File indexing completed on 2025-01-18 09:40:07
0001
0002
0003
0004
0005
0006 #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
0007 #define BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
0008
0009 #ifdef _MSC_VER
0010 #pragma once
0011 #endif
0012
0013 #include <boost/math/tools/big_constant.hpp>
0014
0015 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
0016
0017
0018
0019
0020
0021
0022 #pragma GCC system_header
0023 #endif
0024
0025 namespace boost{ namespace math{ namespace detail{
0026
0027
0028
0029
0030 template <class T, class Policy, class Lanczos>
0031 T gamma_imp(T z, const Policy& pol, const Lanczos& l);
0032 template <class T, class Policy>
0033 T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos& l);
0034
0035
0036
0037
0038 template <class T, class Policy, class Lanczos>
0039 T lgamma_small_imp(T z, T zm1, T zm2, const std::integral_constant<int, 64>&, const Policy& , const Lanczos&)
0040 {
0041
0042
0043
0044
0045
0046 BOOST_MATH_STD_USING
0047 T result = 0;
0048 if(z < tools::epsilon<T>())
0049 {
0050 result = -log(z);
0051 }
0052 else if((zm1 == 0) || (zm2 == 0))
0053 {
0054
0055 }
0056 else if(z > 2)
0057 {
0058
0059
0060
0061
0062 if(z >= 3)
0063 {
0064 do
0065 {
0066 z -= 1;
0067 zm2 -= 1;
0068 result += log(z);
0069 }while(z >= 3);
0070
0071 zm2 = z - 2;
0072 }
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090 static const T P[] = {
0091 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.180355685678449379109e-1)),
0092 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25126649619989678683e-1)),
0093 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.494103151567532234274e-1)),
0094 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.172491608709613993966e-1)),
0095 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.259453563205438108893e-3)),
0096 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.541009869215204396339e-3)),
0097 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.324588649825948492091e-4))
0098 };
0099 static const T Q[] = {
0100 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
0101 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.196202987197795200688e1)),
0102 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.148019669424231326694e1)),
0103 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.541391432071720958364e0)),
0104 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.988504251128010129477e-1)),
0105 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.82130967464889339326e-2)),
0106 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.224936291922115757597e-3)),
0107 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.223352763208617092964e-6))
0108 };
0109
0110 static const float Y = 0.158963680267333984375e0f;
0111
0112 T r = zm2 * (z + 1);
0113 T R = tools::evaluate_polynomial(P, zm2);
0114 R /= tools::evaluate_polynomial(Q, zm2);
0115
0116 result += r * Y + r * R;
0117 }
0118 else
0119 {
0120
0121
0122
0123
0124 if(z < 1)
0125 {
0126 result += -log(z);
0127 zm2 = zm1;
0128 zm1 = z;
0129 z += 1;
0130 }
0131
0132
0133
0134
0135 if(z <= T(1.5))
0136 {
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155 static const float Y = 0.52815341949462890625f;
0156
0157 static const T P[] = {
0158 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.490622454069039543534e-1)),
0159 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.969117530159521214579e-1)),
0160 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.414983358359495381969e0)),
0161 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.406567124211938417342e0)),
0162 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.158413586390692192217e0)),
0163 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.240149820648571559892e-1)),
0164 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100346687696279557415e-2))
0165 };
0166 static const T Q[] = {
0167 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
0168 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.302349829846463038743e1)),
0169 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.348739585360723852576e1)),
0170 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.191415588274426679201e1)),
0171 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.507137738614363510846e0)),
