File indexing completed on 2025-01-18 09:40:03
0001
0002
0003
0004
0005
0006 #ifndef BOOST_MATH_SF_ERF_INV_HPP
0007 #define BOOST_MATH_SF_ERF_INV_HPP
0008
0009 #ifdef _MSC_VER
0010 #pragma once
0011 #pragma warning(push)
0012 #pragma warning(disable:4127)
0013 #pragma warning(disable:4702)
0014 #endif
0015
0016 #include <type_traits>
0017
0018 namespace boost{ namespace math{
0019
0020 namespace detail{
0021
0022
0023
0024
0025 template <class T, class Policy>
0026 T erf_inv_imp(const T& p, const T& q, const Policy&, const std::integral_constant<int, 64>*)
0027 {
0028 BOOST_MATH_STD_USING
0029
0030 T result = 0;
0031
0032 if(p <= 0.5)
0033 {
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046 static const float Y = 0.0891314744949340820313f;
0047 static const T P[] = {
0048 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000508781949658280665617),
0049 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00836874819741736770379),
0050 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0334806625409744615033),
0051 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0126926147662974029034),
0052 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0365637971411762664006),
0053 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0219878681111168899165),
0054 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00822687874676915743155),
0055 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00538772965071242932965)
0056 };
0057 static const T Q[] = {
0058 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0059 BOOST_MATH_BIG_CONSTANT(T, 64, -0.970005043303290640362),
0060 BOOST_MATH_BIG_CONSTANT(T, 64, -1.56574558234175846809),
0061 BOOST_MATH_BIG_CONSTANT(T, 64, 1.56221558398423026363),
0062 BOOST_MATH_BIG_CONSTANT(T, 64, 0.662328840472002992063),
0063 BOOST_MATH_BIG_CONSTANT(T, 64, -0.71228902341542847553),
0064 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0527396382340099713954),
0065 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0795283687341571680018),
0066 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00233393759374190016776),
0067 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000886216390456424707504)
0068 };
0069 T g = p * (p + 10);
0070 T r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
0071 result = g * Y + g * r;
0072 }
0073 else if(q >= 0.25)
0074 {
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087 static const float Y = 2.249481201171875f;
0088 static const T P[] = {
0089 BOOST_MATH_BIG_CONSTANT(T, 64, -0.202433508355938759655),
0090 BOOST_MATH_BIG_CONSTANT(T, 64, 0.105264680699391713268),
0091 BOOST_MATH_BIG_CONSTANT(T, 64, 8.37050328343119927838),
0092 BOOST_MATH_BIG_CONSTANT(T, 64, 17.6447298408374015486),
0093 BOOST_MATH_BIG_CONSTANT(T, 64, -18.8510648058714251895),
0094 BOOST_MATH_BIG_CONSTANT(T, 64, -44.6382324441786960818),
0095 BOOST_MATH_BIG_CONSTANT(T, 64, 17.445385985570866523),
0096 BOOST_MATH_BIG_CONSTANT(T, 64, 21.1294655448340526258),
0097 BOOST_MATH_BIG_CONSTANT(T, 64, -3.67192254707729348546)
0098 };
0099 static const T Q[] = {
0100 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0101 BOOST_MATH_BIG_CONSTANT(T, 64, 6.24264124854247537712),
0102 BOOST_MATH_BIG_CONSTANT(T, 64, 3.9713437953343869095),
0103 BOOST_MATH_BIG_CONSTANT(T, 64, -28.6608180499800029974),
0104 BOOST_MATH_BIG_CONSTANT(T, 64, -20.1432634680485188801),
0105 BOOST_MATH_BIG_CONSTANT(T, 64, 48.5609213108739935468),
0106 BOOST_MATH_BIG_CONSTANT(T, 64, 10.8268667355460159008),
0107 BOOST_MATH_BIG_CONSTANT(T, 64, -22.6436933413139721736),
0108 BOOST_MATH_BIG_CONSTANT(T, 64, 1.72114765761200282724)
0109 };
0110 T g = sqrt(-2 * log(q));
