File indexing completed on 2025-01-18 09:39:58
0001
0002
0003
0004
0005
0006
0007 #ifndef BOOST_MATH_QUADRATURE_GAUSS_KRONROD_HPP
0008 #define BOOST_MATH_QUADRATURE_GAUSS_KRONROD_HPP
0009
0010 #ifdef _MSC_VER
0011 #pragma once
0012 #pragma warning(push)
0013 #pragma warning(disable: 4127)
0014 #endif
0015
0016 #include <array>
0017 #include <vector>
0018 #include <algorithm>
0019 #include <boost/math/special_functions/legendre.hpp>
0020 #include <boost/math/special_functions/legendre_stieltjes.hpp>
0021 #include <boost/math/quadrature/gauss.hpp>
0022
0023 namespace boost { namespace math{ namespace quadrature{ namespace detail{
0024
0025 #ifndef BOOST_MATH_GAUSS_NO_COMPUTE_ON_DEMAND
0026
0027 template <class Real, unsigned N, unsigned tag>
0028 class gauss_kronrod_detail
0029 {
0030 static legendre_stieltjes<Real> const& get_legendre_stieltjes()
0031 {
0032 static const legendre_stieltjes<Real> data((N - 1) / 2 + 1);
0033 return data;
0034 }
0035 static std::vector<Real> calculate_abscissa()
0036 {
0037 static std::vector<Real> result = boost::math::legendre_p_zeros<Real>((N - 1) / 2);
0038 const legendre_stieltjes<Real> E = get_legendre_stieltjes();
0039 std::vector<Real> ls_zeros = E.zeros();
0040 result.insert(result.end(), ls_zeros.begin(), ls_zeros.end());
0041 std::sort(result.begin(), result.end());
0042 return result;
0043 }
0044 static std::vector<Real> calculate_weights()
0045 {
0046 std::vector<Real> result(abscissa().size(), 0);
0047 unsigned gauss_order = (N - 1) / 2;
0048 unsigned gauss_start = gauss_order & 1 ? 0 : 1;
0049 const legendre_stieltjes<Real>& E = get_legendre_stieltjes();
0050
0051 for (unsigned i = gauss_start; i < abscissa().size(); i += 2)
0052 {
0053 Real x = abscissa()[i];
0054 Real p = boost::math::legendre_p_prime(gauss_order, x);
0055 Real gauss_weight = 2 / ((1 - x * x) * p * p);
0056 result[i] = gauss_weight + static_cast<Real>(2) / (static_cast<Real>(gauss_order + 1) * legendre_p_prime(gauss_order, x) * E(x));
0057 }
0058 for (unsigned i = gauss_start ? 0 : 1; i < abscissa().size(); i += 2)
0059 {
0060 Real x = abscissa()[i];
0061 result[i] = static_cast<Real>(2) / (static_cast<Real>(gauss_order + 1) * legendre_p(gauss_order, x) * E.prime(x));
0062 }
0063 return result;
0064 }
0065 public:
0066 static const std::vector<Real>& abscissa()
0067 {
0068 static std::vector<Real> data = calculate_abscissa();
0069 return data;
0070 }
0071 static const std::vector<Real>& weights()
0072 {
0073 static std::vector<Real> data = calculate_weights();
0074 return data;
0075 }
0076 };
0077
0078 #else
0079
0080 template <class Real, unsigned N, unsigned tag>
0081 class gauss_kronrod_detail;
0082
0083 #endif
0084
0085 template <class T>
0086 class gauss_kronrod_detail<T, 15, 0>
0087 {
0088 public:
0089 static std::array<T, 8> const & abscissa()
0090 {
0091 static constexpr std::array<T, 8> data = {
0092 0.000000000e+00f,
0093 2.077849550e-01f,
0094 4.058451514e-01f,
0095 5.860872355e-01f,
0096 7.415311856e-01f,
0097 8.648644234e-01f,
0098 9.491079123e-01f,
0099 9.914553711e-01f,
0100 };
0101 return data;
0102 }
0103 static std::array<T, 8> const & weights()
0104 {
0105 static constexpr std::array<T, 8> data = {
0106 2.094821411e-01f,
0107 2.044329401e-01f,
0108 1.903505781e-01f,
0109 1.690047266e-01f,
0110 1.406532597e-01f,
0111 1.047900103e-01f,
0112 6.309209263e-02f,
0113 2.293532201e-02f,
0114 };
0115 return data;
0116 }
0117 };
0118
0119 template <class T>
0120 class gauss_kronrod_detail<T, 15, 1>
0121 {
0122 public:
0123 static std::array<T, 8> const & abscissa()
0124 {
0125 static constexpr std::array<T, 8> data = {
0126 0.00000000000000000e+00,
0127 2.07784955007898468e-01,
0128 4.05845151377397167e-01,
0129 5.86087235467691130e-01,
0130 7.41531185599394440e-01,
0131 8.64864423359769073e-01,
0132 9.49107912342758525e-01,
0133 9.91455371120812639e-01,
0134 };
0135 return data;
0136 }
0137 static std::array<T, 8> const & weights()
0138 {
0139 static constexpr std::array<T, 8> data = {
0140 2.09482141084727828e-01,
0141 2.04432940075298892e-01,
0142 1.90350578064785410e-01,
0143 1.69004726639267903e-01,
0144 1.40653259715525919e-01,
0145 1.04790010322250184e-01,
0146 6.30920926299785533e-02,
0147 2.29353220105292250e-02,
0148 };
0149 return data;
0150 }
0151 };
0152
0153 template <class T>
0154 class gauss_kronrod_detail<T, 15, 2>
0155 {
0156 public:
0157 static std::array<T, 8> const & abscissa()
0158 {
0159 static constexpr std::array<T, 8> data = {
0160 0.00000000000000000000000000000000000e+00L,
0161 2.07784955007898467600689403773244913e-01L,
0162 4.05845151377397166906606412076961463e-01L,
0163 5.86087235467691130294144838258729598e-01L,
0164 7.41531185599394439863864773280788407e-01L,
0165 8.64864423359769072789712788640926201e-01L,
0166 9.49107912342758524526189684047851262e-01L,
0167 9.91455371120812639206854697526328517e-01L,
0168 };
0169 return data;
0170 }
0171 static std::array<T, 8> const & weights()
0172 {
0173 static constexpr std::array<T, 8> data = {
0174 2.09482141084727828012999174891714264e-01L,
0175 2.04432940075298892414161999234649085e-01L,
0176 1.90350578064785409913256402421013683e-01L,
0177 1.69004726639267902826583426598550284e-01L,
0178 1.40653259715525918745189590510237920e-01L,
0179 1.04790010322250183839876322541518017e-01L,
0180 6.30920926299785532907006631892042867e-02L,
0181 2.29353220105292249637320080589695920e-02L,
0182 };
0183 return data;
0184 }
0185 };
0186
0187 #ifdef BOOST_HAS_FLOAT128
0188 template <class T>
0189 class gauss_kronrod_detail<T, 15, 3>
0190 {
0191 public:
0192 static std::array<T, 8> const & abscissa()
0193 {
0194 static const std::array<T, 8> data = {
0195 0.00000000000000000000000000000000000e+00Q,
0196 2.07784955007898467600689403773244913e-01Q,
0197 4.05845151377397166906606412076961463e-01Q,
0198 5.86087235467691130294144838258729598e-01Q,
0199 7.41531185599394439863864773280788407e-01Q,
0200 8.64864423359769072789712788640926201e-01Q,
0201 9.49107912342758524526189684047851262e-01Q,
0202 9.91455371120812639206854697526328517e-01Q,
0203 };
0204 return data;
0205 }
0206 static std::array<T, 8> const & weights()
0207 {
0208 static const std::array<T, 8> data = {
0209 2.09482141084727828012999174891714264e-01Q,
0210 2.04432940075298892414161999234649085e-01Q,
0211 1.90350578064785409913256402421013683e-01Q,
0212 1.69004726639267902826583426598550284e-01Q,
0213 1.40653259715525918745189590510237920e-01Q,
0214 1.04790010322250183839876322541518017e-01Q,
0215 6.30920926299785532907006631892042867e-02Q,
0216 2.29353220105292249637320080589695920e-02Q,
0217 };
0218 return data;
0219 }
0220 };
0221 #endif
0222
0223 template <class T>
0224 class gauss_kronrod_detail<T, 15, 4>
0225 {
0226 public:
0227 static std::array<T, 8> const & abscissa()
0228 {
0229 static std::array<T, 8> data = {
0230 BOOST_MATH_HUGE_CONSTANT(T, 0, 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e+00),
0231 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.0778495500789846760068940377324491347978440714517064971384573461986693844943520226910343227183698530560857645062738e-01),
0232 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.0584515137739716690660641207696146334738201409937012638704325179466381322612565532831268972774658776528675866604802e-01),
0233 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.8608723546769113029414483825872959843678075060436095130499289319880373607444407464511674498935942098956811555121368e-01),
0234 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.4153118559939443986386477328078840707414764714139026011995535196742987467218051379282683236686324705969251809311201e-01),
0235 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.6486442335976907278971278864092620121097230707408814860145771276706770813259572103585847859604590541475281326027862e-01),
0236 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.4910791234275852452618968404785126240077093767061778354876910391306333035484014080573077002792572414430073966699522e-01),
0237 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9145537112081263920685469752632851664204433837033470129108741357244173934653407235924503509626841760744349505339308e-01),
0238 };
0239 return data;
0240 }
0241 static std::array<T, 8> const & weights()
0242 {
0243 static std::array<T, 8> data = {
0244 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.0948214108472782801299917489171426369776208022370431671299800656137515132325648616816908211675949102392971459688215e-01),
0245 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.0443294007529889241416199923464908471651760418071835742447095312045467698546598879348374292009347554167803659293064e-01),
0246 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.9035057806478540991325640242101368282607807545535835588544088036744058072410212679605964605106377593834568683551139e-01),
0247 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.6900472663926790282658342659855028410624490030294424149734006755695680921619029112936702403855359908156070095656537e-01),
0248 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.4065325971552591874518959051023792039988975724799857556174546893312708093090950408097379122415555910759700350860143e-01),
0249 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.0479001032225018383987632254151801744375665421383061189339065133963746321576289524167571627509311333949422518201492e-01),
0250 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.3092092629978553290700663189204286665071157211550707113605545146983997477964874928199170264504441995865872491871943e-02),
0251 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.2935322010529224963732008058969591993560811275746992267507430254711815787976075946156368168156289483493617134063245e-02),
0252 };
0253 return data;
0254 }
0255 };
0256
0257 template <class T>
0258 class gauss_kronrod_detail<T, 21, 0>
0259 {
0260 public:
0261 static std::array<T, 11> const & abscissa()
0262 {
0263 static constexpr std::array<T, 11> data = {
0264 0.000000000e+00f,
0265 1.488743390e-01f,
0266 2.943928627e-01f,
0267 4.333953941e-01f,
0268 5.627571347e-01f,
0269 6.794095683e-01f,
0270 7.808177266e-01f,
0271 8.650633667e-01f,
0272 9.301574914e-01f,
0273 9.739065285e-01f,
0274 9.956571630e-01f,
0275 };
0276 return data;
0277 }
0278 static std::array<T, 11> const & weights()
0279 {
0280 static constexpr std::array<T, 11> data = {
0281 1.494455540e-01f,
0282 1.477391049e-01f,
0283 1.427759386e-01f,
0284 1.347092173e-01f,
0285 1.234919763e-01f,
0286 1.093871588e-01f,
0287 9.312545458e-02f,
0288 7.503967481e-02f,
0289 5.475589657e-02f,
0290 3.255816231e-02f,
0291 1.169463887e-02f,
0292 };
0293 return data;
0294 }
0295 };
0296
0297 template <class T>
0298 class gauss_kronrod_detail<T, 21, 1>
0299 {
0300 public:
0301 static std::array<T, 11> const & abscissa()
0302 {
0303 static constexpr std::array<T, 11> data = {
0304 0.00000000000000000e+00,
0305 1.48874338981631211e-01,
0306 2.94392862701460198e-01,
0307 4.33395394129247191e-01,
0308 5.62757134668604683e-01,
0309 6.79409568299024406e-01,
0310 7.80817726586416897e-01,
0311 8.65063366688984511e-01,
0312 9.30157491355708226e-01,
0313 9.73906528517171720e-01,
0314 9.95657163025808081e-01,
0315 };
0316 return data;
0317 }
0318 static std::array<T, 11> const & weights()
0319 {
0320 static constexpr std::array<T, 11> data = {
0321 1.49445554002916906e-01,
0322 1.47739104901338491e-01,
0323 1.42775938577060081e-01,
0324 1.34709217311473326e-01,
0325 1.23491976262065851e-01,
0326 1.09387158802297642e-01,
0327 9.31254545836976055e-02,
0328 7.50396748109199528e-02,
0329 5.47558965743519960e-02,
0330 3.25581623079647275e-02,
0331 1.16946388673718743e-02,
0332 };
0333 return data;
0334 }
0335 };
0336
0337 template <class T>
0338 class gauss_kronrod_detail<T, 21, 2>
0339 {
0340 public:
