOOST_MATH_INSTRUMENT_CODE(result);
0248 }
0249 else if((zm1 == 0) || (zm2 == 0))
0250 {
0251
0252 }
0253 else if(z > 2)
0254 {
0255
0256
0257
0258
0259 if(z >= 3)
0260 {
0261 do
0262 {
0263 z -= 1;
0264 result += log(z);
0265 }while(z >= 3);
0266 zm2 = z - 2;
0267 }
0268 BOOST_MATH_INSTRUMENT_CODE(zm2);
0269 BOOST_MATH_INSTRUMENT_CODE(z);
0270 BOOST_MATH_INSTRUMENT_CODE(result);
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284 static const T P[] = {
0285 BOOST_MATH_BIG_CONSTANT(T, 113, -0.018035568567844937910504030027467476655),
0286 BOOST_MATH_BIG_CONSTANT(T, 113, 0.013841458273109517271750705401202404195),
0287 BOOST_MATH_BIG_CONSTANT(T, 113, 0.062031842739486600078866923383017722399),
0288 BOOST_MATH_BIG_CONSTANT(T, 113, 0.052518418329052161202007865149435256093),
0289 BOOST_MATH_BIG_CONSTANT(T, 113, 0.01881718142472784129191838493267755758),
0290 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0025104830367021839316463675028524702846),
0291 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00021043176101831873281848891452678568311),
0292 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00010249622350908722793327719494037981166),
0293 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11381479670982006841716879074288176994e-4),
0294 BOOST_MATH_BIG_CONSTANT(T, 113, -0.49999811718089980992888533630523892389e-6),
0295 BOOST_MATH_BIG_CONSTANT(T, 113, -0.70529798686542184668416911331718963364e-8)
0296 };
0297 static const T Q[] = {
0298 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0299 BOOST_MATH_BIG_CONSTANT(T, 113, 2.5877485070422317542808137697939233685),
0300 BOOST_MATH_BIG_CONSTANT(T, 113, 2.8797959228352591788629602533153837126),
0301 BOOST_MATH_BIG_CONSTANT(T, 113, 1.8030885955284082026405495275461180977),
0302 BOOST_MATH_BIG_CONSTANT(T, 113, 0.69774331297747390169238306148355428436),
0303 BOOST_MATH_BIG_CONSTANT(T, 113, 0.17261566063277623942044077039756583802),
0304 BOOST_MATH_BIG_CONSTANT(T, 113, 0.02729301254544230229429621192443000121),
0305 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026776425891195270663133581960016620433),
0306 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00015244249160486584591370355730402168106),
0307 BOOST_MATH_BIG_CONSTANT(T, 113, 0.43997034032479866020546814475414346627e-5),
0308 BOOST_MATH_BIG_CONSTANT(T, 113, 0.46295080708455613044541885534408170934e-7),
0309 BOOST_MATH_BIG_CONSTANT(T, 113, -0.93326638207459533682980757982834180952e-11),
0310 BOOST_MATH_BIG_CONSTANT(T, 113, 0.42316456553164995177177407325292867513e-13)
0311 };
0312
0313 T R = tools::evaluate_polynomial(P, zm2);
0314 R /= tools::evaluate_polynomial(Q, zm2);
0315
0316 static const float Y = 0.158963680267333984375F;
0317
0318 T r = zm2 * (z + 1);
0319
0320 result += r * Y + r * R;
0321 BOOST_MATH_INSTRUMENT_CODE(result);
0322 }
0323 else
0324 {
0325
0326
0327
0328
0329 if(z < 1)
0330 {
0331 result += -log(z);
0332 zm2 = zm1;
0333 zm1 = z;
0334 z += 1;
0335 }
0336 BOOST_MATH_INSTRUMENT_CODE(result);
0337 BOOST_MATH_INSTRUMENT_CODE(z);
0338 BOOST_MATH_INSTRUMENT_CODE(zm2);
0339
0340
0341
0342 if(z <= 1.35)
0343 {
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360 static const float Y = 0.54076099395751953125f;
0361
0362 static const T P[] = {
0363 BOOST_MATH_BIG_CONSTANT(T, 113, 0.036454670944013329356512090082402429697),
0364 BOOST_MATH_BIG_CONSTANT(T, 113, -0.066235835556476033710068679907798799959),
0365 BOOST_MATH_BIG_CONSTANT(T, 113, -0.67492399795577182387312206593595565371),
0366 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4345555263962411429855341651960000166),