0111 T xs = q - 0.25f;
0112 T r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0113 result = g / (Y + r);
0114 }
0115 else
0116 {
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136 T x = sqrt(-log(q));
0137 if(x < 3)
0138 {
0139
0140 static const float Y = 0.807220458984375f;
0141 static const T P[] = {
0142 BOOST_MATH_BIG_CONSTANT(T, 64, -0.131102781679951906451),
0143 BOOST_MATH_BIG_CONSTANT(T, 64, -0.163794047193317060787),
0144 BOOST_MATH_BIG_CONSTANT(T, 64, 0.117030156341995252019),
0145 BOOST_MATH_BIG_CONSTANT(T, 64, 0.387079738972604337464),
0146 BOOST_MATH_BIG_CONSTANT(T, 64, 0.337785538912035898924),
0147 BOOST_MATH_BIG_CONSTANT(T, 64, 0.142869534408157156766),
0148 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0290157910005329060432),
0149 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00214558995388805277169),
0150 BOOST_MATH_BIG_CONSTANT(T, 64, -0.679465575181126350155e-6),
0151 BOOST_MATH_BIG_CONSTANT(T, 64, 0.285225331782217055858e-7),
0152 BOOST_MATH_BIG_CONSTANT(T, 64, -0.681149956853776992068e-9)
0153 };
0154 static const T Q[] = {
0155 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0156 BOOST_MATH_BIG_CONSTANT(T, 64, 3.46625407242567245975),
0157 BOOST_MATH_BIG_CONSTANT(T, 64, 5.38168345707006855425),
0158 BOOST_MATH_BIG_CONSTANT(T, 64, 4.77846592945843778382),
0159 BOOST_MATH_BIG_CONSTANT(T, 64, 2.59301921623620271374),
0160 BOOST_MATH_BIG_CONSTANT(T, 64, 0.848854343457902036425),
0161 BOOST_MATH_BIG_CONSTANT(T, 64, 0.152264338295331783612),
0162 BOOST_MATH_BIG_CONSTANT(T, 64, 0.01105924229346489121)
0163 };
0164 T xs = x - 1.125f;
0165 T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0166 result = Y * x + R * x;
0167 }
0168 else if(x < 6)
0169 {
0170
0171 static const float Y = 0.93995571136474609375f;
0172 static const T P[] = {
0173 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0350353787183177984712),
0174 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00222426529213447927281),
0175 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0185573306514231072324),
0176 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00950804701325919603619),
0177 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00187123492819559223345),
0178 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000157544617424960554631),
0179 BOOST_MATH_BIG_CONSTANT(T, 64, 0.460469890584317994083e-5),
0180 BOOST_MATH_BIG_CONSTANT(T, 64, -0.230404776911882601748e-9),
0181 BOOST_MATH_BIG_CONSTANT(T, 64, 0.266339227425782031962e-11)
0182 };
0183 static const T Q[] = {
0184 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0185 BOOST_MATH_BIG_CONSTANT(T, 64, 1.3653349817554063097),
0186 BOOST_MATH_BIG_CONSTANT(T, 64, 0.762059164553623404043),
0187 BOOST_MATH_BIG_CONSTANT(T, 64, 0.220091105764131249824),
0188 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0341589143670947727934),
0189 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00263861676657015992959),
0190 BOOST_MATH_BIG_CONSTANT(T, 64, 0.764675292302794483503e-4)
0191 };
0192 T xs = x - 3;
0193 T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0194 result = Y * x + R * x;
0195 }
0196 else if(x < 18)
0197 {
0198
0199 static const float Y = 0.98362827301025390625f;
0200 static const T P[] = {
0201 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0167431005076633737133),
0202 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00112951438745580278863),
0203 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00105628862152492910091),
0204 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000209386317487588078668),
0205 BOOST_MATH_BIG_CONSTANT(T, 64, 0.149624783758342370182e-4),
