File indexing completed on 2025-01-18 09:40:00
0001
0002
0003
0004
0005
0006
0007 #ifndef BOOST_MATH_BESSEL_K0_HPP
0008 #define BOOST_MATH_BESSEL_K0_HPP
0009
0010 #ifdef _MSC_VER
0011 #pragma once
0012 #pragma warning(push)
0013 #pragma warning(disable:4702)
0014 #endif
0015
0016 #include <boost/math/tools/rational.hpp>
0017 #include <boost/math/tools/big_constant.hpp>
0018 #include <boost/math/policies/error_handling.hpp>
0019 #include <boost/math/tools/assert.hpp>
0020
0021 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
0022
0023
0024
0025
0026
0027
0028 #pragma GCC system_header
0029 #endif
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044 namespace boost { namespace math { namespace detail{
0045
0046 template <typename T>
0047 T bessel_k0(const T& x);
0048
0049 template <class T, class tag>
0050 struct bessel_k0_initializer
0051 {
0052 struct init
0053 {
0054 init()
0055 {
0056 do_init(tag());
0057 }
0058 static void do_init(const std::integral_constant<int, 113>&)
0059 {
0060 bessel_k0(T(0.5));
0061 bessel_k0(T(1.5));
0062 }
0063 static void do_init(const std::integral_constant<int, 64>&)
0064 {
0065 bessel_k0(T(0.5));
0066 bessel_k0(T(1.5));
0067 }
0068 template <class U>
0069 static void do_init(const U&){}
0070 void force_instantiate()const{}
0071 };
0072 static const init initializer;
0073 static void force_instantiate()
0074 {
0075 initializer.force_instantiate();
0076 }
0077 };
0078
0079 template <class T, class tag>
0080 const typename bessel_k0_initializer<T, tag>::init bessel_k0_initializer<T, tag>::initializer;
0081
0082
0083 template <typename T, int N>
0084 T bessel_k0_imp(const T&, const std::integral_constant<int, N>&)
0085 {
0086 BOOST_MATH_ASSERT(0);
0087 return 0;
0088 }
0089
0090 template <typename T>
0091 T bessel_k0_imp(const T& x, const std::integral_constant<int, 24>&)
0092 {
0093 BOOST_MATH_STD_USING
0094 if(x <= 1)
0095 {
0096
0097
0098
0099
0100 static const T Y = 1.137250900268554688f;
0101 static const T P[] =
0102 {
0103 -1.372508979104259711e-01f,
0104 2.622545986273687617e-01f,
0105 5.047103728247919836e-03f
0106 };
0107 static const T Q[] =
0108 {
0109 1.000000000000000000e+00f,
0110 -8.928694018000029415e-02f,
0111 2.985980684180969241e-03f
0112 };
0113 T a = x * x / 4;
0114 a = (tools::evaluate_rational(P, Q, a) + Y) * a + 1;
0115
0116
0117
0118
0119
0120 static const T P2[] = {
0121 1.159315158e-01f,
0122 2.789828686e-01f,
0123 2.524902861e-02f,
0124 8.457241514e-04f,
0125 1.530051997e-05f
0126 };
0127 return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a;
0128 }
0129 else
0130 {
0131
0132
0133
0134
0135
0136 static const T P[] =
0137 {
0138 2.533141220e-01f,
0139 5.221502603e-01f,
0140 6.380180669e-02f,
0141 -5.934976547e-02f
0142 };
0143 static const T Q[] =
0144 {
0145 1.000000000e+00f,
0146 2.679722431e+00f,
0147 1.561635813e+00f,
0148 1.573660661e-01f
0149 };