0341 static std::array<T, 11> const & abscissa()
0342 {
0343 static constexpr std::array<T, 11> data = {
0344 0.00000000000000000000000000000000000e+00L,
0345 1.48874338981631210884826001129719985e-01L,
0346 2.94392862701460198131126603103865566e-01L,
0347 4.33395394129247190799265943165784162e-01L,
0348 5.62757134668604683339000099272694141e-01L,
0349 6.79409568299024406234327365114873576e-01L,
0350 7.80817726586416897063717578345042377e-01L,
0351 8.65063366688984510732096688423493049e-01L,
0352 9.30157491355708226001207180059508346e-01L,
0353 9.73906528517171720077964012084452053e-01L,
0354 9.95657163025808080735527280689002848e-01L,
0355 };
0356 return data;
0357 }
0358 static std::array<T, 11> const & weights()
0359 {
0360 static constexpr std::array<T, 11> data = {
0361 1.49445554002916905664936468389821204e-01L,
0362 1.47739104901338491374841515972068046e-01L,
0363 1.42775938577060080797094273138717061e-01L,
0364 1.34709217311473325928054001771706833e-01L,
0365 1.23491976262065851077958109831074160e-01L,
0366 1.09387158802297641899210590325804960e-01L,
0367 9.31254545836976055350654650833663444e-02L,
0368 7.50396748109199527670431409161900094e-02L,
0369 5.47558965743519960313813002445801764e-02L,
0370 3.25581623079647274788189724593897606e-02L,
0371 1.16946388673718742780643960621920484e-02L,
0372 };
0373 return data;
0374 }
0375 };
0376
0377 #ifdef BOOST_HAS_FLOAT128
0378 template <class T>
0379 class gauss_kronrod_detail<T, 21, 3>
0380 {
0381 public:
0382 static std::array<T, 11> const & abscissa()
0383 {
0384 static const std::array<T, 11> data = {
0385 0.00000000000000000000000000000000000e+00Q,
0386 1.48874338981631210884826001129719985e-01Q,
0387 2.94392862701460198131126603103865566e-01Q,
0388 4.33395394129247190799265943165784162e-01Q,
0389 5.62757134668604683339000099272694141e-01Q,
0390 6.79409568299024406234327365114873576e-01Q,
0391 7.80817726586416897063717578345042377e-01Q,
0392 8.65063366688984510732096688423493049e-01Q,
0393 9.30157491355708226001207180059508346e-01Q,
0394 9.73906528517171720077964012084452053e-01Q,
0395 9.95657163025808080735527280689002848e-01Q,
0396 };
0397 return data;
0398 }
0399 static std::array<T, 11> const & weights()
0400 {
0401 static const std::array<T, 11> data = {
0402 1.49445554002916905664936468389821204e-01Q,
0403 1.47739104901338491374841515972068046e-01Q,
0404 1.42775938577060080797094273138717061e-01Q,
0405 1.34709217311473325928054001771706833e-01Q,
0406 1.23491976262065851077958109831074160e-01Q,
0407 1.09387158802297641899210590325804960e-01Q,
0408 9.31254545836976055350654650833663444e-02Q,
0409 7.50396748109199527670431409161900094e-02Q,
0410 5.47558965743519960313813002445801764e-02Q,
0411 3.25581623079647274788189724593897606e-02Q,
0412 1.16946388673718742780643960621920484e-02Q,
0413 };
0414 return data;
0415 }
0416 };
0417 #endif
0418
0419 template <class T>
0420 class gauss_kronrod_detail<T, 21, 4>
0421 {
0422 public:
0423 static std::array<T, 11> const & abscissa()
0424 {
0425 static std::array<T, 11> data = {
0426 BOOST_MATH_HUGE_CONSTANT(T, 0, 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e+00),
0427 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.4887433898163121088482600112971998461756485942069169570798925351590361735566852137117762979946369123003116080525534e-01),
0428 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.9439286270146019813112660310386556616268662515695791864888229172724611166332737888445523178268237359119185139299872e-01),
0429 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.3339539412924719079926594316578416220007183765624649650270151314376698907770350122510275795011772122368293504099894e-01),
0430 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.6275713466860468333900009927269414084301388194196695886034621458779266353216327549712087854169992422106448211158815e-01),
0431 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.7940956829902440623432736511487357576929471183480946766481718895255857539507492461507857357048037949983390204739932e-01),
0432 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.8081772658641689706371757834504237716340752029815717974694859999505607982761420654526977234238996241110129779403362e-01),
0433 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.6506336668898451073209668842349304852754301496533045252195973184537475513805556135679072894604577069440463108641177e-01),
0434 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.3015749135570822600120718005950834622516790998193924230349406866828415983091673055011194572851007884702013619684320e-01),
0435 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.7390652851717172007796401208445205342826994669238211923121206669659520323463615962572356495626855625823304251877421e-01),
0436 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9565716302580808073552728068900284792126058721947892436337916111757023046774867357152325996912076724298149077812671e-01),
0437 };
0438 return data;
0439 }
0440 static std::array<T, 11> const & weights()
0441 {
0442 static std::array<T, 11> data = {
0443 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.4944555400291690566493646838982120374523631668747280383560851873698964478511841925721030705689540264726493367634340e-01),
0444 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.4773910490133849137484151597206804552373162548520660451819195439885993016735696405732703959182882254268727823258502e-01),
0445 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.4277593857706008079709427313871706088597905653190555560741004743970770449909340027811131706283756428281146832304737e-01),
0446 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.3470921731147332592805400177170683276099191300855971406636668491320291400121282036676953159488271772384389604997640e-01),
0447 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.2349197626206585107795810983107415951230034952864832764467994120974054238975454689681538622363738230836484113389878e-01),
0448 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.0938715880229764189921059032580496027181329983434522007819675829826550372891432168683899432674553842507906611591517e-01),
0449 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.3125454583697605535065465083366344390018828880760031970085038760177735672200775237414123061615827474831165614953012e-02),
0450 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.5039674810919952767043140916190009395219382000910088173697048048430404342858495178813808730646554086856929327903059e-02),
0451 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.4755896574351996031381300244580176373721114058333557524432615804784098927818975325116301569003298086458722055550981e-02),
0452 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.2558162307964727478818972459389760617388939845662609571537504232714121820165498692381607605384626494546068817765276e-02),
0453 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.1694638867371874278064396062192048396217332481931888927598147525622222058064992651806736704969967250888097490233242e-02),
0454 };
0455 return data;
0456 }
0457 };
0458
0459 template <class T>
0460 class gauss_kronrod_detail<T, 31, 0>
0461 {
0462 public:
0463 static std::array<T, 16> const & abscissa()
0464 {
0465 static constexpr std::array<T, 16> data = {
0466 0.000000000e+00f,
0467 1.011420669e-01f,
0468 2.011940940e-01f,
0469 2.991800072e-01f,
0470 3.941513471e-01f,
0471 4.850818636e-01f,
0472 5.709721726e-01f,
0473 6.509967413e-01f,
0474 7.244177314e-01f,
0475 7.904185014e-01f,
0476 8.482065834e-01f,
0477 8.972645323e-01f,
0478 9.372733924e-01f,
0479 9.677390757e-01f,
0480 9.879925180e-01f,
0481 9.980022987e-01f,
0482 };
0483 return data;
0484 }
0485 static std::array<T, 16> const & weights()
0486 {
0487 static constexpr std::array<T, 16> data = {
0488 1.013300070e-01f,
0489 1.007698455e-01f,
0490 9.917359872e-02f,
0491 9.664272698e-02f,
0492 9.312659817e-02f,
0493 8.856444306e-02f,
0494 8.308050282e-02f,
0495 7.684968076e-02f,
0496 6.985412132e-02f,
0497 6.200956780e-02f,
0498 5.348152469e-02f,
0499 4.458975132e-02f,
0500 3.534636079e-02f,
0501 2.546084733e-02f,
0502 1.500794733e-02f,
0503 5.377479873e-03f,
0504 };
0505 return data;
0506 }
0507 };
0508
0509 template <class T>
0510 class gauss_kronrod_detail<T, 31, 1>
0511 {
0512 public:
0513 static std::array<T, 16> const & abscissa()
0514 {
0515 static constexpr std::array<T, 16> data = {
0516 0.00000000000000000e+00,
0517 1.01142066918717499e-01,
0518 2.01194093997434522e-01,
0519 2.99180007153168812e-01,
0520 3.94151347077563370e-01,
0521 4.85081863640239681e-01,
0522 5.70972172608538848e-01,
0523 6.50996741297416971e-01,
0524 7.24417731360170047e-01,
0525 7.90418501442465933e-01,
0526 8.48206583410427216e-01,
0527 8.97264532344081901e-01,
0528 9.37273392400705904e-01,
0529 9.67739075679139134e-01,
0530 9.87992518020485428e-01,
0531 9.98002298693397060e-01,
0532 };
0533 return data;
0534 }
0535 static std::array<T, 16> const & weights()
0536 {
0537 static constexpr std::array<T, 16> data = {
0538 1.01330007014791549e-01,
0539 1.00769845523875595e-01,
0540 9.91735987217919593e-02,
0541 9.66427269836236785e-02,
0542 9.31265981708253212e-02,
0543 8.85644430562117706e-02,
0544 8.30805028231330210e-02,
0545 7.68496807577203789e-02,
0546 6.98541213187282587e-02,
0547 6.20095678006706403e-02,
0548 5.34815246909280873e-02,
0549 4.45897513247648766e-02,
0550 3.53463607913758462e-02,
0551 2.54608473267153202e-02,
0552 1.50079473293161225e-02,
0553 5.37747987292334899e-03,
0554 };
0555 return data;
0556 }
0557 };
0558
0559 template <class T>
0560 class gauss_kronrod_detail<T, 31, 2>
0561 {
0562 public:
0563 static std::array<T, 16> const & abscissa()
0564 {
0565 static constexpr std::array<T, 16> data = {
0566 0.00000000000000000000000000000000000e+00L,
0567 1.01142066918717499027074231447392339e-01L,
0568 2.01194093997434522300628303394596208e-01L,
0569 2.99180007153168812166780024266388963e-01L,
0570 3.94151347077563369897207370981045468e-01L,
0571 4.85081863640239680693655740232350613e-01L,
0572 5.70972172608538847537226737253910641e-01L,
0573 6.50996741297416970533735895313274693e-01L,
0574 7.24417731360170047416186054613938010e-01L,
0575 7.90418501442465932967649294817947347e-01L,
0576 8.48206583410427216200648320774216851e-01L,
0577 8.97264532344081900882509656454495883e-01L,
0578 9.37273392400705904307758947710209471e-01L,
0579 9.67739075679139134257347978784337225e-01L,
0580 9.87992518020485428489565718586612581e-01L,
0581 9.98002298693397060285172840152271209e-01L,
0582 };
0583 return data;
0584 }
0585 static std::array<T, 16> const & weights()
0586 {
0587 static constexpr std::array<T, 16> data = {
0588 1.01330007014791549017374792767492547e-01L,
0589 1.00769845523875595044946662617569722e-01L,
0590 9.91735987217919593323931734846031311e-02L,
0591 9.66427269836236785051799076275893351e-02L,
0592 9.31265981708253212254868727473457186e-02L,
0593 8.85644430562117706472754436937743032e-02L,
0594 8.30805028231330210382892472861037896e-02L,
0595 7.68496807577203788944327774826590067e-02L,
0596 6.98541213187282587095200770991474758e-02L,
0597 6.20095678006706402851392309608029322e-02L,
0598 5.34815246909280872653431472394302968e-02L,
0599 4.45897513247648766082272993732796902e-02L,
0600 3.53463607913758462220379484783600481e-02L,
0601 2.54608473267153201868740010196533594e-02L,
0602 1.50079473293161225383747630758072681e-02L,
0603 5.37747987292334898779205143012764982e-03L,
0604 };
0605 return data;
0606 }
0607 };
0608
0609 #ifdef BOOST_HAS_FLOAT128
0610 template <class T>
0611 class gauss_kronrod_detail<T, 31, 3>
0612 {
0613 public:
0614 static std::array<T, 16> const & abscissa()
0615 {
0616 static const std::array<T, 16> data = {
0617 0.00000000000000000000000000000000000e+00Q,
0618 1.01142066918717499027074231447392339e-01Q,