0367 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4894319559821365820516771951249649563),
0368 BOOST_MATH_BIG_CONSTANT(T, 113, -0.87210277668067964629483299712322411566),
0369 BOOST_MATH_BIG_CONSTANT(T, 113, -0.29602090537771744401524080430529369136),
0370 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0561832587517836908929331992218879676),
0371 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0053236785487328044334381502530383140443),
0372 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00018629360291358130461736386077971890789),
0373 BOOST_MATH_BIG_CONSTANT(T, 113, -0.10164985672213178500790406939467614498e-6),
0374 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13680157145361387405588201461036338274e-8)
0375 };
0376 static const T Q[] = {
0377 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0378 BOOST_MATH_BIG_CONSTANT(T, 113, 4.9106336261005990534095838574132225599),
0379 BOOST_MATH_BIG_CONSTANT(T, 113, 10.258804800866438510889341082793078432),
0380 BOOST_MATH_BIG_CONSTANT(T, 113, 11.88588976846826108836629960537466889),
0381 BOOST_MATH_BIG_CONSTANT(T, 113, 8.3455000546999704314454891036700998428),
0382 BOOST_MATH_BIG_CONSTANT(T, 113, 3.6428823682421746343233362007194282703),
0383 BOOST_MATH_BIG_CONSTANT(T, 113, 0.97465989807254572142266753052776132252),
0384 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15121052897097822172763084966793352524),
0385 BOOST_MATH_BIG_CONSTANT(T, 113, 0.012017363555383555123769849654484594893),
0386 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0003583032812720649835431669893011257277)
0387 };
0388
0389 T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
0390 T prefix = zm1 * zm2;
0391
0392 result += prefix * Y + prefix * r;
0393 BOOST_MATH_INSTRUMENT_CODE(result);
0394 }
0395 else if(z <= 1.625)
0396 {
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413 static const float Y = 0.483787059783935546875f;
0414
0415 static const T P[] = {
0416 BOOST_MATH_BIG_CONSTANT(T, 113, -0.017977422421608624353488126610933005432),
0417 BOOST_MATH_BIG_CONSTANT(T, 113, 0.18484528905298309555089509029244135703),
0418 BOOST_MATH_BIG_CONSTANT(T, 113, -0.40401251514859546989565001431430884082),
0419 BOOST_MATH_BIG_CONSTANT(T, 113, 0.40277179799147356461954182877921388182),
0420 BOOST_MATH_BIG_CONSTANT(T, 113, -0.21993421441282936476709677700477598816),
0421 BOOST_MATH_BIG_CONSTANT(T, 113, 0.069595742223850248095697771331107571011),
0422 BOOST_MATH_BIG_CONSTANT(T, 113, -0.012681481427699686635516772923547347328),
0423 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0012489322866834830413292771335113136034),
0424 BOOST_MATH_BIG_CONSTANT(T, 113, -0.57058739515423112045108068834668269608e-4),
0425 BOOST_MATH_BIG_CONSTANT(T, 113, 0.8207548771933585614380644961342925976e-6)
0426 };
0427 static const T Q[] = {
0428 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0429 BOOST_MATH_BIG_CONSTANT(T, 113, -2.9629552288944259229543137757200262073),
0430 BOOST_MATH_BIG_CONSTANT(T, 113, 3.7118380799042118987185957298964772755),
0431 BOOST_MATH_BIG_CONSTANT(T, 113, -2.5569815272165399297600586376727357187),
0432 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0546764918220835097855665680632153367),
0433 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26574021300894401276478730940980810831),
0434 BOOST_MATH_BIG_CONSTANT(T, 113, 0.03996289731752081380552901986471233462),
0435 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033398680924544836817826046380586480873),
0436 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00013288854760548251757651556792598235735),
0437 BOOST_MATH_BIG_CONSTANT(T, 113, -0.17194794958274081373243161848194745111e-5)