0150 if(x < tools::log_max_value<T>())
0151 return ((tools::evaluate_rational(P, Q, T(1 / x)) + 1) * exp(-x) / sqrt(x));
0152 else
0153 {
0154 T ex = exp(-x / 2);
0155 return ((tools::evaluate_rational(P, Q, T(1 / x)) + 1) * ex / sqrt(x)) * ex;
0156 }
0157 }
0158 }
0159
0160 template <typename T>
0161 T bessel_k0_imp(const T& x, const std::integral_constant<int, 53>&)
0162 {
0163 BOOST_MATH_STD_USING
0164 if(x <= 1)
0165 {
0166
0167
0168
0169
0170 static const T Y = 1.137250900268554688;
0171 static const T P[] =
0172 {
0173 -1.372509002685546267e-01,
0174 2.574916117833312855e-01,
0175 1.395474602146869316e-02,
0176 5.445476986653926759e-04,
0177 7.125159422136622118e-06
0178 };
0179 static const T Q[] =
0180 {
0181 1.000000000000000000e+00,
0182 -5.458333438017788530e-02,
0183 1.291052816975251298e-03,
0184 -1.367653946978586591e-05
0185 };
0186
0187 T a = x * x / 4;
0188 a = (tools::evaluate_polynomial(P, a) / tools::evaluate_polynomial(Q, a) + Y) * a + 1;
0189
0190
0191
0192
0193
0194 static const T P2[] =
0195 {
0196 1.159315156584124484e-01,
0197 2.789828789146031732e-01,
0198 2.524892993216121934e-02,
0199 8.460350907213637784e-04,
0200 1.491471924309617534e-05,
0201 1.627106892422088488e-07,
0202 1.208266102392756055e-09,
0203 6.611686391749704310e-12
0204 };
0205
0206 return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a;
0207 }
0208 else
0209 {
0210
0211
0212
0213
0214
0215 static const T Y = 1;
0216 static const T P[] =
0217 {
0218 2.533141373155002416e-01,
0219 3.628342133984595192e+00,
0220 1.868441889406606057e+01,
0221 4.306243981063412784e+01,
0222 4.424116209627428189e+01,
0223 1.562095339356220468e+01,
0224 -1.810138978229410898e+00,
0225 -1.414237994269995877e+00,
0226 -9.369168119754924625e-02
0227 };
0228 static const T Q[] =
0229 {
0230 1.000000000000000000e+00,
0231 1.494194694879908328e+01,
0232 8.265296455388554217e+01,
0233 2.162779506621866970e+02,
0234 2.845145155184222157e+02,
0235 1.851714491916334995e+02,
0236 5.486540717439723515e+01,
0237 6.118075837628957015e+00,
0238 1.586261269326235053e-01
0239 };
0240 if(x < tools::log_max_value<T>())
0241 return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
0242 else
0243 {
0244 T ex = exp(-x / 2);
0245 return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
0246 }
0247 }
0248 }
0249
0250 template <typename T>
0251 T bessel_k0_imp(const T& x, const std::integral_constant<int, 64>&)
0252 {
0253 BOOST_MATH_STD_USING
0254 if(x <= 1)
0255 {
0256
0257
0258
0259
0260 static const T Y = 1.137250900268554687500e+00;
0261 static const T P[] =
0262 {
0263 BOOST_MATH_BIG_CONSTANT(T, 64, -1.372509002685546875002e-01),
0264 BOOST_MATH_BIG_CONSTANT(T, 64, 2.566481981037407600436e-01),
0265 BOOST_MATH_BIG_CONSTANT(T, 64, 1.551881122448948854873e-02),
0266 BOOST_MATH_BIG_CONSTANT(T, 64, 6.646112454323276529650e-04),
0267 BOOST_MATH_BIG_CONSTANT(T, 64, 1.213747930378196492543e-05),
