File indexing completed on 2025-09-17 08:35:31
0001
0002
0003
0004
0005
0006
0007 #ifndef BOOST_STATS_MAPAIRY_HPP
0008 #define BOOST_STATS_MAPAIRY_HPP
0009
0010 #ifdef _MSC_VER
0011 #pragma warning(push)
0012 #pragma warning(disable : 4127)
0013 #endif
0014
0015 #include <boost/math/tools/config.hpp>
0016 #include <boost/math/tools/numeric_limits.hpp>
0017 #include <boost/math/tools/tuple.hpp>
0018 #include <boost/math/constants/constants.hpp>
0019 #include <boost/math/tools/big_constant.hpp>
0020 #include <boost/math/distributions/complement.hpp>
0021 #include <boost/math/distributions/detail/common_error_handling.hpp>
0022 #include <boost/math/distributions/detail/derived_accessors.hpp>
0023 #include <boost/math/tools/rational.hpp>
0024 #include <boost/math/special_functions/cbrt.hpp>
0025 #include <boost/math/policies/policy.hpp>
0026 #include <boost/math/policies/error_handling.hpp>
0027 #include <boost/math/tools/promotion.hpp>
0028
0029 #ifndef BOOST_MATH_HAS_NVRTC
0030 #include <boost/math/distributions/fwd.hpp>
0031 #include <cmath>
0032 #endif
0033
0034 namespace boost { namespace math {
0035 template <class RealType, class Policy>
0036 class mapairy_distribution;
0037
0038 namespace detail {
0039
0040 template <class RealType>
0041 BOOST_MATH_GPU_ENABLED inline RealType mapairy_pdf_plus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 53>&)
0042 {
0043 BOOST_MATH_STD_USING
0044 RealType result;
0045
0046 if (x < 1) {
0047
0048
0049 BOOST_MATH_STATIC const RealType P[8] = {
0050 static_cast<RealType>(1.97516171847191855610e-1),
0051 static_cast<RealType>(3.67488253628465083737e-2),
0052 static_cast<RealType>(-9.73242224038828612673e-4),
0053 static_cast<RealType>(2.32207514136635673061e-3),
0054 static_cast<RealType>(5.69067907423210669037e-5),
0055 static_cast<RealType>(-6.02637387141524535193e-5),
0056 static_cast<RealType>(1.04960324426666933327e-5),
0057 static_cast<RealType>(-6.58470237954242016920e-7),
0058 };
0059 BOOST_MATH_STATIC const RealType Q[7] = {
0060 static_cast<RealType>(1.),
0061 static_cast<RealType>(7.09464351647314165710e-1),
0062 static_cast<RealType>(3.66413036246461392316e-1),
0063 static_cast<RealType>(1.10947882302862241488e-1),
0064 static_cast<RealType>(2.65928486676817177159e-2),
0065 static_cast<RealType>(3.75507284977386290874e-3),
0066 static_cast<RealType>(4.03789594641339005785e-4),
0067 };
0068
0069 result = tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
0070 }
0071 else if (x < 2) {
0072 RealType t = x - 1;
0073
0074
0075
0076 BOOST_MATH_STATIC const RealType P[8] = {
0077 static_cast<RealType>(1.06251243013238748252e-1),
0078 static_cast<RealType>(1.38178831205785069108e-2),
0079 static_cast<RealType>(4.19280374368049006206e-3),
0080 static_cast<RealType>(8.54607219684690930289e-4),
0081 static_cast<RealType>(-7.46881084120928210702e-5),
0082 static_cast<RealType>(1.47110856483345063335e-5),
0083 static_cast<RealType>(-1.30090180307471994500e-6),
0084 static_cast<RealType>(5.24801123304330014713e-8),
0085 };
0086 BOOST_MATH_STATIC const RealType Q[8] = {
0087 static_cast<RealType>(1.),
0088 static_cast<RealType>(8.10853683888611687140e-1),
0089 static_cast<RealType>(3.89361261627717143905e-1),
0090 static_cast<RealType>(1.15124062681082170577e-1),
0091 static_cast<RealType>(2.38803416611949902468e-2),
0092 static_cast<RealType>(3.08616898814509065071e-3),
0093 static_cast<RealType>(2.43760043942846261876e-4),
0094 static_cast<RealType>(1.34538901435238836768e-6),
0095 };
0096
0097 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0098 }
0099 else if (x < 4) {
0100 RealType t = x - 2;
0101
0102
0103
0104 BOOST_MATH_STATIC const RealType P[9] = {
0105 static_cast<RealType>(5.33842514891989443409e-2),
0106 static_cast<RealType>(1.23301980674903270971e-2),
0107 static_cast<RealType>(3.45717831433988631923e-3),
0108 static_cast<RealType>(3.27034449923176875761e-4),
0109 static_cast<RealType>(1.20406794831890291348e-5),
0110 static_cast<RealType>(5.77489170397965604669e-7),
0111 static_cast<RealType>(-1.15255267205685159063e-7),
0112 static_cast<RealType>(9.15896323073109992939e-9),
0113 static_cast<RealType>(-3.14068002815368247985e-10),
0114 };
0115 BOOST_MATH_STATIC const RealType Q[7] = {
0116 static_cast<RealType>(1.),
0117 static_cast<RealType>(9.08772985520393226044e-1),
0118 static_cast<RealType>(4.26418573702560818267e-1),
0119 static_cast<RealType>(1.22033746594868893316e-1),
0120 static_cast<RealType>(2.27934009200310243172e-2),
0121 static_cast<RealType>(2.60658999011198623962e-3),
0122 static_cast<RealType>(1.54461660261435227768e-4),
0123 };
0124
0125 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0126 }
0127 else if (x < 8) {
0128 RealType t = x - 4;
0129
0130
0131
0132 BOOST_MATH_STATIC const RealType P[8] = {
0133 static_cast<RealType>(1.58950538583133457384e-2),
0134 static_cast<RealType>(7.47835440063141601948e-3),
0135 static_cast<RealType>(1.81137244353261478410e-3),
0136 static_cast<RealType>(2.26935565382135588558e-4),
0137 static_cast<RealType>(1.43877113825683795505e-5),
0138 static_cast<RealType>(2.08242747557417233626e-7),
0139 static_cast<RealType>(-1.54976465724771282989e-9),
0140 static_cast<RealType>(1.30762989300333026019e-11),
0141 };
0142 BOOST_MATH_STATIC const RealType Q[8] = {
0143 static_cast<RealType>(1.),
0144 static_cast<RealType>(9.95505437381674174441e-1),
0145 static_cast<RealType>(4.58882737262511297099e-1),
0146 static_cast<RealType>(1.25031310192148865496e-1),
0147 static_cast<RealType>(2.15727229249904102247e-2),
0148 static_cast<RealType>(2.33597081566665672569e-3),
0149 static_cast<RealType>(1.45198998318300328562e-4),
0150 static_cast<RealType>(3.87962234445835345676e-6),
0151 };
0152
0153 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0154 }
0155 else if (x < 16) {
0156 RealType t = x - 8;
0157
0158
0159
0160 BOOST_MATH_STATIC const RealType P[8] = {
0161 static_cast<RealType>(3.22517551525042172428e-3),
0162 static_cast<RealType>(1.12822806030796339659e-3),
0163 static_cast<RealType>(1.54489389961322571031e-4),
0164 static_cast<RealType>(9.28479992527909796427e-6),
0165 static_cast<RealType>(2.06168350199745832262e-7),
0166 static_cast<RealType>(9.05110751997021418539e-10),
0167 static_cast<RealType>(-2.15498112371756202097e-12),
0168 static_cast<RealType>(6.41838355699777435924e-15),
0169 };
0170 BOOST_MATH_STATIC const RealType Q[8] = {
0171 static_cast<RealType>(1.),
0172 static_cast<RealType>(6.53390465399680164234e-1),
0173 static_cast<RealType>(1.82759048270449018482e-1),
0174 static_cast<RealType>(2.80407546367978533849e-2),
0175 static_cast<RealType>(2.50853443923476718145e-3),
0176 static_cast<RealType>(1.27671852825846245421e-4),
0177 static_cast<RealType>(3.28380135691060279203e-6),
0178 static_cast<RealType>(3.06545317089055335742e-8),
0179 };
0180
0181 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0182 }
0183 else if (x < 32) {
0184 RealType t = x - 16;
0185
0186
0187
0188 BOOST_MATH_STATIC const RealType P[8] = {
0189 static_cast<RealType>(5.82527663232857270992e-4),
0190 static_cast<RealType>(6.89502117025124630567e-5),
0191 static_cast<RealType>(2.24909795087265741433e-6),
0192 static_cast<RealType>(2.18576787334972903790e-8),
0193 static_cast<RealType>(3.39014723444178274435e-11),
0194 static_cast<RealType>(-9.74481309265612390297e-15),
0195 static_cast<RealType>(-1.13308546492906818388e-16),
0196 static_cast<RealType>(5.32472028720777735712e-19),
0197 };
0198 BOOST_MATH_STATIC const RealType Q[7] = {
0199 static_cast<RealType>(1.),
0200 static_cast<RealType>(2.74018883667663396766e-1),
0201 static_cast<RealType>(2.95901195665990089660e-2),
0202 static_cast<RealType>(1.57901733512147920251e-3),
0203 static_cast<RealType>(4.24965124147621236633e-5),
0204 static_cast<RealType>(5.17522027193205842016e-7),
0205 static_cast<RealType>(2.00522219276570039934e-9),
0206 };
0207
0208 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0209 }
0210 else if (x < 64) {
0211 RealType t = x - 32;
0212
0213
0214
0215 BOOST_MATH_STATIC const RealType P[8] = {
0216 static_cast<RealType>(1.03264853379349880039e-4),
0217 static_cast<RealType>(5.35256306644392405447e-6),
0218 static_cast<RealType>(9.00657716972118816692e-8),
0219 static_cast<RealType>(5.34913574042209793720e-10),
0220 static_cast<RealType>(6.70752605041678779380e-13),
0221 static_cast<RealType>(-5.30089923101856817552e-16),
0222 static_cast<RealType>(7.28133811621687143754e-19),
0223 static_cast<RealType>(-7.38047553655951666420e-22),
0224 };
0225 BOOST_MATH_STATIC const RealType Q[7] = {
0226 static_cast<RealType>(1.),
0227 static_cast<RealType>(1.29920843258164337377e-1),
0228 static_cast<RealType>(6.75018577147646502386e-3),
0229 static_cast<RealType>(1.77694968039695671819e-4),
0230 static_cast<RealType>(2.46428299911920942946e-6),
0231 static_cast<RealType>(1.67165053157990942546e-8),
0232 static_cast<RealType>(4.19496974141131087116e-11),
0233 };
0234
0235 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0236 }
0237 else {
0238 RealType t = 1 / sqrt(x * x * x);
0239
0240
0241
0242 BOOST_MATH_STATIC const RealType P[5] = {
0243 static_cast<RealType>(5.98413420602149016910e-1),
0244 static_cast<RealType>(3.14584075817417883086e-5),
0245 static_cast<RealType>(1.62977928311793051895e1),
0246 static_cast<RealType>(-4.12903117172994371875e-4),
0247 static_cast<RealType>(-1.06404478702135751872e2),
0248 };
0249 BOOST_MATH_STATIC const RealType Q[3] = {
0250 static_cast<RealType>(1.),
0251 static_cast<RealType>(5.25696892802060720079e-5),
0252 static_cast<RealType>(4.03600055498020483920e1),
0253 };
0254
0255 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t) * t / x;
0256 }
0257
0258 return result;
0259 }
0260
0261
0262 template <class RealType>
0263 BOOST_MATH_GPU_ENABLED inline RealType mapairy_pdf_plus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 113>&)
0264 {
0265 BOOST_MATH_STD_USING
0266 RealType result;
0267
0268 if (x < 1) {
0269
0270
0271