0206 BOOST_MATH_BIG_CONSTANT(T, 64, 0.449696789927706453732e-6),
0207 BOOST_MATH_BIG_CONSTANT(T, 64, 0.462596163522878599135e-8),
0208 BOOST_MATH_BIG_CONSTANT(T, 64, -0.281128735628831791805e-13),
0209 BOOST_MATH_BIG_CONSTANT(T, 64, 0.99055709973310326855e-16)
0210 };
0211 static const T Q[] = {
0212 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0213 BOOST_MATH_BIG_CONSTANT(T, 64, 0.591429344886417493481),
0214 BOOST_MATH_BIG_CONSTANT(T, 64, 0.138151865749083321638),
0215 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0160746087093676504695),
0216 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000964011807005165528527),
0217 BOOST_MATH_BIG_CONSTANT(T, 64, 0.275335474764726041141e-4),
0218 BOOST_MATH_BIG_CONSTANT(T, 64, 0.282243172016108031869e-6)
0219 };
0220 T xs = x - 6;
0221 T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0222 result = Y * x + R * x;
0223 }
0224 else if(x < 44)
0225 {
0226
0227 static const float Y = 0.99714565277099609375f;
0228 static const T P[] = {
0229 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0024978212791898131227),
0230 BOOST_MATH_BIG_CONSTANT(T, 64, -0.779190719229053954292e-5),
0231 BOOST_MATH_BIG_CONSTANT(T, 64, 0.254723037413027451751e-4),
0232 BOOST_MATH_BIG_CONSTANT(T, 64, 0.162397777342510920873e-5),
0233 BOOST_MATH_BIG_CONSTANT(T, 64, 0.396341011304801168516e-7),
0234 BOOST_MATH_BIG_CONSTANT(T, 64, 0.411632831190944208473e-9),
0235 BOOST_MATH_BIG_CONSTANT(T, 64, 0.145596286718675035587e-11),
0236 BOOST_MATH_BIG_CONSTANT(T, 64, -0.116765012397184275695e-17)
0237 };
0238 static const T Q[] = {
0239 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0240 BOOST_MATH_BIG_CONSTANT(T, 64, 0.207123112214422517181),
0241 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0169410838120975906478),
0242 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000690538265622684595676),
0243 BOOST_MATH_BIG_CONSTANT(T, 64, 0.145007359818232637924e-4),
0244 BOOST_MATH_BIG_CONSTANT(T, 64, 0.144437756628144157666e-6),
0245 BOOST_MATH_BIG_CONSTANT(T, 64, 0.509761276599778486139e-9)
0246 };
0247 T xs = x - 18;
0248 T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0249 result = Y * x + R * x;
0250 }
0251 else
0252 {
0253
0254 static const float Y = 0.99941349029541015625f;
0255 static const T P[] = {
0256 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000539042911019078575891),
0257 BOOST_MATH_BIG_CONSTANT(T, 64, -0.28398759004727721098e-6),
0258 BOOST_MATH_BIG_CONSTANT(T, 64, 0.899465114892291446442e-6),
0259 BOOST_MATH_BIG_CONSTANT(T, 64, 0.229345859265920864296e-7),
0260 BOOST_MATH_BIG_CONSTANT(T, 64, 0.225561444863500149219e-9),
0261 BOOST_MATH_BIG_CONSTANT(T, 64, 0.947846627503022684216e-12),
0262 BOOST_MATH_BIG_CONSTANT(T, 64, 0.135880130108924861008e-14),
0263 BOOST_MATH_BIG_CONSTANT(T, 64, -0.348890393399948882918e-21)
0264 };
0265 static const T Q[] = {
0266 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
0267 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0845746234001899436914),
0268 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00282092984726264681981),
0269 BOOST_MATH_BIG_CONSTANT(T, 64, 0.468292921940894236786e-4),
0270 BOOST_MATH_BIG_CONSTANT(T, 64, 0.399968812193862100054e-6),
0271 BOOST_MATH_BIG_CONSTANT(T, 64, 0.161809290887904476097e-8),
0272 BOOST_MATH_BIG_CONSTANT(T, 64, 0.231558608310259605225e-11)
0273 };
0274 T xs = x - 44;
0275 T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0276 result = Y * x + R * x;
0277 }
0278 }
0279 return result;
0280 }
0281
0282 template <class T, class Policy>
0283 struct erf_roots
0284 {
0285 boost::math::tuple<T,T,T> operator()(const T& guess)