0268 BOOST_MATH_BIG_CONSTANT(T, 64, 9.423709328020389560844e-08)
0269 };
0270 static const T Q[] =
0271 {
0272 BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
0273 BOOST_MATH_BIG_CONSTANT(T, 64, -4.843828412587773008342e-02),
0274 BOOST_MATH_BIG_CONSTANT(T, 64, 1.088484822515098936140e-03),
0275 BOOST_MATH_BIG_CONSTANT(T, 64, -1.374724008530702784829e-05),
0276 BOOST_MATH_BIG_CONSTANT(T, 64, 8.452665455952581680339e-08)
0277 };
0278
0279
0280 T a = x * x / 4;
0281 a = (tools::evaluate_polynomial(P, a) / tools::evaluate_polynomial(Q, a) + Y) * a + 1;
0282
0283
0284
0285
0286
0287 static const T P2[] =
0288 {
0289 BOOST_MATH_BIG_CONSTANT(T, 64, 1.159315156584124488110e-01),
0290 BOOST_MATH_BIG_CONSTANT(T, 64, 2.764832791416047889734e-01),
0291 BOOST_MATH_BIG_CONSTANT(T, 64, 1.926062887220923354112e-02),
0292 BOOST_MATH_BIG_CONSTANT(T, 64, 3.660777862036966089410e-04),
0293 BOOST_MATH_BIG_CONSTANT(T, 64, 2.094942446930673386849e-06)
0294 };
0295 static const T Q2[] =
0296 {
0297 BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
0298 BOOST_MATH_BIG_CONSTANT(T, 64, -2.156100313881251616320e-02),
0299 BOOST_MATH_BIG_CONSTANT(T, 64, 2.315993873344905957033e-04),
0300 BOOST_MATH_BIG_CONSTANT(T, 64, -1.529444499350703363451e-06),
0301 BOOST_MATH_BIG_CONSTANT(T, 64, 5.524988589917857531177e-09)
0302 };
0303 return tools::evaluate_rational(P2, Q2, T(x * x)) - log(x) * a;
0304 }
0305 else
0306 {
0307
0308
0309
0310
0311 static const T Y = 1;
0312 static const T P[] =
0313 {
0314 BOOST_MATH_BIG_CONSTANT(T, 64, 2.533141373155002512056e-01),
0315 BOOST_MATH_BIG_CONSTANT(T, 64, 5.417942070721928652715e+00),
0316 BOOST_MATH_BIG_CONSTANT(T, 64, 4.477464607463971754433e+01),
0317 BOOST_MATH_BIG_CONSTANT(T, 64, 1.838745728725943889876e+02),
0318 BOOST_MATH_BIG_CONSTANT(T, 64, 4.009736314927811202517e+02),
0319 BOOST_MATH_BIG_CONSTANT(T, 64, 4.557411293123609803452e+02),
0320 BOOST_MATH_BIG_CONSTANT(T, 64, 2.360222564015361268955e+02),
0321 BOOST_MATH_BIG_CONSTANT(T, 64, 2.385435333168505701022e+01),
0322 BOOST_MATH_BIG_CONSTANT(T, 64, -1.750195760942181592050e+01),
0323 BOOST_MATH_BIG_CONSTANT(T, 64, -4.059789241612946683713e+00),
0324 BOOST_MATH_BIG_CONSTANT(T, 64, -1.612783121537333908889e-01)
0325 };
0326 static const T Q[] =
0327 {
0328 BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
0329 BOOST_MATH_BIG_CONSTANT(T, 64, 2.200669254769325861404e+01),
0330 BOOST_MATH_BIG_CONSTANT(T, 64, 1.900177593527144126549e+02),
0331 BOOST_MATH_BIG_CONSTANT(T, 64, 8.361003989965786932682e+02),
0332 BOOST_MATH_BIG_CONSTANT(T, 64, 2.041319870804843395893e+03),
0333 BOOST_MATH_BIG_CONSTANT(T, 64, 2.828491555113790345068e+03),
0334 BOOST_MATH_BIG_CONSTANT(T, 64, 2.190342229261529076624e+03),
0335 BOOST_MATH_BIG_CONSTANT(T, 64, 9.003330795963812219852e+02),
0336 BOOST_MATH_BIG_CONSTANT(T, 64, 1.773371397243777891569e+02),