0172 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.577039722690451849648e-1)),
0173 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.195768102601107189171e-2))
0174 };
0175
0176 T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
0177 T prefix = zm1 * zm2;
0178
0179 result += prefix * Y + prefix * r;
0180 }
0181 else
0182 {
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200 static const float Y = 0.452017307281494140625f;
0201
0202 static const T P[] = {
0203 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.292329721830270012337e-1)),
0204 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.144216267757192309184e0)),
0205 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.142440390738631274135e0)),
0206 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.542809694055053558157e-1)),
0207 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.850535976868336437746e-2)),
0208 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.431171342679297331241e-3))
0209 };
0210 static const T Q[] = {
0211 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
0212 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.150169356054485044494e1)),
0213 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.846973248876495016101e0)),
0214 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.220095151814995745555e0)),
0215 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25582797155975869989e-1)),
0216 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100666795539143372762e-2)),
0217 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.827193521891290553639e-6))
0218 };
0219 T r = zm2 * zm1;
0220 T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
0221
0222 result += r * Y + r * R;
0223 }
0224 }
0225 return result;
0226 }
0227 template <class T, class Policy, class Lanczos>
0228 T lgamma_small_imp(T z, T zm1, T zm2, const std::integral_constant<int, 113>&, const Policy& , const Lanczos&)
0229 {
0230
0231
0232
0233
0234
0235 BOOST_MATH_STD_USING
0236 T result = 0;
0237 if(z < tools::epsilon<T>())
0238 {
0239 result = -log(z);
0240 BOOST_MATH_INSTRUMENT_CODE(result);
0241 }
0242 else if((zm1 == 0) || (zm2 == 0))
0243 {
0244
0245 }
0246 else if(z > 2)
0247 {
0248
0249
0250
0251
0252 if(z >= 3)
0253 {
0254 do
0255 {
0256 z -= 1;
0257 result += log(z);
0258 }while(z >= 3);
0259 zm2 = z - 2;
0260 }
0261 BOOST_MATH_INSTRUMENT_CODE(zm2);
0262 BOOST_MATH_INSTRUMENT_CODE(z);
0263 BOOST_MATH_INSTRUMENT_CODE(result);
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277 static const T P[] = {
0278 BOOST_MATH_BIG_CONSTANT(T, 113, -0.018035568567844937910504030027467476655),
0279 BOOST_MATH_BIG_CONSTANT(T, 113, 0.013841458273109517271750705401202404195),
0280 BOOST_MATH_BIG_CONSTANT(T, 113, 0.062031842739486600078866923383017722399),
0281 BOOST_MATH_BIG_CONSTANT(T, 113, 0.052518418329052161202007865149435256093),
0282 BOOST_MATH_BIG_CONSTANT(T, 113, 0.01881718142472784129191838493267755758),
0283 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0025104830367021839316463675028524702846),
0284 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00021043176101831873281848891452678568311),
0285 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00010249622350908722793327719494037981166),
0286 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11381479670982006841716879074288176994e-4),
0287 BOOST_MATH_BIG_CONSTANT(T, 113, -0.49999811718089980992888533630523892389e-6),
0288 BOOST_MATH_BIG_CONSTANT(T, 113, -0.70529798686542184668416911331718963364e-8)
0289 };
0290 static const T Q[] = {
0291 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0292 BOOST_MATH_BIG_CONSTANT(T, 113, 2.5877485070422317542808137697939233685),
0293 BOOST_MATH_BIG_CONSTANT(T, 113, 2.8797959228352591788629602533153837126),
0294 BOOST_MATH_BIG_CONSTANT(T, 113, 1.8030885955284082026405495275461180977),
0295 BOOST_MATH_BIG_CONSTANT(T, 113, 0.69774331297747390169238306148355428436),
0296 BOOST_MATH_BIG_CONSTANT(T, 113, 0.17261566063277623942044077039756583802),
0297 BOOST_MATH_BIG_CONSTANT(T, 113, 0.02729301254544230229429621192443000121),
0298 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026776425891195270663133581960016620433),
0299 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00015244249160486584591370355730402168106),