0286 {
0287 BOOST_MATH_STD_USING
0288 T derivative = sign * (2 / sqrt(constants::pi<T>())) * exp(-(guess * guess));
0289 T derivative2 = -2 * guess * derivative;
0290 return boost::math::make_tuple(((sign > 0) ? static_cast<T>(boost::math::erf(guess, Policy()) - target) : static_cast<T>(boost::math::erfc(guess, Policy())) - target), derivative, derivative2);
0291 }
0292 erf_roots(T z, int s) : target(z), sign(s) {}
0293 private:
0294 T target;
0295 int sign;
0296 };
0297
0298 template <class T, class Policy>
0299 T erf_inv_imp(const T& p, const T& q, const Policy& pol, const std::integral_constant<int, 0>*)
0300 {
0301
0302
0303
0304 T guess = erf_inv_imp(p, q, pol, static_cast<std::integral_constant<int, 64> const*>(nullptr));
0305 T result;
0306
0307
0308
0309
0310 if(policies::digits<T, Policy>() > 64)
0311 {
0312 std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
0313 if(p <= 0.5)
0314 {
0315 result = tools::halley_iterate(detail::erf_roots<typename std::remove_cv<T>::type, Policy>(p, 1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter);
0316 }
0317 else
0318 {
0319 result = tools::halley_iterate(detail::erf_roots<typename std::remove_cv<T>::type, Policy>(q, -1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter);
0320 }
0321 policies::check_root_iterations<T>("boost::math::erf_inv<%1%>", max_iter, pol);
0322 }
0323 else
0324 {
0325 result = guess;
0326 }
0327 return result;
0328 }
0329
0330 template <class T, class Policy>
0331 struct erf_inv_initializer
0332 {
0333 struct init
0334 {
0335 init()
0336 {
0337 do_init();
0338 }
0339 static bool is_value_non_zero(T);
0340 static void do_init()
0341 {
0342
0343
0344
0345 if(std::numeric_limits<T>::digits)
0346 {
0347 boost::math::erf_inv(static_cast<T>(0.25), Policy());
0348 boost::math::erf_inv(static_cast<T>(0.55), Policy());
0349 boost::math::erf_inv(static_cast<T>(0.95), Policy());
0350 boost::math::erfc_inv(static_cast<T>(1e-15), Policy());
0351
0352
0353
0354
0355
0356 if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130))))
0357 boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130)), Policy());
0358
0359
0360
0361 #if LDBL_MAX_10_EXP >= 800
0362 if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800))))
0363 boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800)), Policy());
0364 if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900))))
0365 boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900)), Policy());
0366 #else
0367 if(is_value_non_zero(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800))))
0368 boost::math::erfc_inv(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800)), Policy());
0369 if(is_value_non_zero(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900))))
0370 boost::math::erfc_inv(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900)), Policy());
0371 #endif
0372 }
0373 }
0374 void force_instantiate()const{}
0375 };
0376 static const init initializer;
0377 static void force_instantiate()
0378 {
0379 initializer.force_instantiate();
0380 }
0381 };
0382
0383 template <class T, class Policy>
0384 const typename erf_inv_initializer<T, Policy>::init erf_inv_initializer<T, Policy>::initializer;
0385
0386 template <class T, class Policy>
0387 BOOST_NOINLINE bool erf_inv_initializer<T, Policy>::init::is_value_non_zero(T v)
0388 {
0389
0390
0391
0392 return v != 0;
0393 }
0394
0395 }
0396
0397 template <class T, class Policy>
0398 typename tools::promote_args<T>::type erfc_inv(T z, const Policy& pol)
0399 {
0400 typedef typename tools::promote_args<T>::type result_type;
0401
0402
0403
0404
0405 static const char* function = "boost::math::erfc_inv<%1%>(%1%, %1%)";