0337 BOOST_MATH_BIG_CONSTANT(T, 64, 1.368634935531158398439e+01),
0338 BOOST_MATH_BIG_CONSTANT(T, 64, 2.543310879400359967327e-01)
0339 };
0340 if(x < tools::log_max_value<T>())
0341 return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
0342 else
0343 {
0344 T ex = exp(-x / 2);
0345 return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
0346 }
0347 }
0348 }
0349
0350 template <typename T>
0351 T bessel_k0_imp(const T& x, const std::integral_constant<int, 113>&)
0352 {
0353 BOOST_MATH_STD_USING
0354 if(x <= 1)
0355 {
0356
0357
0358
0359
0360 static const T Y = 1.137250900268554687500000000000000000e+00f;
0361 static const T P[] =
0362 {
0363 BOOST_MATH_BIG_CONSTANT(T, 113, -1.372509002685546875000000000000000006e-01),
0364 BOOST_MATH_BIG_CONSTANT(T, 113, 2.556212905071072782462974351698081303e-01),
0365 BOOST_MATH_BIG_CONSTANT(T, 113, 1.742459135264203478530904179889103929e-02),
0366 BOOST_MATH_BIG_CONSTANT(T, 113, 8.077860530453688571555479526961318918e-04),
0367 BOOST_MATH_BIG_CONSTANT(T, 113, 1.868173911669241091399374307788635148e-05),
0368 BOOST_MATH_BIG_CONSTANT(T, 113, 2.496405768838992243478709145123306602e-07),
0369 BOOST_MATH_BIG_CONSTANT(T, 113, 1.752489221949580551692915881999762125e-09),
0370 BOOST_MATH_BIG_CONSTANT(T, 113, 5.243010555737173524710512824955368526e-12)
0371 };
0372 static const T Q[] =
0373 {
0374 BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00),
0375 BOOST_MATH_BIG_CONSTANT(T, 113, -4.095631064064621099785696980653193721e-02),
0376 BOOST_MATH_BIG_CONSTANT(T, 113, 8.313880983725212151967078809725835532e-04),
0377 BOOST_MATH_BIG_CONSTANT(T, 113, -1.095229912293480063501285562382835142e-05),
0378 BOOST_MATH_BIG_CONSTANT(T, 113, 1.022828799511943141130509410251996277e-07),
0379 BOOST_MATH_BIG_CONSTANT(T, 113, -6.860874007419812445494782795829046836e-10),
0380 BOOST_MATH_BIG_CONSTANT(T, 113, 3.107297802344970725756092082686799037e-12),
0381 BOOST_MATH_BIG_CONSTANT(T, 113, -7.460529579244623559164763757787600944e-15)
0382 };
0383 T a = x * x / 4;
0384 a = (tools::evaluate_rational(P, Q, a) + Y) * a + 1;
0385
0386
0387
0388
0389
0390 static const T P2[] =
0391 {
0392 BOOST_MATH_BIG_CONSTANT(T, 113, 1.159315156584124488107200313757741370e-01),
0393 BOOST_MATH_BIG_CONSTANT(T, 113, 2.789828789146031122026800078439435369e-01),
0394 BOOST_MATH_BIG_CONSTANT(T, 113, 2.524892993216269451266750049024628432e-02),
0395 BOOST_MATH_BIG_CONSTANT(T, 113, 8.460350907082229957222453839935101823e-04),
0396 BOOST_MATH_BIG_CONSTANT(T, 113, 1.491471929926042875260452849503857976e-05),
0397 BOOST_MATH_BIG_CONSTANT(T, 113, 1.627105610481598430816014719558896866e-07),
0398 BOOST_MATH_BIG_CONSTANT(T, 113, 1.208426165007797264194914898538250281e-09),
0399 BOOST_MATH_BIG_CONSTANT(T, 113, 6.508697838747354949164182457073784117e-12),
0400 BOOST_MATH_BIG_CONSTANT(T, 113, 2.659784680639805301101014383907273109e-14),