0272 BOOST_MATH_STATIC const RealType P[13] = {
0273 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.97516171847191855609649452292217911973e-1),
0274 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.17531822787252717270400174744562144891e-1),
0275 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.85115358761409188259685286269086053296e-2),
0276 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.18029395189535552537870932989876189597e-2),
0277 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.77412874842522285996566741532939343827e-3),
0278 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.77992070255086842672551073580133785334e-4),
0279 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.54573264286260796576738952968288691782e-5),
0280 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.94764012694602906119831079380500255557e-6),
0281 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.97596258932025712802674070104281981323e-7),
0282 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.45466169112247379589927514614067756956e-8),
0283 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.99760415118300349769641418430273526815e-10),
0284 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.43150486566834492207695241913522311930e-13),
0285 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.46130347604880355784938321408765318948e-13),
0286 };
0287 BOOST_MATH_STATIC const RealType Q[13] = {
0288 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0289 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.11845869711743584628289654085905424438e0),
0290 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.80391154854347711297249357734993136108e-1),
0291 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.75628443538173255184583966965162835227e-1),
0292 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.41016303833742742212624596040074202424e-1),
0293 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.19142300833563644046500846364541891138e-2),
0294 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.02421707708633106515934651956262614532e-2),
0295 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.03973732602338507411104824853671547615e-3),
0296 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.35206168908201402570766383018708660819e-4),
0297 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.38602606623008690327520130558254165564e-5),
0298 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.53740175911385378188372963739884519312e-6),
0299 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.27513004715414297729539702862351044344e-7),
0300 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.54510493017251997793679126704007098265e-8),
0301 };
0302
0303 result = tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
0304 }
0305 else if (x < 2) {
0306 RealType t = x - 1;
0307
0308
0309
0310
0311 BOOST_MATH_STATIC const RealType P[12] = {
0312 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06251243013238748252181151646220197947e-1),
0313 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.92438638323563234519452281479338921158e-2),
0314 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.83335793178622701784730867677919844599e-2),
0315 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.84159075203218824591724451142550478306e-3),
0316 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.04213732090358859917896442076931334722e-3),
0317 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.72388220651785798237487005913708387756e-4),
0318 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.36099324022668533012286817710272936865e-5),
0319 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.74483270731217433628720245792741986795e-6),
0320 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.56461597064783966758904403291149549559e-7),
0321 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.28590608939674970691948223694855264817e-8),
0322 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.81756745849477762773082030302943341729e-10),
0323 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.65915115243311285178083515017249358853e-12),
0324 };
0325 BOOST_MATH_STATIC const RealType Q[13] = {
0326 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0327 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33250387018216706082200927591739589024e0),
0328 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.71707718560216685629188467984384070512e-1),
0329 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.81316277289673837399162302797006618384e-1),
0330 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.78475951599121894570443981591530879087e-1),
0331 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.16167801098514576400689883575304687623e-2),
0332 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19167794366424137722223009369062644830e-2),
0333 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.20831082064982892777497773490792080382e-3),
0334 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.27196399162146247210036306870401328410e-4),
0335 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.79335434374966775903734846875100087590e-5),
0336 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.30825409557870847168672662674521614782e-6),
0337 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.97296173230649275943984471731360073540e-7),
0338 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.48943057909563158917114503727080517958e-9),
0339 };
0340
0341 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0342 }
0343 else if (x < 4) {
0344 RealType t = x - 2;
0345
0346
0347
0348
0349 BOOST_MATH_STATIC const RealType P[13] = {
0350 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.33842514891989443409465171800884519331e-2),
0351 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.53264053296761245408991932692426094424e-2),
0352 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.23210520807186629205810670362048049836e-2),
0353 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.71104271443590027208545022968625306496e-3),
0354 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.98781446716778138729774954595209697813e-3),
0355 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.98895829308616657174932023565302947632e-4),
0356 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.25993639218721804661037829873135732687e-5),
0357 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.64669776700609853276056375742089715662e-6),
0358 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.11846243382610611156151291892877027869e-7),
0359 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.74830086064868141326053648144496072795e-8),
0360 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.07549997153431643849551871367000763445e-9),
0361 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.10030596535721362628619523622308581344e-11),
0362 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19376016170255697546854583591494809062e-13),
0363 };
0364 BOOST_MATH_STATIC const RealType Q[15] = {
0365 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0366 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.52686177278870816414637961315363468426e0),
0367 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19872083945442288336636376283295310445e0),
0368 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.26633866969676511944680471882188527224e-1),
0369 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.41261867539396133951024374504099977090e-1),
0370 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.18852182132645783844766153200510014113e-2),
0371 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.70152126044106007357033814742158353948e-2),
0372 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.23810508827493234517751339979902448944e-3),
0373 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.96161313274648769113605163816403306967e-4),
0374 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.06693316156193327359541953619174255726e-5),
0375 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.79366356086062616343285660797389238271e-6),
0376 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.14585835815353770175366834099001313472e-7),
0377 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.05314631662369743547568064896403143693e-8),
0378 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.90325380271096603676911761784650800378e-10),
0379 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.36933359079566550212098911224675011839e-12),
0380 };
0381
0382 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0383 }
0384 else if (x < 8) {
0385 RealType t = x - 4;
0386
0387
0388
0389
0390 BOOST_MATH_STATIC const RealType P[15] = {
0391 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.58950538583133457383574346194006716984e-2),
0392 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.25447644411503971725638816502617490834e-2),
0393 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.47605882774114100209665040117276675598e-2),
0394 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.12224864838900383464124716266085521485e-3),
0395 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.79164249640537972514574059182421325541e-3),
0396 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.89668438166714230032406615413991628135e-4),
0397 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.44410389750700463263686630222653669837e-5),
0398 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.14788978994687095829140113472609739982e-6),
0399 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.79821680629333600844514042061772236495e-7),
0400 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.49636960435731257154960798035854124639e-8),
0401 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.70554745768928821263556963261516872171e-9),