0619 2.01194093997434522300628303394596208e-01Q,
0620 2.99180007153168812166780024266388963e-01Q,
0621 3.94151347077563369897207370981045468e-01Q,
0622 4.85081863640239680693655740232350613e-01Q,
0623 5.70972172608538847537226737253910641e-01Q,
0624 6.50996741297416970533735895313274693e-01Q,
0625 7.24417731360170047416186054613938010e-01Q,
0626 7.90418501442465932967649294817947347e-01Q,
0627 8.48206583410427216200648320774216851e-01Q,
0628 8.97264532344081900882509656454495883e-01Q,
0629 9.37273392400705904307758947710209471e-01Q,
0630 9.67739075679139134257347978784337225e-01Q,
0631 9.87992518020485428489565718586612581e-01Q,
0632 9.98002298693397060285172840152271209e-01Q,
0633 };
0634 return data;
0635 }
0636 static std::array<T, 16> const & weights()
0637 {
0638 static const std::array<T, 16> data = {
0639 1.01330007014791549017374792767492547e-01Q,
0640 1.00769845523875595044946662617569722e-01Q,
0641 9.91735987217919593323931734846031311e-02Q,
0642 9.66427269836236785051799076275893351e-02Q,
0643 9.31265981708253212254868727473457186e-02Q,
0644 8.85644430562117706472754436937743032e-02Q,
0645 8.30805028231330210382892472861037896e-02Q,
0646 7.68496807577203788944327774826590067e-02Q,
0647 6.98541213187282587095200770991474758e-02Q,
0648 6.20095678006706402851392309608029322e-02Q,
0649 5.34815246909280872653431472394302968e-02Q,
0650 4.45897513247648766082272993732796902e-02Q,
0651 3.53463607913758462220379484783600481e-02Q,
0652 2.54608473267153201868740010196533594e-02Q,
0653 1.50079473293161225383747630758072681e-02Q,
0654 5.37747987292334898779205143012764982e-03Q,
0655 };
0656 return data;
0657 }
0658 };
0659 #endif
0660
0661 template <class T>
0662 class gauss_kronrod_detail<T, 31, 4>
0663 {
0664 public:
0665 static std::array<T, 16> const & abscissa()
0666 {
0667 static std::array<T, 16> data = {
0668 BOOST_MATH_HUGE_CONSTANT(T, 0, 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e+00),
0669 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.0114206691871749902707423144739233878745105740164180495800189504151097862454083050931321451540380998341273193681967e-01),
0670 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.0119409399743452230062830339459620781283645446263767961594972460994823900302018760183625806752105908967902257386509e-01),
0671 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.9918000715316881216678002426638896266160338274382080184125545738918081102513884467602322020157243563662094470221235e-01),
0672 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.9415134707756336989720737098104546836275277615869825503116534395160895778696141797549711416165976202589352169635648e-01),
0673 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.8508186364023968069365574023235061286633893089407312129367943604080239955167155974371848690848595275551258416303565e-01),
0674 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.7097217260853884753722673725391064123838639628274960485326541705419537986975857948341462856982614477912646497026257e-01),
0675 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.5099674129741697053373589531327469254694822609259966708966160576093305841043840794460394747228060367236079289132544e-01),
0676 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.2441773136017004741618605461393800963089929458410256355142342070412378167792521899610109760313432626923598549381925e-01),
0677 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.9041850144246593296764929481794734686214051995697617332365280643308302974631807059994738664225445530963711137343440e-01),
0678 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.4820658341042721620064832077421685136625617473699263409572755876067507517414548519760771975082148085090373835713340e-01),
0679 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.9726453234408190088250965645449588283177871149442786763972687601078537721473771221195399661919716123038835639691946e-01),
0680 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.3727339240070590430775894771020947124399627351530445790136307635020297379704552795054758617426808659746824044603157e-01),
0681 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.6773907567913913425734797878433722528335733730013163797468062226335804249452174804319385048203118506304424717089291e-01),
0682 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.8799251802048542848956571858661258114697281712376148999999751558738843736901942471272205036831914497667516843990079e-01),
0683 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9800229869339706028517284015227120907340644231555723034839427970683348682837134566648979907760125278631896777136104e-01),
0684 };
0685 return data;
0686 }
0687 static std::array<T, 16> const & weights()
0688 {
0689 static std::array<T, 16> data = {
0690 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.0133000701479154901737479276749254677092627259659629246734858372174107615774696665932418050683956749891773195816338e-01),
0691 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.0076984552387559504494666261756972191634838013536373069278929029488122760822761077475060185965408326901925180106227e-01),
0692 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9173598721791959332393173484603131059567260816713281734860095693651563064308745717056680128223790739026832596087552e-02),
0693 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.6642726983623678505179907627589335136656568630495198973407668882934392359962841826511402504664592185391687490319950e-02),
0694 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.3126598170825321225486872747345718561927881321317330560285879189052002874531855060114908990458716740695847509343865e-02),
0695 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.8564443056211770647275443693774303212266732690655967817996052574877144544749814260718837576325109922207832119243346e-02),
0696 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.3080502823133021038289247286103789601554188253368717607281604875233630643885056057630789228337088859687986285569521e-02),
0697 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.6849680757720378894432777482659006722109101167947000584089097112470821092034084418224731527690291913686588446455555e-02),
0698 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.9854121318728258709520077099147475786045435140671549698798093177992675624987998849748628778570667518643649536771245e-02),
0699 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.2009567800670640285139230960802932190400004210329723569147829395618376206272317333030584268303808639229575334680414e-02),
0700 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.3481524690928087265343147239430296771554760947116739813222888752727413616259625439714812475198987513183153639571249e-02),
0701 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.4589751324764876608227299373279690223256649667921096570980823211805450700059906366455036418897149593261561551176267e-02),
0702 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.5346360791375846222037948478360048122630678992420820868148023340902501837247680978434662724296810081131106317333086e-02),
0703 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.5460847326715320186874001019653359397271745046864640508377984982400903447009185267605205778819712848080691366407461e-02),
0704 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.5007947329316122538374763075807268094639436437387634979291759700896494746154334398961710227490402528151677469993935e-02),
0705 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.3774798729233489877920514301276498183080402431284197876486169536848635554354599213793172596490038991436925569025913e-03),
0706 };
0707 return data;
0708 }
0709 };
0710
0711 template <class T>
0712 class gauss_kronrod_detail<T, 41, 0>
0713 {
0714 public:
0715 static std::array<T, 21> const & abscissa()
0716 {
0717 static constexpr std::array<T, 21> data = {
0718 0.000000000e+00f,
0719 7.652652113e-02f,
0720 1.526054652e-01f,
0721 2.277858511e-01f,
0722 3.016278681e-01f,
0723 3.737060887e-01f,
0724 4.435931752e-01f,
0725 5.108670020e-01f,
0726 5.751404468e-01f,
0727 6.360536807e-01f,
0728 6.932376563e-01f,
0729 7.463319065e-01f,
0730 7.950414288e-01f,
0731 8.391169718e-01f,
0732 8.782768113e-01f,
0733 9.122344283e-01f,
0734 9.408226338e-01f,
0735 9.639719273e-01f,
0736 9.815078775e-01f,
0737 9.931285992e-01f,
0738 9.988590316e-01f,
0739 };
0740 return data;
0741 }
0742 static std::array<T, 21> const & weights()
0743 {
0744 static constexpr std::array<T, 21> data = {
0745 7.660071192e-02f,
0746 7.637786767e-02f,
0747 7.570449768e-02f,
0748 7.458287540e-02f,
0749 7.303069033e-02f,
0750 7.105442355e-02f,
0751 6.864867293e-02f,
0752 6.583459713e-02f,
0753 6.265323755e-02f,
0754 5.911140088e-02f,
0755 5.519510535e-02f,
0756 5.094457392e-02f,
0757 4.643482187e-02f,
0758 4.166887333e-02f,
0759 3.660016976e-02f,
0760 3.128730678e-02f,
0761 2.588213360e-02f,
0762 2.038837346e-02f,
0763 1.462616926e-02f,
0764 8.600269856e-03f,
0765 3.073583719e-03f,
0766 };
0767 return data;
0768 }
0769 };
0770
0771 template <class T>
0772 class gauss_kronrod_detail<T, 41, 1>
0773 {
0774 public:
0775 static std::array<T, 21> const & abscissa()
0776 {
0777 static constexpr std::array<T, 21> data = {
0778 0.00000000000000000e+00,
0779 7.65265211334973338e-02,
0780 1.52605465240922676e-01,
0781 2.27785851141645078e-01,
0782 3.01627868114913004e-01,
0783 3.73706088715419561e-01,
0784 4.43593175238725103e-01,
0785 5.10867001950827098e-01,
0786 5.75140446819710315e-01,
0787 6.36053680726515025e-01,
0788 6.93237656334751385e-01,
0789 7.46331906460150793e-01,
0790 7.95041428837551198e-01,
0791 8.39116971822218823e-01,
0792 8.78276811252281976e-01,
0793 9.12234428251325906e-01,
0794 9.40822633831754754e-01,
0795 9.63971927277913791e-01,
0796 9.81507877450250259e-01,
0797 9.93128599185094925e-01,
0798 9.98859031588277664e-01,
0799 };
0800 return data;
0801 }
0802 static std::array<T, 21> const & weights()
0803 {
0804 static constexpr std::array<T, 21> data = {
0805 7.66007119179996564e-02,
0806 7.63778676720807367e-02,
0807 7.57044976845566747e-02,
0808 7.45828754004991890e-02,
0809 7.30306903327866675e-02,
0810 7.10544235534440683e-02,
0811 6.86486729285216193e-02,
0812 6.58345971336184221e-02,
0813 6.26532375547811680e-02,
0814 5.91114008806395724e-02,
0815 5.51951053482859947e-02,
0816 5.09445739237286919e-02,
0817 4.64348218674976747e-02,
0818 4.16688733279736863e-02,
0819 3.66001697582007980e-02,
0820 3.12873067770327990e-02,
0821 2.58821336049511588e-02,
0822 2.03883734612665236e-02,
0823 1.46261692569712530e-02,
0824 8.60026985564294220e-03,
0825 3.07358371852053150e-03,
0826 };
0827 return data;
0828 }
0829 };
0830
0831 template <class T>
0832 class gauss_kronrod_detail<T, 41, 2>
0833 {
0834 public:
0835 static std::array<T, 21> const & abscissa()
0836 {
0837 static constexpr std::array<T, 21> data = {
0838 0.00000000000000000000000000000000000e+00L,
0839 7.65265211334973337546404093988382110e-02L,
0840 1.52605465240922675505220241022677528e-01L,
0841 2.27785851141645078080496195368574625e-01L,
0842 3.01627868114913004320555356858592261e-01L,
0843 3.73706088715419560672548177024927237e-01L,
0844 4.43593175238725103199992213492640108e-01L,
0845 5.10867001950827098004364050955250998e-01L,
0846 5.75140446819710315342946036586425133e-01L,
0847 6.36053680726515025452836696226285937e-01L,
0848 6.93237656334751384805490711845931533e-01L,
0849 7.46331906460150792614305070355641590e-01L,
0850 7.95041428837551198350638833272787943e-01L,
0851 8.39116971822218823394529061701520685e-01L,
0852 8.78276811252281976077442995113078467e-01L,
0853 9.12234428251325905867752441203298113e-01L,
0854 9.40822633831754753519982722212443380e-01L,
0855 9.63971927277913791267666131197277222e-01L,