0401 BOOST_MATH_BIG_CONSTANT(T, 113, 8.531090131964391104248859415958109654e-17),
0402 BOOST_MATH_BIG_CONSTANT(T, 113, 2.205195117066478034260323124669936314e-19),
0403 BOOST_MATH_BIG_CONSTANT(T, 113, 4.692219280289030165761119775783115426e-22),
0404 BOOST_MATH_BIG_CONSTANT(T, 113, 8.362350161092532344171965861545860747e-25),
0405 BOOST_MATH_BIG_CONSTANT(T, 113, 1.277990623924628999539014980773738258e-27)
0406 };
0407
0408 return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a;
0409 }
0410 else
0411 {
0412
0413
0414
0415
0416 static const T Y = 1;
0417 static const T P[] =
0418 {
0419 BOOST_MATH_BIG_CONSTANT(T, 113, 2.533141373155002512078826424055226265e-01),
0420 BOOST_MATH_BIG_CONSTANT(T, 113, 2.001949740768235770078339977110749204e+01),
0421 BOOST_MATH_BIG_CONSTANT(T, 113, 6.991516715983883248363351472378349986e+02),
0422 BOOST_MATH_BIG_CONSTANT(T, 113, 1.429587951594593159075690819360687720e+04),
0423 BOOST_MATH_BIG_CONSTANT(T, 113, 1.911933815201948768044660065771258450e+05),
0424 BOOST_MATH_BIG_CONSTANT(T, 113, 1.769943016204926614862175317962439875e+06),
0425 BOOST_MATH_BIG_CONSTANT(T, 113, 1.170866154649560750500954150401105606e+07),
0426 BOOST_MATH_BIG_CONSTANT(T, 113, 5.634687099724383996792011977705727661e+07),
0427 BOOST_MATH_BIG_CONSTANT(T, 113, 1.989524036456492581597607246664394014e+08),
0428 BOOST_MATH_BIG_CONSTANT(T, 113, 5.160394785715328062088529400178080360e+08),
0429 BOOST_MATH_BIG_CONSTANT(T, 113, 9.778173054417826368076483100902201433e+08),
0430 BOOST_MATH_BIG_CONSTANT(T, 113, 1.335667778588806892764139643950439733e+09),
0431 BOOST_MATH_BIG_CONSTANT(T, 113, 1.283635100080306980206494425043706838e+09),
0432 BOOST_MATH_BIG_CONSTANT(T, 113, 8.300616188213640626577036321085025855e+08),
0433 BOOST_MATH_BIG_CONSTANT(T, 113, 3.277591957076162984986406540894621482e+08),
0434 BOOST_MATH_BIG_CONSTANT(T, 113, 5.564360536834214058158565361486115932e+07),
0435 BOOST_MATH_BIG_CONSTANT(T, 113, -1.043505161612403359098596828115690596e+07),
0436 BOOST_MATH_BIG_CONSTANT(T, 113, -7.217035248223503605127967970903027314e+06),
0437 BOOST_MATH_BIG_CONSTANT(T, 113, -1.422938158797326748375799596769964430e+06),
0438 BOOST_MATH_BIG_CONSTANT(T, 113, -1.229125746200586805278634786674745210e+05),
0439 BOOST_MATH_BIG_CONSTANT(T, 113, -4.201632288615609937883545928660649813e+03),
0440 BOOST_MATH_BIG_CONSTANT(T, 113, -3.690820607338480548346746717311811406e+01)
0441 };
0442 static const T Q[] =
0443 {
0444 BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00),
0445 BOOST_MATH_BIG_CONSTANT(T, 113, 7.964877874035741452203497983642653107e+01),
0446 BOOST_MATH_BIG_CONSTANT(T, 113, 2.808929943826193766839360018583294769e+03),
0447 BOOST_MATH_BIG_CONSTANT(T, 113, 5.814524004679994110944366890912384139e+04),
0448 BOOST_MATH_BIG_CONSTANT(T, 113, 7.897794522506725610540209610337355118e+05),
0449 BOOST_MATH_BIG_CONSTANT(T, 113, 7.456339470955813675629523617440433672e+06),