0402 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.42293994855343109617040824208078534205e-11),
0403 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.37599287094703195312894833570340165019e-12),
0404 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.35248179978735448062307216459232932068e-15),
0405 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.53569375838863862590910010617140120876e-18),
0406 };
0407 BOOST_MATH_STATIC const RealType Q[17] = {
0408 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0409 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.94337325681904859647161946168957959628e0),
0410 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.77120402023938328899162557073347121463e0),
0411 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.01644685191130734907530007424741314392e0),
0412 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.12479655123720440909164080517207084404e-1),
0413 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.25556010526357752360439314019567992245e-1),
0414 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.96143273204038192262150849394970544022e-2),
0415 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.50612932318889495209230176354364299236e-3),
0416 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.12160918304376427109905628326638480473e-4),
0417 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.47696044292604039527013647985997661762e-5),
0418 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.64067652576843720823459199100800335854e-6),
0419 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.00745166063635113130434111509648306420e-7),
0420 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.05398901239421768403763864060147286105e-8),
0421 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.05698259572340563109985785513355912114e-9),
0422 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.19362835269415404005406782719825077472e-11),
0423 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.15444386779802728200716489787161419304e-13),
0424 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.02452666470008756043350040893761339083e-16),
0425 };
0426
0427 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0428 }
0429 else if (x < 16) {
0430 RealType t = x - 8;
0431
0432
0433
0434
0435 BOOST_MATH_STATIC const RealType P[16] = {
0436 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.22517551525042172427941302520759668293e-3),
0437 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.86576974828476461442549217748945498966e-3),
0438 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.18419822818191546598384139622512477000e-3),
0439 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.98396184944524020019688823190946146641e-4),
0440 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.06686400532599396487775148973665625687e-5),
0441 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.05680178109228687159829475615095925679e-6),
0442 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.17554487015345146749705505971350254902e-7),
0443 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.14774751685364429557883242232797329274e-8),
0444 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33266124509168360207594600356349282805e-9),
0445 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.76332756800842989348756910429214676252e-11),
0446 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.60639771339252642992277508068105926919e-13),
0447 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.41859490403554144799385471141184829903e-15),
0448 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.77177795293424055655391515546880774987e-17),
0449 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.76106923344461402353501262620681801053e-20),
0450 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.68829978902134103249656805130103045021e-23),
0451 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.42496376687241918803028631991083570963e-26),
0452 };
0453 BOOST_MATH_STATIC const RealType Q[16] = {
0454 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0455 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19213376162053391168605415200906099633e0),
0456 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.65578261958732385181558047087365997878e-1),
0457 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.30046653564394292929001223763106276016e-1),
0458 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.48388301731958697028701215596777178117e-2),
0459 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.50873786049439122933188684993719288258e-3),
0460 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.23255654647151798865208394342856435797e-3),
0461 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20861791399969402003082323686080041040e-4),
0462 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.96882049090731653763684812243275884213e-6),
0463 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.98669985741073085290012296575736698103e-7),
0464 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.03383311816835346577432387682379226740e-8),
0465 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.87320682938150375144724980774245810905e-10),
0466 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.13573468677076838075146150847170057373e-11),
0467 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.34526045003716422620879156626237175127e-13),
0468 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.35681579117696161282979297336282783473e-16),
0469 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.92944288060269290125987728528698476197e-18),
0470 };
0471
0472 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0473 }
0474 else if (x < 32) {
0475 RealType t = x - 16;
0476
0477
0478
0479
0480 BOOST_MATH_STATIC const RealType P[15] = {
0481 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.82527663232857270992129793621400616909e-4),
0482 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.41696401156754081476312871174198295322e-4),
0483 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.42036620449365724707919875710197564857e-5),
0484 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.67076745288708619632303078677641380627e-6),
0485 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.14278954094278648593125010577441869646e-7),
0486 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.40092485054621853149602511539550254471e-8),
0487 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.17755660009065973828053533035808718033e-10),
0488 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.23871371557251644837598540542648782066e-12),
0489 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04069998646037977439620128812310273053e-13),
0490 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.94055978349016208777803296823455779097e-16),
0491 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.29866428982892883091537921429389750973e-18),
0492 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.06056281963023929277728535486590256573e-21),
0493 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.57963857545037466186123981516026589992e-24),
0494 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.81390322233700529779563477285232205886e-28),
0495 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.52190981930441828041102818178755246228e-31),
0496 };
0497 BOOST_MATH_STATIC const RealType Q[15] = {
0498 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0499 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.70564782441895707961338319466546005093e-1),
0500 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.47770566490107388849474183308889339231e-1),
0501 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.29364672385303439788399215507370006639e-2),
0502 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.37279274083988250795581105436675097881e-3),
0503 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.72124151284421794872333348562536468054e-4),
0504 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.96970247774973902625712414297788402746e-6),
0505 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.38395055453444011915661055983937917120e-7),
0506 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.19605460410208704830882138883730331113e-9),
0507 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.76945301389475508747530234950023648137e-10),
0508 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.33624384932503964160642677987886086890e-12),
0509 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.01155130710615988897664213446593907596e-14),
0510 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.03959317021567084067518847978890548086e-16),
0511 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.78213669817351488671519066803835958715e-19),
0512 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.75492332026736176991870807903277324902e-22),
0513 };
0514
0515 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0516 }
0517 else if (x < 64) {
0518 RealType t = x - 32;
0519
0520
0521
0522
0523 BOOST_MATH_STATIC const RealType P[15] = {
0524 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.03264853379349880038687006045193401399e-4),
0525 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.79539964604630527636184900467871907171e-5),
0526 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.34840369549460790638336121351837912308e-6),
0527 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.73087351972154879439617719914590729748e-8),
0528 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.51775493325347153520115736204545037264e-9),
0529 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.60104651860674451546102708885530128768e-11),
0530 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.90233449697112559539826150932808197444e-13),
0531 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.06978852724410115655105118663137681992e-15),