0856 9.81507877450250259193342994720216945e-01L,
0857 9.93128599185094924786122388471320278e-01L,
0858 9.98859031588277663838315576545863010e-01L,
0859 };
0860 return data;
0861 }
0862 static std::array<T, 21> const & weights()
0863 {
0864 static constexpr std::array<T, 21> data = {
0865 7.66007119179996564450499015301017408e-02L,
0866 7.63778676720807367055028350380610018e-02L,
0867 7.57044976845566746595427753766165583e-02L,
0868 7.45828754004991889865814183624875286e-02L,
0869 7.30306903327866674951894176589131128e-02L,
0870 7.10544235534440683057903617232101674e-02L,
0871 6.86486729285216193456234118853678017e-02L,
0872 6.58345971336184221115635569693979431e-02L,
0873 6.26532375547811680258701221742549806e-02L,
0874 5.91114008806395723749672206485942171e-02L,
0875 5.51951053482859947448323724197773292e-02L,
0876 5.09445739237286919327076700503449487e-02L,
0877 4.64348218674976747202318809261075168e-02L,
0878 4.16688733279736862637883059368947380e-02L,
0879 3.66001697582007980305572407072110085e-02L,
0880 3.12873067770327989585431193238007379e-02L,
0881 2.58821336049511588345050670961531430e-02L,
0882 2.03883734612665235980102314327547051e-02L,
0883 1.46261692569712529837879603088683562e-02L,
0884 8.60026985564294219866178795010234725e-03L,
0885 3.07358371852053150121829324603098749e-03L,
0886 };
0887 return data;
0888 }
0889 };
0890
0891 #ifdef BOOST_HAS_FLOAT128
0892 template <class T>
0893 class gauss_kronrod_detail<T, 41, 3>
0894 {
0895 public:
0896 static std::array<T, 21> const & abscissa()
0897 {
0898 static const std::array<T, 21> data = {
0899 0.00000000000000000000000000000000000e+00Q,
0900 7.65265211334973337546404093988382110e-02Q,
0901 1.52605465240922675505220241022677528e-01Q,
0902 2.27785851141645078080496195368574625e-01Q,
0903 3.01627868114913004320555356858592261e-01Q,
0904 3.73706088715419560672548177024927237e-01Q,
0905 4.43593175238725103199992213492640108e-01Q,
0906 5.10867001950827098004364050955250998e-01Q,
0907 5.75140446819710315342946036586425133e-01Q,
0908 6.36053680726515025452836696226285937e-01Q,
0909 6.93237656334751384805490711845931533e-01Q,
0910 7.46331906460150792614305070355641590e-01Q,
0911 7.95041428837551198350638833272787943e-01Q,
0912 8.39116971822218823394529061701520685e-01Q,
0913 8.78276811252281976077442995113078467e-01Q,
0914 9.12234428251325905867752441203298113e-01Q,
0915 9.40822633831754753519982722212443380e-01Q,
0916 9.63971927277913791267666131197277222e-01Q,
0917 9.81507877450250259193342994720216945e-01Q,
0918 9.93128599185094924786122388471320278e-01Q,
0919 9.98859031588277663838315576545863010e-01Q,
0920 };
0921 return data;
0922 }
0923 static std::array<T, 21> const & weights()
0924 {
0925 static const std::array<T, 21> data = {
0926 7.66007119179996564450499015301017408e-02Q,
0927 7.63778676720807367055028350380610018e-02Q,
0928 7.57044976845566746595427753766165583e-02Q,
0929 7.45828754004991889865814183624875286e-02Q,
0930 7.30306903327866674951894176589131128e-02Q,
0931 7.10544235534440683057903617232101674e-02Q,
0932 6.86486729285216193456234118853678017e-02Q,
0933 6.58345971336184221115635569693979431e-02Q,
0934 6.26532375547811680258701221742549806e-02Q,
0935 5.91114008806395723749672206485942171e-02Q,
0936 5.51951053482859947448323724197773292e-02Q,
0937 5.09445739237286919327076700503449487e-02Q,
0938 4.64348218674976747202318809261075168e-02Q,
0939 4.16688733279736862637883059368947380e-02Q,
0940 3.66001697582007980305572407072110085e-02Q,
0941 3.12873067770327989585431193238007379e-02Q,
0942 2.58821336049511588345050670961531430e-02Q,
0943 2.03883734612665235980102314327547051e-02Q,
0944 1.46261692569712529837879603088683562e-02Q,
0945 8.60026985564294219866178795010234725e-03Q,
0946 3.07358371852053150121829324603098749e-03Q,
0947 };
0948 return data;
0949 }
0950 };
0951 #endif
0952
0953 template <class T>
0954 class gauss_kronrod_detail<T, 41, 4>
0955 {
0956 public:
0957 static std::array<T, 21> const & abscissa()
0958 {
0959 static std::array<T, 21> data = {
0960 BOOST_MATH_HUGE_CONSTANT(T, 0, 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e+00),
0961 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.6526521133497333754640409398838211004796266813497500804795244384256342048336978241545114181556215606998505646364133e-02),
0962 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.5260546524092267550522024102267752791167622481841730660174156703809133685751696356987995886397049724808931527012542e-01),
0963 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.2778585114164507808049619536857462474308893768292747231463573920717134186355582779495212519096870803177373131560430e-01),
0964 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.0162786811491300432055535685859226061539650501373092456926374427956957435978384116066498234762220215751079886015902e-01),
0965 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.7370608871541956067254817702492723739574632170568271182794861351564576437305952789589568363453337894476772208852815e-01),
0966 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.4359317523872510319999221349264010784010101082300309613315028346299543059315258601993479156987847429893626854030516e-01),
0967 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.1086700195082709800436405095525099842549132920242683347234861989473497039076572814403168305086777919832943068843526e-01),
0968 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.7514044681971031534294603658642513281381264014771682537415885495717468074720062012357788489049470208285175093670561e-01),
0969 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.3605368072651502545283669622628593674338911679936846393944662254654126258543013255870319549576130658211710937772596e-01),
0970 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.9323765633475138480549071184593153338642585141021417904687378454301191710739219011546672416325022748282227809465165e-01),
0971 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.4633190646015079261430507035564159031073067956917644413954590606853535503815506468110411362064752061238490065167656e-01),
0972 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.9504142883755119835063883327278794295938959911578029703855163894322697871710382866701777890251824617748545658564370e-01),
0973 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.3911697182221882339452906170152068532962936506563737325249272553286109399932480991922934056595764922060422035306914e-01),
0974 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.7827681125228197607744299511307846671124526828251164853898086998248145904743220740840261624245683876748360309079747e-01),
0975 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.1223442825132590586775244120329811304918479742369177479588221915807089120871907893644472619292138737876039175464603e-01),
0976 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.4082263383175475351998272221244338027429557377965291059536839973186796006557571220888218676776618448841584569497535e-01),
0977 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.6397192727791379126766613119727722191206032780618885606353759389204158078438305698001812525596471563131043491596423e-01),
0978 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.8150787745025025919334299472021694456725093981023759869077533318793098857465723460898060491887511355706497739384103e-01),
0979 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9312859918509492478612238847132027822264713090165589614818413121798471762775378083944940249657220927472894034724419e-01),
0980 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9885903158827766383831557654586300999957020432629666866666860339324411793311982967839129772854179884971700274369367e-01),
0981 };
0982 return data;
0983 }
0984 static std::array<T, 21> const & weights()
0985 {
0986 static std::array<T, 21> data = {
0987 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.6600711917999656445049901530101740827932500628670118055485349620314721456712029449597396569857880493210849110825276e-02),
0988 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.6377867672080736705502835038061001800801036764945996714946431116936745542061941050008345047482501253320401746334511e-02),
0989 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.5704497684556674659542775376616558263363155900414326194855223272348838596099414841886740468379707283366777797425290e-02),
0990 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.4582875400499188986581418362487528616116493572092273080047040726969899567887364227664202642942357104526915332274625e-02),
0991 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.3030690332786667495189417658913112760626845234552742380174250771849743831660040966804802312464527721645765620253776e-02),
0992 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.1054423553444068305790361723210167412912159322210143921628270586407381879789525901086146473278095159807542174985045e-02),
0993 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.8648672928521619345623411885367801715489704958239860400434264173923806029589970941711224257967651039544669425313433e-02),
0994 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.5834597133618422111563556969397943147223506343381443709751749639944420314384296347503523810096842402960802728781816e-02),
0995 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.2653237554781168025870122174254980585819744698897886186553324157100424088919284503451596742588386343548162830898103e-02),
0996 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.9111400880639572374967220648594217136419365977042191748388047204015262840407696611508732839851952697839735487615776e-02),
0997 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.5195105348285994744832372419777329194753456228153116909812131213177827707884692917845453999535518818940813085110223e-02),
0998 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.0944573923728691932707670050344948664836365809262579747517140086119113476866735641054822574173198900379392130050979e-02),
0999 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.6434821867497674720231880926107516842127071007077929289994127933243222585938804392953931185146446072587020288747981e-02),
1000 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.1668873327973686263788305936894738043960843153010324860966353235271889596379726462208702081068715463576895020003842e-02),
1001 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.6600169758200798030557240707211008487453496747498001651070009441973280061489266074044986901436324295513243878212345e-02),
1002 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.1287306777032798958543119323800737887769280362813337359554598005322423266047996771926031069705049476071896145456496e-02),
1003 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.5882133604951158834505067096153142999479118048674944526997797755374306421629440393392427198869345793286369198147609e-02),
1004 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.0388373461266523598010231432754705122838627940185929365371868214433006532030353671253640300679157504987977281782909e-02),
1005 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.4626169256971252983787960308868356163881050162249770342103474631076960029748751959380482484308382288261238476948520e-02),
1006 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.6002698556429421986617879501023472521289227667077976622450602031426535362696437838448828009554532025301579670206091e-03),
1007 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.0735837185205315012182932460309874880335046882543449198461628212114333665590378156706265241414469306987988292234740e-03),
1008 };
1009 return data;
1010 }
1011 };
1012
1013 template <class T>
1014 class gauss_kronrod_detail<T, 51, 0>
1015 {