0438 };
0439 T r = zm2 * zm1;
0440 T R = tools::evaluate_polynomial(P, T(0.625 - zm1)) / tools::evaluate_polynomial(Q, T(0.625 - zm1));
0441
0442 result += r * Y + r * R;
0443 BOOST_MATH_INSTRUMENT_CODE(result);
0444 }
0445 else
0446 {
0447
0448
0449
0450
0451
0452
0453
0454 static const float Y = 0.443811893463134765625f;
0455
0456 static const T P[] = {
0457 BOOST_MATH_BIG_CONSTANT(T, 113, -0.021027558364667626231512090082402429494),
0458 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15128811104498736604523586803722368377),
0459 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26249631480066246699388544451126410278),
0460 BOOST_MATH_BIG_CONSTANT(T, 113, 0.21148748610533489823742352180628489742),
0461 BOOST_MATH_BIG_CONSTANT(T, 113, -0.093964130697489071999873506148104370633),
0462 BOOST_MATH_BIG_CONSTANT(T, 113, 0.024292059227009051652542804957550866827),
0463 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0036284453226534839926304745756906117066),
0464 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0002939230129315195346843036254392485984),
0465 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11088589183158123733132268042570710338e-4),
0466 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13240510580220763969511741896361984162e-6)
0467 };
0468 static const T Q[] = {
0469 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0470 BOOST_MATH_BIG_CONSTANT(T, 113, -2.4240003754444040525462170802796471996),
0471 BOOST_MATH_BIG_CONSTANT(T, 113, 2.4868383476933178722203278602342786002),
0472 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4047068395206343375520721509193698547),
0473 BOOST_MATH_BIG_CONSTANT(T, 113, 0.47583809087867443858344765659065773369),
0474 BOOST_MATH_BIG_CONSTANT(T, 113, -0.09865724264554556400463655444270700132),
0475 BOOST_MATH_BIG_CONSTANT(T, 113, 0.012238223514176587501074150988445109735),
0476 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00084625068418239194670614419707491797097),
0477 BOOST_MATH_BIG_CONSTANT(T, 113, 0.2796574430456237061420839429225710602e-4),
0478 BOOST_MATH_BIG_CONSTANT(T, 113, -0.30202973883316730694433702165188835331e-6)
0479 };
0480
0481 T r = zm2 * zm1;
0482 T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
0483
0484 result += r * Y + r * R;
0485 BOOST_MATH_INSTRUMENT_CODE(result);
0486 }
0487 }
0488 BOOST_MATH_INSTRUMENT_CODE(result);
0489 return result;
0490 }
0491 template <class T, class Policy, class Lanczos>
0492 BOOST_MATH_GPU_ENABLED T lgamma_small_imp(T z, T zm1, T zm2, const boost::math::integral_constant<int, 0>&, const Policy& pol, const Lanczos& l)
0493 {
0494
0495
0496
0497
0498
0499
0500
0501 BOOST_MATH_STD_USING
0502 T result = 0;
0503 if(z < tools::epsilon<T>())
0504 {
0505 result = -log(z);
0506 }
0507 else if(z < 0.5)
0508 {
0509
0510 result = log(gamma_imp(z, pol, Lanczos()));
0511 }
0512 else if(z >= 3)
0513 {
0514
0515 result = log(gamma_imp(z, pol, Lanczos()));
0516 }
0517 else if(z >= 1.5)
0518 {
0519
0520 T dz = zm2;
0521 result = dz * log((z + lanczos_g_near_1_and_2(l) - T(0.5)) / boost::math::constants::e<T>());
0522 result += boost::math::log1p(dz / (lanczos_g_near_1_and_2(l) + T(1.5)), pol) * T(1.5);
0523 result += boost::math::log1p(Lanczos::lanczos_sum_near_2(dz), pol);
0524 }
0525 else
0526 {
0527
0528 T dz = zm1;
0529 result = dz * log((z + lanczos_g_near_1_and_2(l) - T(0.5)) / boost::math::constants::e<T>());
0530 result += boost::math::log1p(dz / (lanczos_g_near_1_and_2(l) + T(0.5)), pol) / 2;
0531 result += boost::math::log1p(Lanczos::lanczos_sum_near_1(dz), pol);
0532 }
0533 return result;
0534 }
0535
0536 #endif
0537
0538 }}}
0539
0540 #endif
0541