0532 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.00399855296672416041126220131900937128e-18),
0533 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.18139748830278263202087699889457673035e-20),
0534 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.43070756487288399784700274808326343543e-23),
0535 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.70126687893706466023887757573369648552e-27),
0536 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.29405234560873665664952418690159194840e-30),
0537 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.69069082510020066864633718082941688708e-34),
0538 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.33468198065176301137949068264633336529e-37),
0539 };
0540 BOOST_MATH_STATIC const RealType Q[14] = {
0541 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0542 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.51951069241510130465691156908893803280e-1),
0543 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.84647597299970149588010858770320631739e-2),
0544 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.90239396588176334117512714878489376365e-3),
0545 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.35551585337774834346900776840459179841e-5),
0546 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.53375746264539501168763602838029023222e-6),
0547 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.42421935941736734247914078641324315900e-8),
0548 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.23835501607741697737129504173606231513e-10),
0549 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.79603272375172813955236187874231935324e-12),
0550 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.44624821303153251954931367754173356213e-14),
0551 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.10635081308984534416704147448323126303e-16),
0552 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.14627867347129520510628554651739571006e-19),
0553 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.43792928765659831045040802615903432044e-21),
0554 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.79856365207259871336606847582889916798e-25),
0555 };
0556
0557 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0558 }
0559 else {
0560 RealType t = 1 / sqrt(x * x * x);
0561
0562
0563
0564
0565 BOOST_MATH_STATIC const RealType P[8] = {
0566 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.98413420602149016909919089901572802714e-1),
0567 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.30303835860684077803651094768293625633e-1),
0568 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.89097726237252419724261295392691855545e1),
0569 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.12696604472230480273239741428914666511e1),
0570 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.84517621403071494824886152940942995151e3),
0571 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.67577378292168927009421205756730205227e2),
0572 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.16343347002845084264982358165052437094e3),
0573 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.59558963351172885545760841064831356701e3),
0574 };
0575 BOOST_MATH_STATIC const RealType Q[7] = {
0576 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0577 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.51965956124978480521462518750569617550e-1),
0578 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.61700833299761977287211297600922591853e2),
0579 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.94988298508869748383898344668918510537e1),
0580 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.52494213749069142804725453333400335525e3),
0581 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20093079283917759611690534481918040882e3),
0582 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.82564796242972192725215815897475246715e4),
0583 };
0584
0585 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t) * t / x;
0586 }
0587
0588 return result;
0589 }
0590
0591 template <class RealType>
0592 BOOST_MATH_GPU_ENABLED inline RealType mapairy_pdf_minus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 53>&)
0593 {
0594 BOOST_MATH_STD_USING
0595 RealType result;
0596
0597 if (x >= -1) {
0598 RealType t = x + 1;
0599
0600
0601
0602 BOOST_MATH_STATIC const RealType P[8] = {
0603 static_cast<RealType>(2.76859868856746781256e-1),
0604 static_cast<RealType>(1.10489814676299003241e-1),
0605 static_cast<RealType>(-6.25690643488236678667e-3),
0606 static_cast<RealType>(-1.17905420222527577236e-3),
0607 static_cast<RealType>(1.27188963720084274122e-3),
0608 static_cast<RealType>(-7.20575105181207907889e-5),
0609 static_cast<RealType>(-2.22575633858411851032e-5),
0610 static_cast<RealType>(2.94270091008508492304e-6),
0611 };
0612 BOOST_MATH_STATIC const RealType Q[7] = {
0613 static_cast<RealType>(1.),
0614 static_cast<RealType>(4.98673671503410894284e-1),
0615 static_cast<RealType>(3.15907666864554716291e-1),
0616 static_cast<RealType>(8.34463558393629855977e-2),
0617 static_cast<RealType>(2.71804643993972494173e-2),
0618 static_cast<RealType>(3.52187050938036578406e-3),
0619 static_cast<RealType>(7.03072974279509263844e-4),
0620 };
0621
0622 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0623 }
0624 else if (x >= -2) {
0625 RealType t = x + 2;
0626
0627
0628
0629 BOOST_MATH_STATIC const RealType P[8] = {
0630 static_cast<RealType>(2.14483832832989822788e-1),
0631 static_cast<RealType>(3.72789690317712876663e-1),
0632 static_cast<RealType>(1.86473650057086284496e-1),
0633 static_cast<RealType>(1.31182724166379598907e-2),
0634 static_cast<RealType>(-9.00695064809774432392e-3),
0635 static_cast<RealType>(3.46884420664996747052e-4),
0636 static_cast<RealType>(4.88651392754189961173e-4),
0637 static_cast<RealType>(-6.13516242712196835055e-5),
0638 };
0639 BOOST_MATH_STATIC const RealType Q[8] = {
0640 static_cast<RealType>(1.),
0641 static_cast<RealType>(1.06478618107122200489e0),
0642 static_cast<RealType>(4.08809060854459518663e-1),
0643 static_cast<RealType>(2.66617598099501800866e-1),
0644 static_cast<RealType>(4.53526315786051807494e-2),
0645 static_cast<RealType>(2.44078693689626940834e-2),
0646 static_cast<RealType>(1.52822572478697831870e-3),
0647 static_cast<RealType>(8.69480001029742502197e-4),
0648 };
0649
0650 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0651 }
0652 else {
0653 RealType s = exp(2 * x * x * x / 27) * sqrt(-x);
0654
0655 if (x >= -4) {
0656 RealType t = -x - 2;
0657
0658
0659
0660 BOOST_MATH_STATIC const RealType P[8] = {
0661 static_cast<RealType>(2.74308494787955998605e-1),
0662 static_cast<RealType>(4.87765991440983416392e-1),
0663 static_cast<RealType>(3.84524365110270427617e-1),
0664 static_cast<RealType>(1.77409497505926097339e-1),
0665 static_cast<RealType>(5.25612864287310961520e-2),
0666 static_cast<RealType>(1.01528615034079765421e-2),
0667 static_cast<RealType>(1.20417225696161842090e-3),
0668 static_cast<RealType>(6.97462693097107007719e-5),
0669 };
0670 BOOST_MATH_STATIC const RealType Q[8] = {
0671 static_cast<RealType>(1.),
0672 static_cast<RealType>(1.81256903248465876424e0),
0673 static_cast<RealType>(1.43959302060852067876e0),
0674 static_cast<RealType>(6.65882284117861804351e-1),
0675 static_cast<RealType>(1.97537712781845593211e-1),
0676 static_cast<RealType>(3.81732970028510912201e-2),
0677 static_cast<RealType>(4.52767489928026542226e-3),
0678 static_cast<RealType>(2.62240194911920120003e-4),
0679 };
0680
0681 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0682 }
0683 else if (x >= -8) {
0684 RealType t = -x - 4;
0685
0686
0687
0688 BOOST_MATH_STATIC const RealType P[8] = {
0689 static_cast<RealType>(2.67391547707456587286e-1),
0690 static_cast<RealType>(3.39319035621314371924e-1),
0691 static_cast<RealType>(1.85434799940724207230e-1),
0692 static_cast<RealType>(5.63667456320679857693e-2),
0693 static_cast<RealType>(1.01231164548944177474e-2),
0694 static_cast<RealType>(1.02501575174439362864e-3),
0695 static_cast<RealType>(4.60769537123286016400e-5),
0696 static_cast<RealType>(-4.92754650783224582641e-13),
0697 };
0698 BOOST_MATH_STATIC const RealType Q[7] = {
0699 static_cast<RealType>(1.),
0700 static_cast<RealType>(1.27271216837333318516e0),
0701 static_cast<RealType>(6.96551952883867277759e-1),
0702 static_cast<RealType>(2.11871363524516350422e-1),
0703 static_cast<RealType>(3.80622887806509632537e-2),
0704 static_cast<RealType>(3.85400280812991562328e-3),
0705 static_cast<RealType>(1.73246593953823694311e-4),
0706 };
0707
0708 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0709 }
0710 else if (x >= -16) {
0711 RealType t = -x - 8;
0712
0713
0714
0715 BOOST_MATH_STATIC const RealType P[6] = {
0716 static_cast<RealType>(2.66153901932100301337e-1),
0717 static_cast<RealType>(1.65767350677458230714e-1),
0718 static_cast<RealType>(4.19801402197670061146e-2),
0719 static_cast<RealType>(5.39337995172784579558e-3),
0720 static_cast<RealType>(3.50811247702301287586e-4),
0721 static_cast<RealType>(9.21758454778883157515e-6),
0722 };
0723 BOOST_MATH_STATIC const RealType Q[6] = {
0724 static_cast<RealType>(1.),
0725 static_cast<RealType>(6.23092941554668369107e-1),
0726 static_cast<RealType>(1.57829914506366827914e-1),
0727 static_cast<RealType>(2.02787979758160988615e-2),
0728 static_cast<RealType>(1.31903008994475216511e-3),
0729 static_cast<RealType>(3.46575870637847438219e-5),
0730 };
0731
0732 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0733 }
0734 else if (x >= -32) {
0735 RealType t = -x - 16;
0736
0737
0738
0739 BOOST_MATH_STATIC const RealType P[5] = {
0740 static_cast<RealType>(2.65985830928929730672e-1),
0741 static_cast<RealType>(7.19655029633308583205e-2),
0742 static_cast<RealType>(7.26293125679558421946e-3),
0743 static_cast<RealType>(3.24276402295343802262e-4),
0744 static_cast<RealType>(5.40508013573989841127e-6),
0745 };
0746 BOOST_MATH_STATIC const RealType Q[5] = {