1016 public:
1017 static std::array<T, 26> const & abscissa()
1018 {
1019 static constexpr std::array<T, 26> data = {
1020 0.000000000e+00f,
1021 6.154448301e-02f,
1022 1.228646926e-01f,
1023 1.837189394e-01f,
1024 2.438668837e-01f,
1025 3.030895389e-01f,
1026 3.611723058e-01f,
1027 4.178853822e-01f,
1028 4.730027314e-01f,
1029 5.263252843e-01f,
1030 5.776629302e-01f,
1031 6.268100990e-01f,
1032 6.735663685e-01f,
1033 7.177664068e-01f,
1034 7.592592630e-01f,
1035 7.978737980e-01f,
1036 8.334426288e-01f,
1037 8.658470653e-01f,
1038 8.949919979e-01f,
1039 9.207471153e-01f,
1040 9.429745712e-01f,
1041 9.616149864e-01f,
1042 9.766639215e-01f,
1043 9.880357945e-01f,
1044 9.955569698e-01f,
1045 9.992621050e-01f,
1046 };
1047 return data;
1048 }
1049 static std::array<T, 26> const & weights()
1050 {
1051 static constexpr std::array<T, 26> data = {
1052 6.158081807e-02f,
1053 6.147118987e-02f,
1054 6.112850972e-02f,
1055 6.053945538e-02f,
1056 5.972034032e-02f,
1057 5.868968002e-02f,
1058 5.743711636e-02f,
1059 5.595081122e-02f,
1060 5.425112989e-02f,
1061 5.236288581e-02f,
1062 5.027767908e-02f,
1063 4.798253714e-02f,
1064 4.550291305e-02f,
1065 4.287284502e-02f,
1066 4.008382550e-02f,
1067 3.711627148e-02f,
1068 3.400213027e-02f,
1069 3.079230017e-02f,
1070 2.747531759e-02f,
1071 2.400994561e-02f,
1072 2.043537115e-02f,
1073 1.684781771e-02f,
1074 1.323622920e-02f,
1075 9.473973386e-03f,
1076 5.561932135e-03f,
1077 1.987383892e-03f,
1078 };
1079 return data;
1080 }
1081 };
1082
1083 template <class T>
1084 class gauss_kronrod_detail<T, 51, 1>
1085 {
1086 public:
1087 static std::array<T, 26> const & abscissa()
1088 {
1089 static constexpr std::array<T, 26> data = {
1090 0.00000000000000000e+00,
1091 6.15444830056850789e-02,
1092 1.22864692610710396e-01,
1093 1.83718939421048892e-01,
1094 2.43866883720988432e-01,
1095 3.03089538931107830e-01,
1096 3.61172305809387838e-01,
1097 4.17885382193037749e-01,
1098 4.73002731445714961e-01,
1099 5.26325284334719183e-01,
1100 5.77662930241222968e-01,
1101 6.26810099010317413e-01,
1102 6.73566368473468364e-01,
1103 7.17766406813084388e-01,
1104 7.59259263037357631e-01,
1105 7.97873797998500059e-01,
1106 8.33442628760834001e-01,
1107 8.65847065293275595e-01,
1108 8.94991997878275369e-01,
1109 9.20747115281701562e-01,
1110 9.42974571228974339e-01,
1111 9.61614986425842512e-01,
1112 9.76663921459517511e-01,
1113 9.88035794534077248e-01,
1114 9.95556969790498098e-01,
1115 9.99262104992609834e-01,
1116 };
1117 return data;
1118 }
1119 static std::array<T, 26> const & weights()
1120 {
1121 static constexpr std::array<T, 26> data = {
1122 6.15808180678329351e-02,
1123 6.14711898714253167e-02,
1124 6.11285097170530483e-02,
1125 6.05394553760458629e-02,
1126 5.97203403241740600e-02,
1127 5.86896800223942080e-02,
1128 5.74371163615678329e-02,
1129 5.59508112204123173e-02,
1130 5.42511298885454901e-02,
1131 5.23628858064074759e-02,
1132 5.02776790807156720e-02,
1133 4.79825371388367139e-02,
1134 4.55029130499217889e-02,
1135 4.28728450201700495e-02,
1136 4.00838255040323821e-02,
1137 3.71162714834155436e-02,
1138 3.40021302743293378e-02,
1139 3.07923001673874889e-02,
1140 2.74753175878517378e-02,
1141 2.40099456069532162e-02,
1142 2.04353711458828355e-02,
1143 1.68478177091282982e-02,
1144 1.32362291955716748e-02,
1145 9.47397338617415161e-03,
1146 5.56193213535671376e-03,
1147 1.98738389233031593e-03,
1148 };
1149 return data;
1150 }
1151 };
1152
1153 template <class T>
1154 class gauss_kronrod_detail<T, 51, 2>
1155 {
1156 public:
1157 static std::array<T, 26> const & abscissa()
1158 {
1159 static constexpr std::array<T, 26> data = {
1160 0.00000000000000000000000000000000000e+00L,
1161 6.15444830056850788865463923667966313e-02L,
1162 1.22864692610710396387359818808036806e-01L,
1163 1.83718939421048892015969888759528416e-01L,
1164 2.43866883720988432045190362797451586e-01L,
1165 3.03089538931107830167478909980339329e-01L,
1166 3.61172305809387837735821730127640667e-01L,
1167 4.17885382193037748851814394594572487e-01L,
1168 4.73002731445714960522182115009192041e-01L,
1169 5.26325284334719182599623778158010178e-01L,
1170 5.77662930241222967723689841612654067e-01L,
1171 6.26810099010317412788122681624517881e-01L,
1172 6.73566368473468364485120633247622176e-01L,
1173 7.17766406813084388186654079773297781e-01L,
1174 7.59259263037357630577282865204360976e-01L,
1175 7.97873797998500059410410904994306569e-01L,
1176 8.33442628760834001421021108693569569e-01L,
1177 8.65847065293275595448996969588340088e-01L,
1178 8.94991997878275368851042006782804954e-01L,
1179 9.20747115281701561746346084546330632e-01L,
1180 9.42974571228974339414011169658470532e-01L,
1181 9.61614986425842512418130033660167242e-01L,
1182 9.76663921459517511498315386479594068e-01L,
1183 9.88035794534077247637331014577406227e-01L,
1184 9.95556969790498097908784946893901617e-01L,
1185 9.99262104992609834193457486540340594e-01L,
1186 };
1187 return data;
1188 }
1189 static std::array<T, 26> const & weights()
1190 {
1191 static constexpr std::array<T, 26> data = {
1192 6.15808180678329350787598242400645532e-02L,
1193 6.14711898714253166615441319652641776e-02L,
1194 6.11285097170530483058590304162927119e-02L,
1195 6.05394553760458629453602675175654272e-02L,
1196 5.97203403241740599790992919325618538e-02L,
1197 5.86896800223942079619741758567877641e-02L,
1198 5.74371163615678328535826939395064720e-02L,
1199 5.59508112204123173082406863827473468e-02L,
1200 5.42511298885454901445433704598756068e-02L,
1201 5.23628858064074758643667121378727149e-02L,
1202 5.02776790807156719633252594334400844e-02L,
1203 4.79825371388367139063922557569147550e-02L,
1204 4.55029130499217889098705847526603930e-02L,
1205 4.28728450201700494768957924394951611e-02L,
1206 4.00838255040323820748392844670756464e-02L,
1207 3.71162714834155435603306253676198760e-02L,
1208 3.40021302743293378367487952295512032e-02L,
1209 3.07923001673874888911090202152285856e-02L,
1210 2.74753175878517378029484555178110786e-02L,
1211 2.40099456069532162200924891648810814e-02L,
1212 2.04353711458828354565682922359389737e-02L,
1213 1.68478177091282982315166675363363158e-02L,
1214 1.32362291955716748136564058469762381e-02L,
1215 9.47397338617415160720771052365532387e-03L,
1216 5.56193213535671375804023690106552207e-03L,
1217 1.98738389233031592650785188284340989e-03L,
1218 };
1219 return data;
1220 }
1221 };
1222
1223 #ifdef BOOST_HAS_FLOAT128
1224 template <class T>
1225 class gauss_kronrod_detail<T, 51, 3>
1226 {
1227 public:
1228 static std::array<T, 26> const & abscissa()
1229 {
1230 static const std::array<T, 26> data = {
1231 0.00000000000000000000000000000000000e+00Q,
1232 6.15444830056850788865463923667966313e-02Q,
1233 1.22864692610710396387359818808036806e-01Q,
1234 1.83718939421048892015969888759528416e-01Q,
1235 2.43866883720988432045190362797451586e-01Q,
1236 3.03089538931107830167478909980339329e-01Q,
1237 3.61172305809387837735821730127640667e-01Q,
1238 4.17885382193037748851814394594572487e-01Q,
1239 4.73002731445714960522182115009192041e-01Q,
1240 5.26325284334719182599623778158010178e-01Q,
1241 5.77662930241222967723689841612654067e-01Q,
1242 6.26810099010317412788122681624517881e-01Q,
1243 6.73566368473468364485120633247622176e-01Q,
1244 7.17766406813084388186654079773297781e-01Q,
1245 7.59259263037357630577282865204360976e-01Q,
1246 7.97873797998500059410410904994306569e-01Q,
1247 8.33442628760834001421021108693569569e-01Q,
1248 8.65847065293275595448996969588340088e-01Q,
1249 8.94991997878275368851042006782804954e-01Q,
1250 9.20747115281701561746346084546330632e-01Q,
1251 9.42974571228974339414011169658470532e-01Q,
1252 9.61614986425842512418130033660167242e-01Q,
1253 9.76663921459517511498315386479594068e-01Q,
1254 9.88035794534077247637331014577406227e-01Q,
1255 9.95556969790498097908784946893901617e-01Q,
1256 9.99262104992609834193457486540340594e-01Q,
1257 };
1258 return data;
1259 }
1260 static std::array<T, 26> const & weights()
1261 {
1262 static const std::array<T, 26> data = {
1263 6.15808180678329350787598242400645532e-02Q,
1264 6.14711898714253166615441319652641776e-02Q,
1265 6.11285097170530483058590304162927119e-02Q,
1266 6.05394553760458629453602675175654272e-02Q,
1267 5.97203403241740599790992919325618538e-02Q,
1268 5.86896800223942079619741758567877641e-02Q,
1269 5.74371163615678328535826939395064720e-02Q,
1270 5.59508112204123173082406863827473468e-02Q,
1271 5.42511298885454901445433704598756068e-02Q,
1272 5.23628858064074758643667121378727149e-02Q,
1273 5.02776790807156719633252594334400844e-02Q,
1274 4.79825371388367139063922557569147550e-02Q,
1275 4.55029130499217889098705847526603930e-02Q,
1276 4.28728450201700494768957924394951611e-02Q,
1277 4.00838255040323820748392844670756464e-02Q,
1278 3.71162714834155435603306253676198760e-02Q,
1279 3.40021302743293378367487952295512032e-02Q,
1280 3.07923001673874888911090202152285856e-02Q,
1281 2.74753175878517378029484555178110786e-02Q,
1282 2.40099456069532162200924891648810814e-02Q,
1283 2.04353711458828354565682922359389737e-02Q,
1284 1.68478177091282982315166675363363158e-02Q,
1285 1.32362291955716748136564058469762381e-02Q,
1286 9.47397338617415160720771052365532387e-03Q,
1287 5.56193213535671375804023690106552207e-03Q,
1288 1.98738389233031592650785188284340989e-03Q,
1289 };
1290 return data;
1291 }
1292 };
1293 #endif
1294
1295 template <class T>
1296 class gauss_kronrod_detail<T, 51, 4>
1297 {
1298 public:
1299 static std::array<T, 26> const & abscissa()
1300 {
1301 static std::array<T, 26> data = {
1302 BOOST_MATH_HUGE_CONSTANT(T, 0, 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e+00),
1303 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.1544483005685078886546392366796631281724348039823545274305431751687279361558658545141048781022691067898008423227288e-02),
1304 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.2286469261071039638735981880803680553220534604978373842389353789270883496885841582643884994633105537597765980412320e-01),
1305 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.8371893942104889201596988875952841578528447834990555215034512653236752851109815617651867160645591242103823539931527e-01),
1306 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.4386688372098843204519036279745158640563315632598447642113565325038747278585595067977636776325034060327548499765742e-01),
1307 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.0308953893110783016747890998033932920041937876655194685731578452573120372337209717349617882111662416355753711853559e-01),
1308 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.6117230580938783773582173012764066742207834704337506979457877784674538239569654860329531506093761400789294612122812e-01),
1309 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.1788538219303774885181439459457248709336998140069528034955785068796932076966599548717224205109797297615032607570119e-01),
1310 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.7300273144571496052218211500919204133181773846162729090723082769560327584128603010315684778279363544192787010704498e-01),
1311 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.2632528433471918259962377815801017803683252320191114313002425180471455022502695302371008520604638341970901082293650e-01),
1312 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.7766293024122296772368984161265406739573503929151825664548350776102301275263202227671659646579649084013116066120581e-01),
1313 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.2681009901031741278812268162451788101954628995068510806525222008437260184181183053045236423845198752346149030569920e-01),
1314 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.7356636847346836448512063324762217588341672807274931705965696177828773684928421158196368568030932194044282149314388e-01),