0406 if((z < 0) || (z > 2))
0407 return policies::raise_domain_error<result_type>(function, "Argument outside range [0,2] in inverse erfc function (got p=%1%).", z, pol);
0408 if(z == 0)
0409 return policies::raise_overflow_error<result_type>(function, nullptr, pol);
0410 if(z == 2)
0411 return -policies::raise_overflow_error<result_type>(function, nullptr, pol);
0412
0413
0414
0415
0416
0417 result_type p, q, s;
0418 if(z > 1)
0419 {
0420 q = 2 - z;
0421 p = 1 - q;
0422 s = -1;
0423 }
0424 else
0425 {
0426 p = 1 - z;
0427 q = z;
0428 s = 1;
0429 }
0430
0431
0432
0433
0434 typedef typename policies::precision<result_type, Policy>::type precision_type;
0435 typedef std::integral_constant<int,
0436 precision_type::value <= 0 ? 0 :
0437 precision_type::value <= 64 ? 64 : 0
0438 > tag_type;
0439
0440
0441
0442
0443 typedef typename policies::evaluation<result_type, Policy>::type eval_type;
0444 typedef typename policies::normalise<
0445 Policy,
0446 policies::promote_float<false>,
0447 policies::promote_double<false>,
0448 policies::discrete_quantile<>,
0449 policies::assert_undefined<> >::type forwarding_policy;
0450
0451 detail::erf_inv_initializer<eval_type, forwarding_policy>::force_instantiate();
0452
0453
0454
0455
0456 return s * policies::checked_narrowing_cast<result_type, forwarding_policy>(
0457 detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(nullptr)), function);
0458 }
0459
0460 template <class T, class Policy>
0461 typename tools::promote_args<T>::type erf_inv(T z, const Policy& pol)
0462 {
0463 typedef typename tools::promote_args<T>::type result_type;
0464
0465
0466
0467
0468 static const char* function = "boost::math::erf_inv<%1%>(%1%, %1%)";
0469 if((z < -1) || (z > 1))
0470 return policies::raise_domain_error<result_type>(function, "Argument outside range [-1, 1] in inverse erf function (got p=%1%).", z, pol);
0471 if(z == 1)
0472 return policies::raise_overflow_error<result_type>(function, nullptr, pol);
0473 if(z == -1)
0474 return -policies::raise_overflow_error<result_type>(function, nullptr, pol);
0475 if(z == 0)
0476 return 0;
0477
0478
0479
0480
0481
0482 result_type p, q, s;
0483 if(z < 0)
0484 {
0485 p = -z;
0486 q = 1 - p;
0487 s = -1;
0488 }
0489 else
0490 {
0491 p = z;
0492 q = 1 - z;
0493 s = 1;
0494 }
0495
0496
0497
0498
0499 typedef typename policies::precision<result_type, Policy>::type precision_type;
0500 typedef std::integral_constant<int,
0501 precision_type::value <= 0 ? 0 :
0502 precision_type::value <= 64 ? 64 : 0
0503 > tag_type;
0504
0505
0506
0507
0508 typedef typename policies::evaluation<result_type, Policy>::type eval_type;
0509 typedef typename policies::normalise<
0510 Policy,
0511 policies::promote_float<false>,
0512 policies::promote_double<false>,
0513 policies::discrete_quantile<>,
0514 policies::assert_undefined<> >::type forwarding_policy;
0515
0516
0517
0518
0519 typedef typename policies::evaluation<result_type, Policy>::type eval_type;
0520
0521 detail::erf_inv_initializer<eval_type, forwarding_policy>::force_instantiate();
0522
0523
0524
0525 return s * policies::checked_narrowing_cast<result_type, forwarding_policy>(
0526 detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(nullptr)), function);
0527 }
0528
0529 template <class T>
0530 inline typename tools::promote_args<T>::type erfc_inv(T z)
0531 {
0532 return erfc_inv(z, policies::policy<>());
0533 }
0534
0535 template <class T>
0536 inline typename tools::promote_args<T>::type erf_inv(T z)
0537 {
0538 return erf_inv(z, policies::policy<>());
0539 }
0540
0541 }
0542 }
0543
0544 #ifdef _MSC_VER
0545 #pragma warning(pop)
0546 #endif
0547
0548 #endif
0549