0747 static_cast<RealType>(1.),
0748 static_cast<RealType>(2.70578525590448009961e-1),
0749 static_cast<RealType>(2.73082032706004833847e-2),
0750 static_cast<RealType>(1.21926059813954504560e-3),
0751 static_cast<RealType>(2.03227900426552177849e-5),
0752 };
0753
0754 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0755 }
0756 else {
0757 result = 0;
0758 }
0759 }
0760
0761 return result;
0762 }
0763
0764 template <class RealType>
0765 BOOST_MATH_GPU_ENABLED inline RealType mapairy_pdf_minus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 113>&)
0766 {
0767 BOOST_MATH_STD_USING
0768 RealType result;
0769
0770 if (x >= -1) {
0771 RealType t = x + 1;
0772
0773
0774
0775
0776 BOOST_MATH_STATIC const RealType P[14] = {
0777 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.76859868856746781256050397658493368372e-1),
0778 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.13037642242224438972685982606987140111e-1),
0779 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.93206268361082760254653961897373271146e-2),
0780 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.12844418906916902333116398594921450782e-2),
0781 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.36889326770180267250286619759335338794e-3),
0782 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.95272615884641416804001553871108995422e-4),
0783 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.53808638264746233799776679481568171506e-5),
0784 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.92177790427881393122479399837010657693e-6),
0785 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.93492737815019893169693306410980499366e-6),
0786 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.87510085148730083683110532987841223544e-8),
0787 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.28469424017979299382094276157986775969e-9),
0788 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.83693904015623816528442886551032709693e-9),
0789 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.77632857558257155545506847333166147492e-10),
0790 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.00448215148716947837105979735199471601e-11),
0791 };
0792 BOOST_MATH_STATIC const RealType Q[13] = {
0793 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0794 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.69069814466926608209872727645156315374e-1),
0795 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.89657828158127300370734997707096744077e-1),
0796 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.62713433978940724622996782534485162816e-1),
0797 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.91600878366366974062522408704458777166e-2),
0798 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.89144035500328704769924414014440238441e-2),
0799 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.35263616916053275381069097012458200491e-3),
0800 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.49136684724986851824746531490006769036e-3),
0801 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.65912003138912073317982729161392623277e-4),
0802 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.65931144405541620572732754508534372034e-5),
0803 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.40193555853535182510951061797573338442e-6),
0804 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.43625211359756249232841566256877823039e-7),
0805 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.33207781577559817130740123609636060998e-8),
0806 };
0807
0808 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0809 }
0810 else if (x >= -2) {
0811 RealType t = x + 2;
0812
0813
0814
0815
0816 BOOST_MATH_STATIC const RealType P[13] = {
0817 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.14483832832989822788477500521594411868e-1),
0818 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.75657192307644021285091474845448102656e-1),
0819 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.40437358470633234235031852091608646844e-1),
0820 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.66609942512054705023295445270747546208e-2),
0821 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.54563774151184610728476161049657676321e-3),
0822 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.51479057544157089574005315379453615537e-3),
0823 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.59853789372610909788599341307719626846e-4),
0824 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.76919062715142378209907670793921883406e-5),
0825 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.58572738466179822770103948740437237476e-6),
0826 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.66618046393835590932491510543557226290e-7),
0827 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.26253044828460469263564567571249315188e-8),
0828 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.11130363073235247786909976446790746902e-9),
0829 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.49023728251751416730708805268921994420e-10),
0830 };
0831 BOOST_MATH_STATIC const RealType Q[15] = {
0832 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0833 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.11919889346080886194925406930280687022e-1),
0834 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.99082771425048574611745923487528183522e-1),
0835 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.99525320878512488641033584061027063035e-1),
0836 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.20775109959302182467696345673111724657e-2),
0837 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.67505804311611026128557007926613964162e-2),
0838 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.77854913919309273628222660024596583623e-3),
0839 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.91661599559554233157812211199256222756e-3),
0840 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.83924945472605861063053622956144354568e-4),
0841 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.84286353909650034923710426843028632590e-5),
0842 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.57737060659799463556626420070111210218e-5),
0843 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.76047305116625604109657617040360402976e-6),
0844 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.86975509621224474718728318687795215895e-7),
0845 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.71646204381423826495116781730719271111e-8),
0846 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.30359141441663007574346497273327240071e-9),
0847 };
0848
0849 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0850 }
0851 else {
0852 RealType s = exp(2 * x * x * x / 27) * sqrt(-x);
0853
0854 if (x >= -4) {
0855 RealType t = -x - 2;
0856
0857
0858
0859
0860 BOOST_MATH_STATIC const RealType P[15] = {
0861 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.74308494787955998605105974174143750745e-1),
0862 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.56767876568276519015214709629156760546e-1),
0863 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.23402577465454790961498400214198520261e0),
0864 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.09577559351834952074671208183548972395e0),
0865 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.76209118910349927892265971592071407626e-1),
0866 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.09368637728788364895148841703533651597e-1),
0867 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.09003822946777310058789032386408519829e-1),
0868 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.02362804210869367995322279203786166303e-2),
0869 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.67210045349462046966360849113168808620e-3),
0870 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.17170437120510484976042000272825166724e-3),
0871 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.62068279517157268391045945672600042900e-4),
0872 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.72238125522303876741011786930129571553e-5),
0873 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33906175951716762094473406744654874848e-6),
0874 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.88118741063309731598638313174835288433e-8),
0875 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.78908322579081615215057968216358892954e-9),
0876 };
0877 BOOST_MATH_STATIC const RealType Q[15] = {
0878 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0879 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.15777668058369565739250784347385217839e0),
0880 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.58275582332060589146223977924181161908e0),
0881 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.08890987062755381429904193744273374370e0),
0882 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.53062680969750921573862970262146744660e0),
0883 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15983695707064161504470525373678920004e0),
0884 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.09120624447001177857109399158887656977e-1),
0885 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.13566107440776375294261717406754395407e-1),
0886 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.50716565210262652091950832287627406780e-2),
0887 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.40417354541359829249609883808591989082e-3),
0888 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.09285589734746898623782466689035549135e-4),
0889 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.47580156629757526370271002425784456931e-5),
0890 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.03479533688660179064728081632921439825e-6),
0891 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.58728676819719406366664644282113323077e-7),
0892 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.72685000369623096389026353785111272994e-9),