1315 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.1776640681308438818665407977329778059771167555515582423493486823991612820974965089522905953765860328116692570706602e-01),
1316 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.5925926303735763057728286520436097638752201889833412091838973544501862882026240760763679724185230331463919586229073e-01),
1317 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.9787379799850005941041090499430656940863230009338267661706934499488650817643824077118950314443984031474353711531825e-01),
1318 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.3344262876083400142102110869356956946096411382352078602086471546171813247709012525322973947759168107133491065937347e-01),
1319 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.6584706529327559544899696958834008820284409402823690293965213246691432948180280120756708738064779055576005302835351e-01),
1320 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.9499199787827536885104200678280495417455484975358390306170168295917151090119945137118600693039178162093726882638296e-01),
1321 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.2074711528170156174634608454633063157457035996277199700642836501131385042631212407808952281702820179915510491592339e-01),
1322 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.4297457122897433941401116965847053190520157060899014192745249713729532254404926130890521815127348327109666786665572e-01),
1323 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.6161498642584251241813003366016724169212642963709676666624520141292893281185666917636407790823210892689040877316178e-01),
1324 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.7666392145951751149831538647959406774537055531440674467098742731616386753588055389644670948300617866819865983054648e-01),
1325 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.8803579453407724763733101457740622707248415209160748131449972199405186821347293686245404742032360498210710718706868e-01),
1326 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9555696979049809790878494689390161725756264940480817121080493113293348134372793448728802635294700756868258870429256e-01),
1327 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9926210499260983419345748654034059370452496042279618586228697762904524428167719073818746102238075978747461480736921e-01),
1328 };
1329 return data;
1330 }
1331 static std::array<T, 26> const & weights()
1332 {
1333 static std::array<T, 26> data = {
1334 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.1580818067832935078759824240064553190436936903140808056908996403358367244202623293256774502185186717703954810463664e-02),
1335 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.1471189871425316661544131965264177586537962876885022711111683500151700796198726558483367566537422877227096643444043e-02),
1336 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.1128509717053048305859030416292711922678552321960938357322028070390133769952032831204895569347757809858568165047769e-02),
1337 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.0539455376045862945360267517565427162312365710457079923487043144554747810689514408013582515489930908693681447570811e-02),
1338 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.9720340324174059979099291932561853835363045476189975483372207816149988460708299020779612375010639778624011960832019e-02),
1339 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.8689680022394207961974175856787764139795646254828315293243700305012569486054157617049685031506591863121580010947248e-02),
1340 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.7437116361567832853582693939506471994832856823896682976509412313367495727224381199978598247737089593472710899482737e-02),
1341 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.5950811220412317308240686382747346820271035112771802428932791066115158268338607019365831655460314732208940609352540e-02),
1342 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.4251129888545490144543370459875606826076838441263383072163293312936923476650934130242315028422047795830492882862973e-02),
1343 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.2362885806407475864366712137872714887351550723707596350905793656046659248541276597504566497990926306481919129870507e-02),
1344 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.0277679080715671963325259433440084440587630604775975142050968279743014641141402310302584542633557037153607386127936e-02),
1345 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.7982537138836713906392255756914754983592207423271169651235865196757913880334117810235517477328110033499422471098658e-02),
1346 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.5502913049921788909870584752660393043707768935695327316724254392794299567957035458208970599641697203261236226745020e-02),
1347 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.2872845020170049476895792439495161101999504199883328877919242515738957655253932048951366960802592343905647433925806e-02),
1348 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.0083825504032382074839284467075646401410549266591308713115878386835777315058451955614116158949614066927183232852042e-02),
1349 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.7116271483415543560330625367619875995997802688047764805628702762773009669395760582294525748583875707140577080663373e-02),
1350 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.4002130274329337836748795229551203225670528250050443083264193121524339063344855010257660547708022429300203676502386e-02),
1351 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.0792300167387488891109020215228585600877162393292487644544830559965388047996492709248618249084851477787538356572832e-02),
1352 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.7475317587851737802948455517811078614796013288710603199613621069727810352835469926107822047433566792405123805901196e-02),
1353 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.4009945606953216220092489164881081392931528209659330290734972342536012282191913069778658241972047765300060007037359e-02),
1354 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.0435371145882835456568292235938973678758006097668937220074531550163622566841885855957623103354443247806459277197725e-02),
1355 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.6847817709128298231516667536336315840402654624706139411175769276842182270078960078544597372646532637619276509222462e-02),
1356 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.3236229195571674813656405846976238077578084997863654732213860488560614587634395544002156258192582265590155862296710e-02),
1357 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.4739733861741516072077105236553238716453268483726334971394029603529306140359023187904705754719643032594360138998941e-03),
1358 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.5619321353567137580402369010655220701769295496290984052961210793810038857581724171021610100708799763006942755331129e-03),
1359 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.9873838923303159265078518828434098894299804282505973837653346298985629336820118753523093675303476883723992297810124e-03),
1360 };
1361 return data;
1362 }
1363 };
1364
1365 template <class T>
1366 class gauss_kronrod_detail<T, 61, 0>
1367 {
1368 public:
1369 static std::array<T, 31> const & abscissa()
1370 {
1371 static constexpr std::array<T, 31> data = {
1372 0.000000000e+00f,
1373 5.147184256e-02f,
1374 1.028069380e-01f,
1375 1.538699136e-01f,
1376 2.045251167e-01f,
1377 2.546369262e-01f,
1378 3.040732023e-01f,
1379 3.527047255e-01f,
1380 4.004012548e-01f,
1381 4.470337695e-01f,
1382 4.924804679e-01f,
1383 5.366241481e-01f,
1384 5.793452358e-01f,
1385 6.205261830e-01f,
1386 6.600610641e-01f,
1387 6.978504948e-01f,
1388 7.337900625e-01f,
1389 7.677774321e-01f,
1390 7.997278358e-01f,
1391 8.295657624e-01f,
1392 8.572052335e-01f,
1393 8.825605358e-01f,
1394 9.055733077e-01f,
1395 9.262000474e-01f,
1396 9.443744447e-01f,
1397 9.600218650e-01f,
1398 9.731163225e-01f,
1399 9.836681233e-01f,
1400 9.916309969e-01f,
1401 9.968934841e-01f,
1402 9.994844101e-01f,
1403 };
1404 return data;
1405 }
1406 static std::array<T, 31> const & weights()
1407 {
1408 static constexpr std::array<T, 31> data = {
1409 5.149472943e-02f,
1410 5.142612854e-02f,
1411 5.122154785e-02f,
1412 5.088179590e-02f,
1413 5.040592140e-02f,
1414 4.979568343e-02f,
1415 4.905543456e-02f,
1416 4.818586176e-02f,
1417 4.718554657e-02f,
1418 4.605923827e-02f,
1419 4.481480013e-02f,
1420 4.345253970e-02f,
1421 4.196981022e-02f,
1422 4.037453895e-02f,
1423 3.867894562e-02f,
1424 3.688236465e-02f,
1425 3.497933803e-02f,
1426 3.298144706e-02f,
1427 3.090725756e-02f,
1428 2.875404877e-02f,
1429 2.650995488e-02f,
1430 2.419116208e-02f,
1431 2.182803582e-02f,
1432 1.941414119e-02f,
1433 1.692088919e-02f,
1434 1.436972951e-02f,
1435 1.182301525e-02f,
1436 9.273279660e-03f,
1437 6.630703916e-03f,
1438 3.890461127e-03f,
1439 1.389013699e-03f,
1440 };
1441 return data;
1442 }
1443 };
1444
1445 template <class T>
1446 class gauss_kronrod_detail<T, 61, 1>
1447 {
1448 public:
1449 static std::array<T, 31> const & abscissa()
1450 {
1451 static constexpr std::array<T, 31> data = {
1452 0.00000000000000000e+00,
1453 5.14718425553176958e-02,
1454 1.02806937966737030e-01,
1455 1.53869913608583547e-01,
1456 2.04525116682309891e-01,
1457 2.54636926167889846e-01,
1458 3.04073202273625077e-01,
1459 3.52704725530878113e-01,
1460 4.00401254830394393e-01,
1461 4.47033769538089177e-01,
1462 4.92480467861778575e-01,
1463 5.36624148142019899e-01,
1464 5.79345235826361692e-01,
1465 6.20526182989242861e-01,
1466 6.60061064126626961e-01,
1467 6.97850494793315797e-01,
1468 7.33790062453226805e-01,
1469 7.67777432104826195e-01,
1470 7.99727835821839083e-01,
1471 8.29565762382768397e-01,
1472 8.57205233546061099e-01,
1473 8.82560535792052682e-01,
1474 9.05573307699907799e-01,
1475 9.26200047429274326e-01,
1476 9.44374444748559979e-01,
1477 9.60021864968307512e-01,
1478 9.73116322501126268e-01,
1479 9.83668123279747210e-01,
1480 9.91630996870404595e-01,
1481 9.96893484074649540e-01,
1482 9.99484410050490638e-01,
1483 };
1484 return data;
1485 }
1486 static std::array<T, 31> const & weights()
1487 {
1488 static constexpr std::array<T, 31> data = {
1489 5.14947294294515676e-02,
1490 5.14261285374590259e-02,
1491 5.12215478492587722e-02,
1492 5.08817958987496065e-02,
1493 5.04059214027823468e-02,
1494 4.97956834270742064e-02,
1495 4.90554345550297789e-02,
1496 4.81858617570871291e-02,
1497 4.71855465692991539e-02,
1498 4.60592382710069881e-02,
1499 4.48148001331626632e-02,
1500 4.34525397013560693e-02,
1501 4.19698102151642461e-02,
1502 4.03745389515359591e-02,
1503 3.86789456247275930e-02,
1504 3.68823646518212292e-02,
1505 3.49793380280600241e-02,
1506 3.29814470574837260e-02,
1507 3.09072575623877625e-02,
1508 2.87540487650412928e-02,
1509 2.65099548823331016e-02,
1510 2.41911620780806014e-02,
1511 2.18280358216091923e-02,
1512 1.94141411939423812e-02,
1513 1.69208891890532726e-02,
1514 1.43697295070458048e-02,
1515 1.18230152534963417e-02,
1516 9.27327965951776343e-03,
1517 6.63070391593129217e-03,
1518 3.89046112709988405e-03,
1519 1.38901369867700762e-03,
1520 };
1521 return data;
1522 }
1523 };
1524
1525 template <class T>
1526 class gauss_kronrod_detail<T, 61, 2>
1527 {
1528 public:
1529 static std::array<T, 31> const & abscissa()
1530 {
1531 static constexpr std::array<T, 31> data = {
1532 0.00000000000000000000000000000000000e+00L,
1533 5.14718425553176958330252131667225737e-02L,
1534 1.02806937966737030147096751318000592e-01L,
1535 1.53869913608583546963794672743255920e-01L,
1536 2.04525116682309891438957671002024710e-01L,
1537 2.54636926167889846439805129817805108e-01L,
1538 3.04073202273625077372677107199256554e-01L,