0300 BOOST_MATH_BIG_CONSTANT(T, 113, 0.43997034032479866020546814475414346627e-5),
0301 BOOST_MATH_BIG_CONSTANT(T, 113, 0.46295080708455613044541885534408170934e-7),
0302 BOOST_MATH_BIG_CONSTANT(T, 113, -0.93326638207459533682980757982834180952e-11),
0303 BOOST_MATH_BIG_CONSTANT(T, 113, 0.42316456553164995177177407325292867513e-13)
0304 };
0305
0306 T R = tools::evaluate_polynomial(P, zm2);
0307 R /= tools::evaluate_polynomial(Q, zm2);
0308
0309 static const float Y = 0.158963680267333984375F;
0310
0311 T r = zm2 * (z + 1);
0312
0313 result += r * Y + r * R;
0314 BOOST_MATH_INSTRUMENT_CODE(result);
0315 }
0316 else
0317 {
0318
0319
0320
0321
0322 if(z < 1)
0323 {
0324 result += -log(z);
0325 zm2 = zm1;
0326 zm1 = z;
0327 z += 1;
0328 }
0329 BOOST_MATH_INSTRUMENT_CODE(result);
0330 BOOST_MATH_INSTRUMENT_CODE(z);
0331 BOOST_MATH_INSTRUMENT_CODE(zm2);
0332
0333
0334
0335 if(z <= 1.35)
0336 {
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353 static const float Y = 0.54076099395751953125f;
0354
0355 static const T P[] = {
0356 BOOST_MATH_BIG_CONSTANT(T, 113, 0.036454670944013329356512090082402429697),
0357 BOOST_MATH_BIG_CONSTANT(T, 113, -0.066235835556476033710068679907798799959),
0358 BOOST_MATH_BIG_CONSTANT(T, 113, -0.67492399795577182387312206593595565371),
0359 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4345555263962411429855341651960000166),
0360 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4894319559821365820516771951249649563),
0361 BOOST_MATH_BIG_CONSTANT(T, 113, -0.87210277668067964629483299712322411566),
0362 BOOST_MATH_BIG_CONSTANT(T, 113, -0.29602090537771744401524080430529369136),
0363 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0561832587517836908929331992218879676),
0364 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0053236785487328044334381502530383140443),
0365 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00018629360291358130461736386077971890789),
0366 BOOST_MATH_BIG_CONSTANT(T, 113, -0.10164985672213178500790406939467614498e-6),
0367 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13680157145361387405588201461036338274e-8)
0368 };
0369 static const T Q[] = {
0370 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0371 BOOST_MATH_BIG_CONSTANT(T, 113, 4.9106336261005990534095838574132225599),
0372 BOOST_MATH_BIG_CONSTANT(T, 113, 10.258804800866438510889341082793078432),
0373 BOOST_MATH_BIG_CONSTANT(T, 113, 11.88588976846826108836629960537466889),
0374 BOOST_MATH_BIG_CONSTANT(T, 113, 8.3455000546999704314454891036700998428),
0375 BOOST_MATH_BIG_CONSTANT(T, 113, 3.6428823682421746343233362007194282703),
0376 BOOST_MATH_BIG_CONSTANT(T, 113, 0.97465989807254572142266753052776132252),
0377 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15121052897097822172763084966793352524),
0378 BOOST_MATH_BIG_CONSTANT(T, 113, 0.012017363555383555123769849654484594893),
0379 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0003583032812720649835431669893011257277)
0380 };
0381
0382 T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
0383 T prefix = zm1 * zm2;
0384
0385 result += prefix * Y + prefix * r;
0386 BOOST_MATH_INSTRUMENT_CODE(result);
0387 }
0388 else if(z <= 1.625)
0389 {
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406 static const float Y = 0.483787059783935546875f;
0407
0408 static const T P[] = {
0409 BOOST_MATH_BIG_CONSTANT(T, 113, -0.017977422421608624353488126610933005432),
0410 BOOST_MATH_BIG_CONSTANT(T, 113, 0.18484528905298309555089509029244135703),
0411 BOOST_MATH_BIG_CONSTANT(T, 113, -0.40401251514859546989565001431430884082),
0412 BOOST_MATH_BIG_CONSTANT(T, 113, 0.40277179799147356461954182877921388182),
0413 BOOST_MATH_BIG_CONSTANT(T, 113, -0.21993421441282936476709677700477598816),
0414 BOOST_MATH_BIG_CONSTANT(T, 113, 0.069595742223850248095697771331107571011),
0415 BOOST_MATH_BIG_CONSTANT(T, 113, -0.012681481427699686635516772923547347328),
0416 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0012489322866834830413292771335113136034),
0417 BOOST_MATH_BIG_CONSTANT(T, 113, -0.57058739515423112045108068834668269608e-4),
0418 BOOST_MATH_BIG_CONSTANT(T, 113, 0.8207548771933585614380644961342925976e-6)
0419 };
0420 static const T Q[] = {
0421 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0422 BOOST_MATH_BIG_CONSTANT(T, 113, -2.9629552288944259229543137757200262073),
