File indexing completed on 2025-09-16 08:38:29
0001
0002
0003
0004
0005
0006 #ifndef BOOST_MATH_BESSEL_Y0_HPP
0007 #define BOOST_MATH_BESSEL_Y0_HPP
0008
0009 #ifdef _MSC_VER
0010 #pragma once
0011 #pragma warning(push)
0012 #pragma warning(disable:4702)
0013 #endif
0014
0015 #include <boost/math/tools/config.hpp>
0016 #include <boost/math/special_functions/detail/bessel_j0.hpp>
0017 #include <boost/math/constants/constants.hpp>
0018 #include <boost/math/tools/rational.hpp>
0019 #include <boost/math/tools/big_constant.hpp>
0020 #include <boost/math/policies/error_handling.hpp>
0021 #include <boost/math/tools/assert.hpp>
0022
0023 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
0024
0025
0026
0027
0028
0029
0030 #pragma GCC system_header
0031 #endif
0032
0033
0034
0035
0036
0037 namespace boost { namespace math { namespace detail{
0038
0039 template <typename T, typename Policy>
0040 BOOST_MATH_GPU_ENABLED T bessel_y0(T x, const Policy&);
0041
0042 template <typename T, typename Policy>
0043 BOOST_MATH_GPU_ENABLED T bessel_y0(T x, const Policy&)
0044 {
0045 BOOST_MATH_STATIC const T P1[] = {
0046 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0723538782003176831e+11)),
0047 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.3716255451260504098e+09)),
0048 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0422274357376619816e+08)),
0049 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.1287548474401797963e+06)),
0050 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0102532948020907590e+04)),
0051 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8402381979244993524e+01)),
0052 };
0053 BOOST_MATH_STATIC const T Q1[] = {
0054 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8873865738997033405e+11)),
0055 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1617187777290363573e+09)),
0056 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5662956624278251596e+07)),
0057 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3889393209447253406e+05)),
0058 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6475986689240190091e+02)),
0059 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
0060 };
0061 BOOST_MATH_STATIC const T P2[] = {
0062 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2213976967566192242e+13)),
0063 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5107435206722644429e+11)),
0064 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3600098638603061642e+10)),
0065 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9590439394619619534e+08)),
0066 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6905288611678631510e+06)),
0067 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4566865832663635920e+04)),
0068 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7427031242901594547e+01)),
0069 };
0070 BOOST_MATH_STATIC const T Q2[] = {
0071 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3386146580707264428e+14)),
0072 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4266824419412347550e+12)),
0073 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4015103849971240096e+10)),
0074 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960202770986831075e+08)),
0075 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0669982352539552018e+05)),
0076 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.3030857612070288823e+02)),
0077 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
0078 };
0079 BOOST_MATH_STATIC const T P3[] = {
0080 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.0728726905150210443e+15)),
0081 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.7016641869173237784e+14)),
0082 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2829912364088687306e+11)),
0083 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9363051266772083678e+11)),
0084 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1958827170518100757e+09)),
0085 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0085539923498211426e+07)),
0086 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1363534169313901632e+04)),
0087 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7439661319197499338e+01)),
0088 };
0089 BOOST_MATH_STATIC const T Q3[] = {
0090 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4563724628846457519e+17)),
0091 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9272425569640309819e+15)),
0092 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2598377924042897629e+13)),
0093 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6926121104209825246e+10)),
0094 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4727219475672302327e+08)),
0095 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3924739209768057030e+05)),
0096 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.7903362168128450017e+02)),
0097 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
0098 };
0099 BOOST_MATH_STATIC const T PC[] = {
0100 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)),
0101 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)),
0102 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)),
0103 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)),
0104 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)),
0105 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)),
0106 };
0107 BOOST_MATH_STATIC const T QC[] = {
0108 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)),
0109 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)),
0110 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)),
0111 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)),
0112 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)),
0113 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
0114 };
0115 BOOST_MATH_STATIC const T PS[] = {
0116 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)),
0117 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)),
0118 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)),
0119 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)),
0120 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)),
0121 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)),
0122 };
0123 BOOST_MATH_STATIC const T QS[] = {
0124 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)),
0125 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)),
0126 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)),
0127 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)),
0128 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)),
0129 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
0130 };
0131 BOOST_MATH_STATIC const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.9357696627916752158e-01)),
0132 x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9576784193148578684e+00)),
0133 x3 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0860510603017726976e+00)),
0134 x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.280e+02)),
0135 x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9519662791675215849e-03)),
0136 x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0130e+03)),
0137 x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4716931485786837568e-04)),
0138 x31 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8140e+03)),
0139 x32 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1356030177269762362e-04))
0140 ;
0141 T value, factor, r, rc, rs;
0142
0143 BOOST_MATH_STD_USING
0144 using namespace boost::math::tools;
0145 using namespace boost::math::constants;
0146
0147 BOOST_MATH_ASSERT(x > 0);
0148
0149 if (x <= 3)
0150 {
0151 T y = x * x;
0152 T z = 2 * log(x/x1) * bessel_j0(x) / pi<T>();
0153 r = evaluate_rational(P1, Q1, y);
0154 factor = (x + x1) * ((x - x11/256) - x12);
0155 value = z + factor * r;
0156 }
0157 else if (x <= 5.5f)
0158 {
0159 T y = x * x;
0160 T z = 2 * log(x/x2) * bessel_j0(x) / pi<T>();
0161 r = evaluate_rational(P2, Q2, y);
0162 factor = (x + x2) * ((x - x21/256) - x22);
0163 value = z + factor * r;
0164 }
0165 else if (x <= 8)
0166 {
0167 T y = x * x;
0168 T z = 2 * log(x/x3) * bessel_j0(x) / pi<T>();
0169 r = evaluate_rational(P3, Q3, y);
0170 factor = (x + x3) * ((x - x31/256) - x32);
0171 value = z + factor * r;
0172 }
0173 else
0174 {
0175 T y = 8 / x;
0176 T y2 = y * y;
0177 rc = evaluate_rational(PC, QC, y2);
0178 rs = evaluate_rational(PS, QS, y2);
0179 factor = constants::one_div_root_pi<T>() / sqrt(x);
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190 T sx = sin(x);
0191 T cx = cos(x);
0192 value = factor * (rc * (sx - cx) + y * rs * (cx + sx));
0193 }
0194
0195 return value;
0196 }
0197
0198 }}}
0199
0200 #ifdef _MSC_VER
0201 #pragma warning(pop)
0202 #endif
0203
0204 #endif
0205