0893 };
0894
0895 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0896 }
0897 else if (x >= -8) {
0898 RealType t = -x - 4;
0899
0900
0901
0902
0903 BOOST_MATH_STATIC const RealType P[15] = {
0904 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.67391547707456587286086623414017962238e-1),
0905 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.69944730920904699720804320295067934914e-1),
0906 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.80384452804523880914883464295008532437e-1),
0907 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.74832028145199140240423863864148009059e-1),
0908 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.71728522451977382202061046054643165624e-1),
0909 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.91023495084678296967637417245526177858e-2),
0910 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.57730498044529764612538979048001166775e-2),
0911 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.31940820074475947691746555183209863058e-3),
0912 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.54175805821840981842505041345112198286e-4),
0913 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.31350452337838677820161124238784043790e-5),
0914 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.52175993144502511705213771924810467309e-6),
0915 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.85684239411667243910736588216628677445e-7),
0916 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.27124210379062272403030391492854565008e-8),
0917 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.17645475312219452046348851569796494059e-9),
0918 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.06306499345515479193219487228315566344e-11),
0919 };
0920 BOOST_MATH_STATIC const RealType Q[15] = {
0921 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0922 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.13521398369589479131299586715604029947e0),
0923 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.17680254721938920978999949995837883884e0),
0924 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.40693619288419980101309080614788657638e0),
0925 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.44930162913500531579305526795523256972e-1),
0926 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.22044272115074113804712893993125987243e-1),
0927 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.92745159832354238503828226333417152767e-2),
0928 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.24766164774700476810039401793119553409e-2),
0929 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.08325637569571782180723187639357833929e-3),
0930 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.74954547353553788519997212700557196088e-4),
0931 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.82800744682204649977844278025855329390e-5),
0932 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.20210992299988298543034791887173754015e-6),
0933 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.22996819257926038785424888617824130286e-7),
0934 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.42340212199922656577943251139931264313e-9),
0935 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.75700556749505163188370496864513941614e-11),
0936 };
0937
0938 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0939 }
0940 else if (x >= -16) {
0941 RealType t = -x - 8;
0942
0943
0944
0945
0946 BOOST_MATH_STATIC const RealType P[13] = {
0947 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.66153901932100301337118653561328446399e-1),
0948 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.52542079386371212946566450189144670788e-1),
0949 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.17560936304516198261138159102435548430e-1),
0950 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.26792904240601626330507068992045446428e-2),
0951 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.15418212265160879313643948347460896640e-2),
0952 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.05247220687656529725024232836519908641e-3),
0953 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.64228534097787946289779529645800775231e-4),
0954 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.85634097697132464418223150629017524118e-5),
0955 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.49585420710073223183176764488210189671e-6),
0956 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.48871040740917898530270248991342594461e-7),
0957 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.42577266655992039477272273926475476183e-9),
0958 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.19214263302271253341410568192952269518e-10),
0959 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.36635313919771528255819112450043338510e-12),
0960 };
0961 BOOST_MATH_STATIC const RealType Q[13] = {
0962 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0963 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.32484755553196872705775494679365596205e0),
0964 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.17714315014480774542066462899317631393e-1),
0965 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.10789882607024692577764888497624620277e-1),
0966 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.09821963157449764169644456445120769215e-2),
0967 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.52354198870000121894280965999352991441e-2),
0968 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.12133327236256081067100384182795121111e-3),
0969 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.20187894923874357333806454001674518211e-4),
0970 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.69039238999927049119096278882765161803e-5),
0971 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.35737444680219098802811205475695127060e-7),
0972 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.54403624143647064402264521374546365073e-8),
0973 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.24233005893817070145949404296998119469e-10),
0974 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.89735152971223120087721392400123727326e-12),
0975 };
0976
0977 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0978 }
0979 else if (x >= -32) {
0980 RealType t = -x - 16;
0981
0982
0983
0984
0985 BOOST_MATH_STATIC const RealType P[12] = {
0986 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.65985830928929730672052407058361701971e-1),
0987 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.80409998734303497641108024806388734755e-1),
0988 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.49286120625421787109350223436127409819e-2),
0989 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.89160491404149422833016337592047445082e-3),
0990 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16725811789351893632348469796802834008e-3),
0991 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.43438517439595919021069131504449842238e-5),
0992 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.29058184637190638359623120253986595623e-6),
0993 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.03288592271246432030980385908922413497e-7),
0994 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.12286831076824535034975676306286388291e-9),
0995 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.64563161552001551475186730009447111173e-11),
0996 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.13183856815615371136129883169639301710e-13),
0997 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.02405342795439598418033139109649640085e-35),
0998 };
0999 BOOST_MATH_STATIC const RealType Q[11] = {
1000 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1001 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.78286317363568496229516074305435186276e-1),
1002 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.06519013547074134846431611115576250187e-1),
1003 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.71907733798006110542919988654989891098e-2),
1004 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.38874744033460851257697736304200953873e-3),
1005 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.54724289412996188575775800547576856966e-4),
1006 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.98922099980447626797646560786207812928e-5),
1007 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.64352676367403443733555974471752023206e-7),
1008 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.92616898324742524009679754162620171773e-8),
1009 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.87471345773127482399498877510153906820e-10),
1010 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.92954174836731254818376396170511443820e-12),
1011 };
1012
1013 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1014 }
1015 else if (x >= -64) {
1016 RealType t = -x - 32;
1017
1018
1019
1020
1021 BOOST_MATH_STATIC const RealType P[10] = {
1022 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.65964563346442080104568381680822923977e-1),
1023 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.77958685324702990033291591478515962894e-2),
1024 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.56419338083136866686699803771820491401e-3),
1025 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.82465178504003399087279098324316458608e-4),
1026 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.92402911374159755476910533154145918079e-5),
1027 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.91224450962405933321548581824712789516e-7),
1028 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.84063939469145970625490205194192347630e-9),
1029 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.15300528698702940691774461674788639801e-11),
1030 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.85553643603397817535280932672322232325e-13),