1539 3.52704725530878113471037207089373861e-01L,
1540 4.00401254830394392535476211542660634e-01L,
1541 4.47033769538089176780609900322854000e-01L,
1542 4.92480467861778574993693061207708796e-01L,
1543 5.36624148142019899264169793311072794e-01L,
1544 5.79345235826361691756024932172540496e-01L,
1545 6.20526182989242861140477556431189299e-01L,
1546 6.60061064126626961370053668149270753e-01L,
1547 6.97850494793315796932292388026640068e-01L,
1548 7.33790062453226804726171131369527646e-01L,
1549 7.67777432104826194917977340974503132e-01L,
1550 7.99727835821839083013668942322683241e-01L,
1551 8.29565762382768397442898119732501916e-01L,
1552 8.57205233546061098958658510658943857e-01L,
1553 8.82560535792052681543116462530225590e-01L,
1554 9.05573307699907798546522558925958320e-01L,
1555 9.26200047429274325879324277080474004e-01L,
1556 9.44374444748559979415831324037439122e-01L,
1557 9.60021864968307512216871025581797663e-01L,
1558 9.73116322501126268374693868423706885e-01L,
1559 9.83668123279747209970032581605662802e-01L,
1560 9.91630996870404594858628366109485725e-01L,
1561 9.96893484074649540271630050918695283e-01L,
1562 9.99484410050490637571325895705810819e-01L,
1563 };
1564 return data;
1565 }
1566 static std::array<T, 31> const & weights()
1567 {
1568 static constexpr std::array<T, 31> data = {
1569 5.14947294294515675583404336470993075e-02L,
1570 5.14261285374590259338628792157812598e-02L,
1571 5.12215478492587721706562826049442083e-02L,
1572 5.08817958987496064922974730498046919e-02L,
1573 5.04059214027823468408930856535850289e-02L,
1574 4.97956834270742063578115693799423285e-02L,
1575 4.90554345550297788875281653672381736e-02L,
1576 4.81858617570871291407794922983045926e-02L,
1577 4.71855465692991539452614781810994865e-02L,
1578 4.60592382710069881162717355593735806e-02L,
1579 4.48148001331626631923555516167232438e-02L,
1580 4.34525397013560693168317281170732581e-02L,
1581 4.19698102151642461471475412859697578e-02L,
1582 4.03745389515359591119952797524681142e-02L,
1583 3.86789456247275929503486515322810503e-02L,
1584 3.68823646518212292239110656171359677e-02L,
1585 3.49793380280600241374996707314678751e-02L,
1586 3.29814470574837260318141910168539275e-02L,
1587 3.09072575623877624728842529430922726e-02L,
1588 2.87540487650412928439787853543342111e-02L,
1589 2.65099548823331016106017093350754144e-02L,
1590 2.41911620780806013656863707252320268e-02L,
1591 2.18280358216091922971674857383389934e-02L,
1592 1.94141411939423811734089510501284559e-02L,
1593 1.69208891890532726275722894203220924e-02L,
1594 1.43697295070458048124514324435800102e-02L,
1595 1.18230152534963417422328988532505929e-02L,
1596 9.27327965951776342844114689202436042e-03L,
1597 6.63070391593129217331982636975016813e-03L,
1598 3.89046112709988405126720184451550328e-03L,
1599 1.38901369867700762455159122675969968e-03L,
1600 };
1601 return data;
1602 }
1603 };
1604
1605 #ifdef BOOST_HAS_FLOAT128
1606 template <class T>
1607 class gauss_kronrod_detail<T, 61, 3>
1608 {
1609 public:
1610 static std::array<T, 31> const & abscissa()
1611 {
1612 static const std::array<T, 31> data = {
1613 0.00000000000000000000000000000000000e+00Q,
1614 5.14718425553176958330252131667225737e-02Q,
1615 1.02806937966737030147096751318000592e-01Q,
1616 1.53869913608583546963794672743255920e-01Q,
1617 2.04525116682309891438957671002024710e-01Q,
1618 2.54636926167889846439805129817805108e-01Q,
1619 3.04073202273625077372677107199256554e-01Q,
1620 3.52704725530878113471037207089373861e-01Q,
1621 4.00401254830394392535476211542660634e-01Q,
1622 4.47033769538089176780609900322854000e-01Q,
1623 4.92480467861778574993693061207708796e-01Q,
1624 5.36624148142019899264169793311072794e-01Q,
1625 5.79345235826361691756024932172540496e-01Q,
1626 6.20526182989242861140477556431189299e-01Q,
1627 6.60061064126626961370053668149270753e-01Q,
1628 6.97850494793315796932292388026640068e-01Q,
1629 7.33790062453226804726171131369527646e-01Q,
1630 7.67777432104826194917977340974503132e-01Q,
1631 7.99727835821839083013668942322683241e-01Q,
1632 8.29565762382768397442898119732501916e-01Q,
1633 8.57205233546061098958658510658943857e-01Q,
1634 8.82560535792052681543116462530225590e-01Q,
1635 9.05573307699907798546522558925958320e-01Q,
1636 9.26200047429274325879324277080474004e-01Q,
1637 9.44374444748559979415831324037439122e-01Q,
1638 9.60021864968307512216871025581797663e-01Q,
1639 9.73116322501126268374693868423706885e-01Q,
1640 9.83668123279747209970032581605662802e-01Q,
1641 9.91630996870404594858628366109485725e-01Q,
1642 9.96893484074649540271630050918695283e-01Q,
1643 9.99484410050490637571325895705810819e-01Q,
1644 };
1645 return data;
1646 }
1647 static std::array<T, 31> const & weights()
1648 {
1649 static const std::array<T, 31> data = {
1650 5.14947294294515675583404336470993075e-02Q,
1651 5.14261285374590259338628792157812598e-02Q,
1652 5.12215478492587721706562826049442083e-02Q,
1653 5.08817958987496064922974730498046919e-02Q,
1654 5.04059214027823468408930856535850289e-02Q,
1655 4.97956834270742063578115693799423285e-02Q,
1656 4.90554345550297788875281653672381736e-02Q,
1657 4.81858617570871291407794922983045926e-02Q,
1658 4.71855465692991539452614781810994865e-02Q,
1659 4.60592382710069881162717355593735806e-02Q,
1660 4.48148001331626631923555516167232438e-02Q,
1661 4.34525397013560693168317281170732581e-02Q,
1662 4.19698102151642461471475412859697578e-02Q,
1663 4.03745389515359591119952797524681142e-02Q,
1664 3.86789456247275929503486515322810503e-02Q,
1665 3.68823646518212292239110656171359677e-02Q,
1666 3.49793380280600241374996707314678751e-02Q,
1667 3.29814470574837260318141910168539275e-02Q,
1668 3.09072575623877624728842529430922726e-02Q,
1669 2.87540487650412928439787853543342111e-02Q,
1670 2.65099548823331016106017093350754144e-02Q,
1671 2.41911620780806013656863707252320268e-02Q,
1672 2.18280358216091922971674857383389934e-02Q,
1673 1.94141411939423811734089510501284559e-02Q,
1674 1.69208891890532726275722894203220924e-02Q,
1675 1.43697295070458048124514324435800102e-02Q,
1676 1.18230152534963417422328988532505929e-02Q,
1677 9.27327965951776342844114689202436042e-03Q,
1678 6.63070391593129217331982636975016813e-03Q,
1679 3.89046112709988405126720184451550328e-03Q,
1680 1.38901369867700762455159122675969968e-03Q,
1681 };
1682 return data;
1683 }
1684 };
1685 #endif
1686
1687 template <class T>
1688 class gauss_kronrod_detail<T, 61, 4>
1689 {
1690 public:
1691 static std::array<T, 31> const & abscissa()
1692 {
1693 static std::array<T, 31> data = {
1694 BOOST_MATH_HUGE_CONSTANT(T, 0, 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e+00),
1695 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.1471842555317695833025213166722573749141453666569564255160843987964755210427109055870090707285485841217089963590678e-02),
1696 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.0280693796673703014709675131800059247190133296515840552101946914632788253917872738234797140786490207720254922664913e-01),
1697 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.5386991360858354696379467274325592041855197124433846171896298291578714851081610139692310651074078557990111754952062e-01),
1698 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.0452511668230989143895767100202470952410426459556377447604465028350321894663245495592565235317147819577892124850607e-01),
1699 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.5463692616788984643980512981780510788278930330251842616428597508896353156907880290636628138423620257595521678255758e-01),
1700 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.0407320227362507737267710719925655353115778980946272844421536998312150442387767304001423699909778588529370119457430e-01),
1701 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.5270472553087811347103720708937386065363100802142562659418446890026941623319107866436039675211352945165817827083104e-01),
1702 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.0040125483039439253547621154266063361104593297078395983186610656429170689311759061175527015710247383961903284673474e-01),
1703 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.4703376953808917678060990032285400016240759386142440975447738172761535172858420700400688872124189834257262048739699e-01),
1704 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.9248046786177857499369306120770879564426564096318697026073340982988422546396352776837047452262025983265531109327026e-01),
1705 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.3662414814201989926416979331107279416417800693029710545274348291201490861897837863114116009718990258091585830703557e-01),
1706 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.7934523582636169175602493217254049590705158881215289208126016612312833567812241903809970751783808208940322061083509e-01),
1707 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.2052618298924286114047755643118929920736469282952813259505117012433531497488911774115258445532782106478789996137481e-01),
1708 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.6006106412662696137005366814927075303835037480883390955067197339904937499734522076788020517029688190998858739703079e-01),
1709 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.9785049479331579693229238802664006838235380065395465637972284673997672124315996069538163644008904690545069439941341e-01),
1710 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.3379006245322680472617113136952764566938172775468549208701399518300016463613325382024664531597318795933262446521430e-01),
1711 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.6777743210482619491797734097450313169488361723290845320649438736515857017299504505260960258623968420224697596501719e-01),
1712 BOOST_MATH_HUGE_CONSTANT(T, 0, 7.9972783582183908301366894232268324073569842937778450923647349548686662567326007229195202524185356472023967927713548e-01),
1713 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.2956576238276839744289811973250191643906869617034167880695298345365650658958163508295244350814016004371545455777732e-01),
1714 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.5720523354606109895865851065894385682080017062359612850504551739119887225712932688031120704657195642614071367390794e-01),
1715 BOOST_MATH_HUGE_CONSTANT(T, 0, 8.8256053579205268154311646253022559005668914714648423206832605312161626269519165572921583828573210485349058106849548e-01),
1716 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.0557330769990779854652255892595831956897536366222841356404766397803760239449631913585074426842574155323901785046522e-01),
1717 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.2620004742927432587932427708047400408647453682532906091103713367942299565110232681677288015055886244486106298320068e-01),
1718 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.4437444474855997941583132403743912158564371496498093181748940139520917000657342753448871376849848523800667868447591e-01),
1719 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.6002186496830751221687102558179766293035921740392339948566167242493995770706842922718944370380002378239172677454384e-01),
1720 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.7311632250112626837469386842370688488763796428343933853755850185624118958166838288308561708261486365954975485787212e-01),
1721 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.8366812327974720997003258160566280194031785470971136351718001015114429536479104370207597166035471368057762560137209e-01),
1722 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9163099687040459485862836610948572485050033374616325510019923349807489603260796605556191495843575227494654783755353e-01),
1723 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9689348407464954027163005091869528334088203811775079010809429780238769521016374081588201955806171741257405095963817e-01),