0423 BOOST_MATH_BIG_CONSTANT(T, 113, 3.7118380799042118987185957298964772755),
0424 BOOST_MATH_BIG_CONSTANT(T, 113, -2.5569815272165399297600586376727357187),
0425 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0546764918220835097855665680632153367),
0426 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26574021300894401276478730940980810831),
0427 BOOST_MATH_BIG_CONSTANT(T, 113, 0.03996289731752081380552901986471233462),
0428 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033398680924544836817826046380586480873),
0429 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00013288854760548251757651556792598235735),
0430 BOOST_MATH_BIG_CONSTANT(T, 113, -0.17194794958274081373243161848194745111e-5)
0431 };
0432 T r = zm2 * zm1;
0433 T R = tools::evaluate_polynomial(P, T(0.625 - zm1)) / tools::evaluate_polynomial(Q, T(0.625 - zm1));
0434
0435 result += r * Y + r * R;
0436 BOOST_MATH_INSTRUMENT_CODE(result);
0437 }
0438 else
0439 {
0440
0441
0442
0443
0444
0445
0446
0447 static const float Y = 0.443811893463134765625f;
0448
0449 static const T P[] = {
0450 BOOST_MATH_BIG_CONSTANT(T, 113, -0.021027558364667626231512090082402429494),
0451 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15128811104498736604523586803722368377),
0452 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26249631480066246699388544451126410278),
0453 BOOST_MATH_BIG_CONSTANT(T, 113, 0.21148748610533489823742352180628489742),
0454 BOOST_MATH_BIG_CONSTANT(T, 113, -0.093964130697489071999873506148104370633),
0455 BOOST_MATH_BIG_CONSTANT(T, 113, 0.024292059227009051652542804957550866827),
0456 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0036284453226534839926304745756906117066),
0457 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0002939230129315195346843036254392485984),
0458 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11088589183158123733132268042570710338e-4),
0459 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13240510580220763969511741896361984162e-6)
0460 };
0461 static const T Q[] = {
0462 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
0463 BOOST_MATH_BIG_CONSTANT(T, 113, -2.4240003754444040525462170802796471996),
0464 BOOST_MATH_BIG_CONSTANT(T, 113, 2.4868383476933178722203278602342786002),
0465 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4047068395206343375520721509193698547),
0466 BOOST_MATH_BIG_CONSTANT(T, 113, 0.47583809087867443858344765659065773369),
0467 BOOST_MATH_BIG_CONSTANT(T, 113, -0.09865724264554556400463655444270700132),
0468 BOOST_MATH_BIG_CONSTANT(T, 113, 0.012238223514176587501074150988445109735),
0469 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00084625068418239194670614419707491797097),
0470 BOOST_MATH_BIG_CONSTANT(T, 113, 0.2796574430456237061420839429225710602e-4),
0471 BOOST_MATH_BIG_CONSTANT(T, 113, -0.30202973883316730694433702165188835331e-6)
0472 };
0473
0474 T r = zm2 * zm1;
0475 T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
0476
0477 result += r * Y + r * R;
0478 BOOST_MATH_INSTRUMENT_CODE(result);
0479 }
0480 }
0481 BOOST_MATH_INSTRUMENT_CODE(result);
0482 return result;
0483 }
0484 template <class T, class Policy, class Lanczos>
0485 T lgamma_small_imp(T z, T zm1, T zm2, const std::integral_constant<int, 0>&, const Policy& pol, const Lanczos& l)
0486 {
0487
0488
0489
0490
0491
0492
0493
0494 BOOST_MATH_STD_USING
0495 T result = 0;
0496 if(z < tools::epsilon<T>())
0497 {
0498 result = -log(z);
0499 }
0500 else if(z < 0.5)
0501 {
0502
0503 result = log(gamma_imp(z, pol, Lanczos()));
0504 }
0505 else if(z >= 3)
0506 {
0507
0508 result = log(gamma_imp(z, pol, Lanczos()));
0509 }
0510 else if(z >= 1.5)
0511 {
0512
0513 T dz = zm2;
0514 result = dz * log((z + lanczos_g_near_1_and_2(l) - T(0.5)) / boost::math::constants::e<T>());
0515 result += boost::math::log1p(dz / (lanczos_g_near_1_and_2(l) + T(1.5)), pol) * T(1.5);
0516 result += boost::math::log1p(Lanczos::lanczos_sum_near_2(dz), pol);
0517 }
0518 else
0519 {
0520
0521 T dz = zm1;
0522 result = dz * log((z + lanczos_g_near_1_and_2(l) - T(0.5)) / boost::math::constants::e<T>());
0523 result += boost::math::log1p(dz / (lanczos_g_near_1_and_2(l) + T(0.5)), pol) / 2;
0524 result += boost::math::log1p(Lanczos::lanczos_sum_near_1(dz), pol);
0525 }
0526 return result;
0527 }
0528
0529 }}}
0530
0531 #endif
0532