1031 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.46207029637607033398822620480584537642e-38),
1032 };
1033 BOOST_MATH_STATIC const RealType Q[9] = {
1034 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1035 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.54906717312241693103173902792310528801e-1),
1036 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.84408124581401290943345932332007045483e-2),
1037 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.81403744024723164669745491417804917709e-3),
1038 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.23423244618880845765135047598258754409e-5),
1039 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.84697524433421334697753031272973192290e-6),
1040 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.94803525968789587050040294764458613062e-8),
1041 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.68948879514200831687856703804327184420e-10),
1042 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07366525547027105672618224029122809899e-12),
1043 };
1044
1045 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1046 }
1047 else {
1048 result = 0;
1049 }
1050 }
1051
1052 return result;
1053 }
1054
1055 template <class RealType>
1056 BOOST_MATH_GPU_ENABLED inline RealType mapairy_pdf_imp_prec(const RealType& x, const boost::math::integral_constant<int, 53> &tag) {
1057 if (x >= 0) {
1058 return mapairy_pdf_plus_imp_prec<RealType>(x, tag);
1059 }
1060 else if (x <= 0) {
1061 return mapairy_pdf_minus_imp_prec<RealType>(x, tag);
1062 }
1063 else {
1064 return boost::math::numeric_limits<RealType>::quiet_NaN();
1065 }
1066 }
1067
1068 template <class RealType>
1069 BOOST_MATH_GPU_ENABLED inline RealType mapairy_pdf_imp_prec(const RealType& x, const boost::math::integral_constant<int, 113>& tag) {
1070 if (x >= 0) {
1071 return mapairy_pdf_plus_imp_prec<RealType>(x, tag);
1072 }
1073 else if (x <= 0) {
1074 return mapairy_pdf_minus_imp_prec<RealType>(x, tag);
1075 }
1076 else {
1077 return boost::math::numeric_limits<RealType>::quiet_NaN();
1078 }
1079 }
1080
1081 template <class RealType, class Policy>
1082 BOOST_MATH_GPU_ENABLED inline RealType mapairy_pdf_imp(const mapairy_distribution<RealType, Policy>& dist, const RealType& x) {
1083
1084
1085
1086
1087 BOOST_MATH_STD_USING
1088 constexpr auto function = "boost::math::pdf(mapairy<%1%>&, %1%)";
1089 RealType result = 0;
1090 RealType location = dist.location();
1091 RealType scale = dist.scale();
1092
1093 if (false == detail::check_location(function, location, &result, Policy()))
1094 {
1095 return result;
1096 }
1097 if (false == detail::check_scale(function, scale, &result, Policy()))
1098 {
1099 return result;
1100 }
1101 if (false == detail::check_x(function, x, &result, Policy()))
1102 {
1103 return result;
1104 }
1105
1106 typedef typename tools::promote_args<RealType>::type result_type;
1107 typedef typename policies::precision<result_type, Policy>::type precision_type;
1108 typedef boost::math::integral_constant<int,
1109 precision_type::value <= 0 ? 0 :
1110 precision_type::value <= 53 ? 53 :
1111 precision_type::value <= 113 ? 113 : 0
1112 > tag_type;
1113
1114 static_assert(tag_type::value, "The Map-Airy distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
1115
1116 RealType u = (x - location) / scale;
1117
1118 result = mapairy_pdf_imp_prec(u, tag_type()) / scale;
1119
1120 return result;
1121 }
1122
1123 template <class RealType>
1124 BOOST_MATH_GPU_ENABLED inline RealType mapairy_cdf_plus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 53>&)
1125 {
1126 BOOST_MATH_STD_USING
1127 RealType result;
1128
1129 if (x < 1) {
1130
1131
1132 BOOST_MATH_STATIC const RealType P[7] = {
1133 static_cast<RealType>(3.33333333333333333333e-1),
1134 static_cast<RealType>(7.49532137610545010591e-2),
1135 static_cast<RealType>(9.25326921848155048716e-3),
1136 static_cast<RealType>(6.59133092365796208900e-3),
1137 static_cast<RealType>(-5.21942678326323374113e-4),
1138 static_cast<RealType>(8.22766804917461941348e-5),
1139 static_cast<RealType>(-3.97941251650023182117e-6),
1140 };
1141 BOOST_MATH_STATIC const RealType Q[7] = {
1142 static_cast<RealType>(1.),
1143 static_cast<RealType>(8.17408156824742736411e-1),
1144 static_cast<RealType>(3.57041011418415988268e-1),
1145 static_cast<RealType>(1.04580353775369716002e-1),
1146 static_cast<RealType>(1.87521616934129432292e-2),
1147 static_cast<RealType>(2.33232161135637085535e-3),
1148 static_cast<RealType>(7.31285352607895467310e-5),
1149 };
1150
1151 result = tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
1152 }
1153 else if (x < 2) {
1154 RealType t = x - 1;
1155
1156
1157
1158 BOOST_MATH_STATIC const RealType P[7] = {
1159 static_cast<RealType>(1.84196970581015939888e-1),
1160 static_cast<RealType>(-1.19398028299089933853e-3),
1161 static_cast<RealType>(1.21954054797949597854e-2),
1162 static_cast<RealType>(-9.37912675685073154845e-4),
1163 static_cast<RealType>(1.66651954077980453212e-4),
1164 static_cast<RealType>(-1.33271812303025233648e-5),
1165 static_cast<RealType>(5.35982226125013888796e-7),
1166 };
1167 BOOST_MATH_STATIC const RealType Q[6] = {
1168 static_cast<RealType>(1.),
1169 static_cast<RealType>(5.70352826101668448273e-1),
1170 static_cast<RealType>(1.98852010141232271304e-1),
1171 static_cast<RealType>(3.64864882318453496161e-2),
1172 static_cast<RealType>(4.22173125405065522298e-3),
1173 static_cast<RealType>(1.20079284386796600356e-4),
1174 };
1175
1176 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1177 }
1178 else if (x < 4) {
1179 RealType t = x - 2;
1180
1181
1182
1183 BOOST_MATH_STATIC const RealType P[8] = {
1184 static_cast<RealType>(1.07409273397524124098e-1),
1185 static_cast<RealType>(3.83900318969331880402e-2),
1186 static_cast<RealType>(1.17926652359826576790e-2),
1187 static_cast<RealType>(1.52181625871479030046e-3),
1188 static_cast<RealType>(1.50703424417132565662e-4),
1189 static_cast<RealType>(2.10117959279448106308e-6),
1190 static_cast<RealType>(1.97360985832285866640e-8),
1191 static_cast<RealType>(-1.06076300080048408251e-9),
1192 };
1193 BOOST_MATH_STATIC const RealType Q[7] = {
1194 static_cast<RealType>(1.),
1195 static_cast<RealType>(8.54435380513870673497e-1),
1196 static_cast<RealType>(3.66021233157880878411e-1),
1197 static_cast<RealType>(9.42985570806905160687e-2),
1198 static_cast<RealType>(1.54122343653998564507e-2),
1199 static_cast<RealType>(1.49849056258932455548e-3),
1200 static_cast<RealType>(6.94290406268856211707e-5),
1201 };
1202
1203 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1204 }
1205 else if (x < 8) {
1206 RealType t = x - 4;
1207
1208
1209
1210 BOOST_MATH_STATIC const RealType P[8] = {
1211 static_cast<RealType>(4.70720199535228802538e-2),
1212 static_cast<RealType>(2.67200763833749070079e-2),
1213 static_cast<RealType>(7.37400551855064729769e-3),
1214 static_cast<RealType>(1.10592441765001623699e-3),
1215 static_cast<RealType>(9.15846028547400212588e-5),
1216 static_cast<RealType>(3.17801522553862136789e-6),
1217 static_cast<RealType>(2.03102753319827713542e-8),
1218 static_cast<RealType>(-5.16172854149066643529e-11),
1219 };
1220 BOOST_MATH_STATIC const RealType Q[8] = {
1221 static_cast<RealType>(1.),
1222 static_cast<RealType>(9.05317644829451086870e-1),
1223 static_cast<RealType>(3.73713496637025562492e-1),
1224 static_cast<RealType>(8.94434672792094976627e-2),
1225 static_cast<RealType>(1.31846542255347106087e-2),
1226 static_cast<RealType>(1.16680596342421447100e-3),
1227 static_cast<RealType>(5.44719256441278863300e-5),
1228 static_cast<RealType>(8.73131209154185067287e-7),
1229 };
1230
1231 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1232 }
1233 else if (x < 16) {
1234 RealType t = x - 8;
1235
1236
1237
1238 BOOST_MATH_STATIC const RealType P[8] = {
1239 static_cast<RealType>(1.74847564444513000450e-2),
1240 static_cast<RealType>(6.00209162595027323742e-3),
1241 static_cast<RealType>(7.86550260761375576075e-4),
1242 static_cast<RealType>(4.46682547335758521734e-5),
1243 static_cast<RealType>(9.51329761417139273391e-7),
1244 static_cast<RealType>(4.10313065114362712333e-9),
1245 static_cast<RealType>(-9.81286503831545640189e-12),
1246 static_cast<RealType>(2.98763969872672156104e-14),
1247 };
1248 BOOST_MATH_STATIC const RealType Q[7] = {
1249 static_cast<RealType>(1.),
1250 static_cast<RealType>(5.27732094554221674504e-1),
1251 static_cast<RealType>(1.14330643482604301178e-1),
1252 static_cast<RealType>(1.27722341942374066265e-2),
1253 static_cast<RealType>(7.54563340152441778517e-4),
1254 static_cast<RealType>(2.13377039814057925832e-5),
1255 static_cast<RealType>(2.09670987094350618690e-7),
1256 };
1257
1258 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1259 }
1260 else if (x < 32) {
1261 RealType t = x - 16;
1262
1263
1264
1265 BOOST_MATH_STATIC const RealType P[8] = {
1266 static_cast<RealType>(6.22684103170563193015e-3),
1267 static_cast<RealType>(1.34714356588780958096e-3),
1268 static_cast<RealType>(9.51289465377874891896e-5),
1269 static_cast<RealType>(2.64918464474843134081e-6),
1270 static_cast<RealType>(2.66703857491046795285e-8),
1271 static_cast<RealType>(5.42037888457985833156e-11),
1272 static_cast<RealType>(-6.18017115447736427379e-14),
1273 static_cast<RealType>(9.11626234402148561268e-17),
1274 };
1275 BOOST_MATH_STATIC const RealType Q[7] = {
1276 static_cast<RealType>(1.),
1277 static_cast<RealType>(3.09895694991285975774e-1),
1278 static_cast<RealType>(3.69874670435930773471e-2),
1279 static_cast<RealType>(2.15708854325146400153e-3),
1280 static_cast<RealType>(6.35345408451056881884e-5),
1281 static_cast<RealType>(8.65722805575670770555e-7),
1282 static_cast<RealType>(4.03153189557220023202e-9),
1283 };
1284
1285 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1286 }
1287 else if (x < 64) {
1288 RealType t = x - 32;
1289
1290
1291
1292 BOOST_MATH_STATIC const RealType P[7] = {
1293 static_cast<RealType>(2.20357145727036120652e-3),
1294 static_cast<RealType>(1.45412555771401325111e-4),