1724 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.9948441005049063757132589570581081946887394701850801923632642830748016674843587830656468823145435723317885056396548e-01),
1725 };
1726 return data;
1727 }
1728 static std::array<T, 31> const & weights()
1729 {
1730 static std::array<T, 31> data = {
1731 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.1494729429451567558340433647099307532736880396464168074637323362474083844397567724480716864880173808112573901197920e-02),
1732 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.1426128537459025933862879215781259829552034862395987263855824172761589259406892072066110681184224608133314131500422e-02),
1733 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.1221547849258772170656282604944208251146952425246327553509056805511015401279553971190412722969308620984161625812560e-02),
1734 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.0881795898749606492297473049804691853384914260919239920771942080972542646780575571132056254070929858650733836163479e-02),
1735 BOOST_MATH_HUGE_CONSTANT(T, 0, 5.0405921402782346840893085653585028902197018251622233664243959211066713308635283713447747907973700791599900911248852e-02),
1736 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.9795683427074206357811569379942328539209602813696108951047392842948482646220377655098341924089250200477846596263918e-02),
1737 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.9055434555029778887528165367238173605887405295296569579490717901328215644590555247522873065246297467067324397612445e-02),
1738 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.8185861757087129140779492298304592605799236108429800057373350872433793583969368428942672063270298939865425225579922e-02),
1739 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.7185546569299153945261478181099486482884807300628457194141861551725533289490897029020276525603515502104799540544222e-02),
1740 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.6059238271006988116271735559373580594692875571824924004732379492293604006446052672252973438978639166425766841417488e-02),
1741 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.4814800133162663192355551616723243757431392796373009889680201194063503947907899189061064792111919040540351834527742e-02),
1742 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.3452539701356069316831728117073258074603308631703168064888805495738640839573863333942084117196541456054957383622173e-02),
1743 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.1969810215164246147147541285969757790088656718992374820388720323852655511200365790379948462006156953358103259681948e-02),
1744 BOOST_MATH_HUGE_CONSTANT(T, 0, 4.0374538951535959111995279752468114216126062126030255633998289613810846761059740961836828802959573901107306640876603e-02),
1745 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.8678945624727592950348651532281050250923629821553846790376130679337402056620700554139109487533759557982632153728099e-02),
1746 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.6882364651821229223911065617135967736955164781030337670005198584196134970154169862584193360751243227989492571664973e-02),
1747 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.4979338028060024137499670731467875097226912794818719972208457232177786702008744219498470603846784465175225933802357e-02),
1748 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.2981447057483726031814191016853927510599291213858385714519347641452316582381008804994515341969205985818543200837577e-02),
1749 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.0907257562387762472884252943092272635270458523807153426840486964022086189874056947717446328187131273807982629114591e-02),
1750 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.8754048765041292843978785354334211144679160542074930035102280759132174815469834227854660515366003136772757344886331e-02),
1751 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.6509954882333101610601709335075414366517579522748565770867438338472138903658077617652522759934474895733739329287706e-02),
1752 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.4191162078080601365686370725232026760391377828182462432228943562944885267501070688006470962871743661192935455117297e-02),
1753 BOOST_MATH_HUGE_CONSTANT(T, 0, 2.1828035821609192297167485738338993401507296056834912773630422358720439403382559079356058602393879803560534375378340e-02),
1754 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.9414141193942381173408951050128455851421014191431525770276066536497179079025540486072726114628763606440143557769099e-02),
1755 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.6920889189053272627572289420322092368566703783835191139883410840546679978551861043620089451681146020853650713611444e-02),
1756 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.4369729507045804812451432443580010195841899895001505873565899403000198662495821906144274682894222591414503342336172e-02),
1757 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.1823015253496341742232898853250592896264406250607818326302431548265365155855182739401700032519141448997853772603766e-02),
1758 BOOST_MATH_HUGE_CONSTANT(T, 0, 9.2732796595177634284411468920243604212700249381931076964956469143626665557434385492325784596343112153704094886248672e-03),
1759 BOOST_MATH_HUGE_CONSTANT(T, 0, 6.6307039159312921733198263697501681336283882177812585973955597357837568277731921327731815844512598157843672104469554e-03),
1760 BOOST_MATH_HUGE_CONSTANT(T, 0, 3.8904611270998840512672018445155032785151429848864649214200101281144733676455451061226273655941038347210163533085954e-03),
1761 BOOST_MATH_HUGE_CONSTANT(T, 0, 1.3890136986770076245515912267596996810488412919632724534411055332301367130989865366956251556423820479579333920310978e-03),
1762 };
1763 return data;
1764 }
1765 };
1766
1767 }
1768
1769 template <class Real, unsigned N, class Policy = boost::math::policies::policy<> >
1770 class gauss_kronrod : public detail::gauss_kronrod_detail<Real, N, detail::gauss_constant_category<Real>::value>
1771 {
1772 typedef detail::gauss_kronrod_detail<Real, N, detail::gauss_constant_category<Real>::value> base;
1773 public:
1774 typedef Real value_type;
1775 private:
1776 template <class F>
1777 static auto integrate_non_adaptive_m1_1(F f, Real* error = nullptr, Real* pL1 = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))
1778 {
1779 typedef decltype(f(Real(0))) K;
1780 using std::abs;
1781 unsigned gauss_start = 2;
1782 unsigned kronrod_start = 1;
1783 unsigned gauss_order = (N - 1) / 2;
1784 K kronrod_result = 0;
1785 K gauss_result = 0;
1786 K fp, fm;
1787 if (gauss_order & 1)
1788 {
1789 fp = f(value_type(0));
1790 kronrod_result = fp * base::weights()[0];
1791 gauss_result += fp * gauss<Real, (N - 1) / 2>::weights()[0];
1792 }
1793 else
1794 {
1795 fp = f(value_type(0));
1796 kronrod_result = fp * base::weights()[0];
1797 gauss_start = 1;
1798 kronrod_start = 2;
1799 }
1800 Real L1 = abs(kronrod_result);
1801 for (unsigned i = gauss_start; i < base::abscissa().size(); i += 2)
1802 {
1803 fp = f(base::abscissa()[i]);
1804 fm = f(-base::abscissa()[i]);
1805 kronrod_result += (fp + fm) * base::weights()[i];
1806 L1 += (abs(fp) + abs(fm)) * base::weights()[i];
1807 gauss_result += (fp + fm) * gauss<Real, (N - 1) / 2>::weights()[i / 2];
1808 }
1809 for (unsigned i = kronrod_start; i < base::abscissa().size(); i += 2)
1810 {
1811 fp = f(base::abscissa()[i]);
1812 fm = f(-base::abscissa()[i]);
1813 kronrod_result += (fp + fm) * base::weights()[i];
1814 L1 += (abs(fp) + abs(fm)) * base::weights()[i];
1815 }
1816 if (pL1)
1817 *pL1 = L1;
1818 if (error)
1819 *error = (std::max)(static_cast<Real>(abs(kronrod_result - gauss_result)), static_cast<Real>(abs(kronrod_result * tools::epsilon<Real>() * Real(2))));
1820 return kronrod_result;
1821 }
1822
1823 template <class F>
1824 struct recursive_info
1825 {
1826 F f;
1827 Real tol;
1828 };
1829
1830 template <class F>
1831 static auto recursive_adaptive_integrate(const recursive_info<F>* info, Real a, Real b, unsigned max_levels, Real abs_tol, Real* error, Real* L1)->decltype(std::declval<F>()(std::declval<Real>()))
1832 {
1833 typedef decltype(info->f(Real(a))) K;
1834 using std::abs;
1835 Real error_local;
1836 Real mean = (b + a) / 2;
1837 Real scale = (b - a) / 2;
1838 auto ff = [&](const Real& x)->K
1839 {
1840 return info->f(scale * x + mean);
1841 };
1842 K r1 = integrate_non_adaptive_m1_1(ff, &error_local, L1);
1843 K estimate = scale * r1;
1844
1845 K tmp = estimate * info->tol;
1846 Real abs_tol1 = abs(tmp);
1847 if (abs_tol == 0)
1848 abs_tol = abs_tol1;
1849
1850 if (max_levels && (abs_tol1 < error_local) && (abs_tol < error_local))
1851 {
1852 Real mid = (a + b) / 2;
1853 Real L1_local;
1854 estimate = recursive_adaptive_integrate(info, a, mid, max_levels - 1, abs_tol / 2, error, L1);
1855 estimate += recursive_adaptive_integrate(info, mid, b, max_levels - 1, abs_tol / 2, &error_local, &L1_local);
1856 if (error)
1857 *error += error_local;
1858 if (L1)
1859 *L1 += L1_local;
1860 return estimate;
1861 }
1862 if(L1)
1863 *L1 *= scale;
1864 if (error)
1865 *error = error_local;
1866 return estimate;
1867 }
1868
1869 public:
1870 template <class F>
1871 static auto integrate(F f, Real a, Real b, unsigned max_depth = 15, Real tol = tools::root_epsilon<Real>(), Real* error = nullptr, Real* pL1 = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))
1872 {
1873 typedef decltype(f(a)) K;
1874 static_assert(!std::is_integral<K>::value,
1875 "The return type cannot be integral, it must be either a real or complex floating point type.");
1876 static const char* function = "boost::math::quadrature::gauss_kronrod<%1%>::integrate(f, %1%, %1%)";
1877 if (!(boost::math::isnan)(a) && !(boost::math::isnan)(b))
1878 {
1879
1880 if ((a <= -tools::max_value<Real>()) && (b >= tools::max_value<Real>()))
1881 {
1882 auto u = [&](const Real& t)->K
1883 {
1884 Real t_sq = t*t;
1885 Real inv = 1 / (1 - t_sq);
1886 Real w = (1 + t_sq)*inv*inv;
1887 Real arg = t*inv;
1888 K res = f(arg)*w;
1889 return res;
1890 };
1891 recursive_info<decltype(u)> info = { u, tol };
1892 K res = recursive_adaptive_integrate(&info, Real(-1), Real(1), max_depth, Real(0), error, pL1);
1893 return res;
1894 }
1895
1896
1897 if ((boost::math::isfinite)(a) && (b >= tools::max_value<Real>()))
1898 {
1899 auto u = [&](const Real& t)->K
1900 {
1901 Real z = 1 / (t + 1);
1902 Real arg = 2 * z + a - 1;
1903 K res = f(arg)*z*z;
1904 return res;
1905 };
1906 recursive_info<decltype(u)> info = { u, tol };
1907 K Q = Real(2) * recursive_adaptive_integrate(&info, Real(-1), Real(1), max_depth, Real(0), error, pL1);
1908 if (pL1)
1909 {
1910 *pL1 *= 2;
1911 }
1912 return Q;
1913 }
1914
1915 if ((boost::math::isfinite)(b) && (a <= -tools::max_value<Real>()))
1916 {
1917 auto v = [&](const Real& t)->K
1918 {
1919 Real z = 1 / (t + 1);
1920 Real arg = 2 * z - 1;
1921 return f(b - arg) * z * z;
1922 };
1923 recursive_info<decltype(v)> info = { v, tol };
1924 K Q = Real(2) * recursive_adaptive_integrate(&info, Real(-1), Real(1), max_depth, Real(0), error, pL1);
1925 if (pL1)
1926 {
1927 *pL1 *= 2;
1928 }
1929 return Q;
1930 }
1931
1932 if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b))
1933 {
1934 if (a==b)
1935 {
1936 return K(0);
1937 }
1938 recursive_info<F> info = { f, tol };
1939 if (b < a)
1940 {
1941 return -recursive_adaptive_integrate(&info, b, a, max_depth, Real(0), error, pL1);
1942 }
1943 return recursive_adaptive_integrate(&info, a, b, max_depth, Real(0), error, pL1);
1944 }
1945 }
1946 return static_cast<K>(policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy()));
1947 }
1948 };
1949
1950 }
1951 }
1952 }
1953
1954 #ifdef _MSC_VER
1955 #pragma warning(pop)
1956 #endif
1957
1958 #endif