0450 BOOST_MATH_BIG_CONSTANT(T, 113, 5.057818717813969772198911392875127212e+07),
0451 BOOST_MATH_BIG_CONSTANT(T, 113, 2.513821619536852436424913886081133209e+08),
0452 BOOST_MATH_BIG_CONSTANT(T, 113, 9.255938846873380596038513316919990776e+08),
0453 BOOST_MATH_BIG_CONSTANT(T, 113, 2.537077551699028079347581816919572141e+09),
0454 BOOST_MATH_BIG_CONSTANT(T, 113, 5.176769339768120752974843214652367321e+09),
0455 BOOST_MATH_BIG_CONSTANT(T, 113, 7.828722317390455845253191337207432060e+09),
0456 BOOST_MATH_BIG_CONSTANT(T, 113, 8.698864296569996402006511705803675890e+09),
0457 BOOST_MATH_BIG_CONSTANT(T, 113, 7.007803261356636409943826918468544629e+09),
0458 BOOST_MATH_BIG_CONSTANT(T, 113, 4.016564631288740308993071395104715469e+09),
0459 BOOST_MATH_BIG_CONSTANT(T, 113, 1.595893010619754750655947035567624730e+09),
0460 BOOST_MATH_BIG_CONSTANT(T, 113, 4.241241839120481076862742189989406856e+08),
0461 BOOST_MATH_BIG_CONSTANT(T, 113, 7.168778094393076220871007550235840858e+07),
0462 BOOST_MATH_BIG_CONSTANT(T, 113, 7.156200301360388147635052029404211109e+06),
0463 BOOST_MATH_BIG_CONSTANT(T, 113, 3.752130382550379886741949463587008794e+05),
0464 BOOST_MATH_BIG_CONSTANT(T, 113, 8.370574966987293592457152146806662562e+03),
0465 BOOST_MATH_BIG_CONSTANT(T, 113, 4.871254714311063594080644835895740323e+01)
0466 };
0467 if(x < tools::log_max_value<T>())
0468 return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
0469 else
0470 {
0471 T ex = exp(-x / 2);
0472 return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
0473 }
0474 }
0475 }
0476
0477 template <typename T>
0478 T bessel_k0_imp(const T& x, const std::integral_constant<int, 0>&)
0479 {
0480 if(boost::math::tools::digits<T>() <= 24)
0481 return bessel_k0_imp(x, std::integral_constant<int, 24>());
0482 else if(boost::math::tools::digits<T>() <= 53)
0483 return bessel_k0_imp(x, std::integral_constant<int, 53>());
0484 else if(boost::math::tools::digits<T>() <= 64)
0485 return bessel_k0_imp(x, std::integral_constant<int, 64>());
0486 else if(boost::math::tools::digits<T>() <= 113)
0487 return bessel_k0_imp(x, std::integral_constant<int, 113>());
0488 BOOST_MATH_ASSERT(0);
0489 return 0;
0490 }
0491
0492 template <typename T>
0493 inline T bessel_k0(const T& x)
0494 {
0495 typedef std::integral_constant<int,
0496 ((std::numeric_limits<T>::digits == 0) || (std::numeric_limits<T>::radix != 2)) ?
0497 0 :
0498 std::numeric_limits<T>::digits <= 24 ?
0499 24 :
0500 std::numeric_limits<T>::digits <= 53 ?
0501 53 :
0502 std::numeric_limits<T>::digits <= 64 ?
0503 64 :
0504 std::numeric_limits<T>::digits <= 113 ?
0505 113 : -1
0506 > tag_type;
0507
0508 bessel_k0_initializer<T, tag_type>::force_instantiate();
0509 return bessel_k0_imp(x, tag_type());
0510 }
0511
0512 }}}
0513
0514 #ifdef _MSC_VER
0515 #pragma warning(pop)
0516 #endif
0517
0518 #endif
0519