1295 static_cast<RealType>(3.27819006009093198652e-6),
1296 static_cast<RealType>(2.96786786716623870006e-8),
1297 static_cast<RealType>(9.54192199129339742308e-11),
1298 static_cast<RealType>(5.71421706870777687254e-14),
1299 static_cast<RealType>(-1.48321866072033823195e-17),
1300 };
1301 BOOST_MATH_STATIC const RealType Q[7] = {
1302 static_cast<RealType>(1.),
1303 static_cast<RealType>(1.12851983233980279746e-1),
1304 static_cast<RealType>(4.94650928817638043712e-3),
1305 static_cast<RealType>(1.05447405092956497114e-4),
1306 static_cast<RealType>(1.11578464291338271178e-6),
1307 static_cast<RealType>(5.27522295397347842625e-9),
1308 static_cast<RealType>(7.95786524903707645399e-12),
1309 };
1310
1311 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1312 }
1313 else {
1314 RealType x_cube = x * x * x;
1315 RealType t = static_cast<RealType>((boost::math::isnormal)(x_cube) ? 1 / sqrt(x_cube) : 1 / pow(sqrt(x), 3));
1316
1317
1318
1319 BOOST_MATH_STATIC const RealType P[4] = {
1320 static_cast<RealType>(3.98942280401432677940e-1),
1321 static_cast<RealType>(2.89752186412133782995e-2),
1322 static_cast<RealType>(4.67360459917040710474e0),
1323 static_cast<RealType>(-1.26770824563800250704e-1),
1324 };
1325 BOOST_MATH_STATIC const RealType Q[3] = {
1326 static_cast<RealType>(1.),
1327 static_cast<RealType>(7.26301023103568827709e-2),
1328 static_cast<RealType>(1.60899894281099149848e1),
1329 };
1330
1331 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t) * t;
1332 }
1333
1334 return result;
1335 }
1336
1337
1338 template <class RealType>
1339 BOOST_MATH_GPU_ENABLED inline RealType mapairy_cdf_plus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 113>&)
1340 {
1341 BOOST_MATH_STD_USING
1342 RealType result;
1343
1344 if (x < 1) {
1345
1346
1347
1348 BOOST_MATH_STATIC const RealType P[14] = {
1349 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.33333333333333333333333333333333333333e-1),
1350 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.38519736580901276671338330967060054188e-1),
1351 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.07012342772403725079487012557507575976e-2),
1352 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.70163612228825567572185033570526547856e-2),
1353 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.16393313438726572630782132625753922397e-3),
1354 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.92141312947853945617138019222992750592e-4),
1355 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16513062047959961711747864068554379374e-4),
1356 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.08850391017085844154857927364247623649e-5),
1357 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07060872491334153829857156707699441084e-6),
1358 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.56961733740920438026573722084839596926e-8),
1359 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.93626747947476815631021107726714283086e-10),
1360 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.32967164823609209711923411113824666288e-10),
1361 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.23420723211833268177898025846064230665e-12),
1362 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.13807083548358335699029971528179486964e-13),
1363 };
1364 BOOST_MATH_STATIC const RealType Q[12] = {
1365 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1366 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.00810772528427939684296334977783425582e0),
1367 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.24383652800043768524894854013745098654e-1),
1368 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.64696616559657052516796844068580626381e-1),
1369 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.62288747679271039067363492752820355369e-2),
1370 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.19311779292286492714550084942827207241e-2),
1371 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.48436879303839576521077892946281025894e-3),
1372 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.28665316157256311138787387605249076674e-4),
1373 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.36350302380845433472593647100484547496e-5),
1374 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.05835458213330488018147374864403662878e-6),
1375 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.13919959493955187399856105325181806876e-7),
1376 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.30960533107704070411766556906543316310e-8),
1377 };
1378
1379 result = tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
1380 }
1381 else if (x < 2) {
1382 RealType t = x - 1;
1383
1384
1385
1386
1387 BOOST_MATH_STATIC const RealType P[13] = {
1388 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.84196970581015939887507434989936103587e-1),
1389 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.23864910443500344832158256856064580005e-1),
1390 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.72066675347648126090497588433854314742e-2),
1391 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.81712740200456564860442639192891089515e-2),
1392 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.39091197181834765859741334477680768031e-3),
1393 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.03759464781707198959689175957603165395e-4),
1394 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15298069568149410830642785868857309358e-4),
1395 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.18910514301176322829267019223946392192e-5),
1396 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.16851691488007921400221017970691227149e-7),
1397 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.82031940093536875619655849638573432722e-8),
1398 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.30042143299959913519747484877532997335e-10),
1399 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.19848671456872291336347012756651759817e-11),
1400 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.00479393063394570750334218362674723065e-13),
1401 };
1402 BOOST_MATH_STATIC const RealType Q[12] = {
1403 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1404 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.24929390929112144560152115661603117364e0),
1405 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.34853762543033883106055186520573363290e-1),
1406 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.73783624941936412984356492130276742707e-1),
1407 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.23224734370942016023173307854505597524e-1),
1408 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.11116448823067697039703254343621931158e-2),
1409 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.12490054037308798338231679733816982120e-3),
1410 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.38701607014856856812627276285445001885e-4),
1411 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.10075199231657382435402462616587005087e-4),
1412 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.43662615015322880941108094510531477066e-6),
1413 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.37981396630189761210639158952200945512e-7),
1414 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.55820444854396304928946970937054949160e-8),
1415 };
1416
1417 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1418 }
1419 else if (x < 4) {
1420 RealType t = x - 2;
1421
1422
1423
1424
1425 BOOST_MATH_STATIC const RealType P[14] = {
1426 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07409273397524124098315500450332255837e-1),
1427 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.98373054365213259465522536994638631699e-2),
1428 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.30851284606709136235419547406278197945e-2),
1429 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.92686617543233900289721448026065555990e-2),
1430 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.18056394312484073294780140350522772329e-3),
1431 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07058343449035366484618967963264380933e-3),
1432 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.71636108080692802684712497501670425230e-4),
1433 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.13155853034615230731719317488499751231e-5),
1434 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.00070273388376168880473457782396672044e-6),
1435 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.35528857373910910704625837069445190727e-7),
1436 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.99897218751541535347315078577172104436e-9),
1437 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.35092090729912631973050415647154137571e-10),
1438 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.72220647682193638971237255396233171508e-13),
1439 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.45008884108655511268690849420714428764e-15),
1440 };
1441 BOOST_MATH_STATIC const RealType Q[14] = {
1442 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1443 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.42652074703683973183213296310906006173e0),
1444 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.03479786698331153607905223548719296572e0),
1445 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.95556520914240562719970700900964416000e-1),
1446 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.73127917601685318803655745157828471269e-1),
1447 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.63007065833918179119250623000791647836e-2),
1448 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.70652732923091039268400927316918354628e-3),
1449 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.60880782675229297981880241245777122866e-3),
1450 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.09979261868403910549978204036056659380e-4),
1451 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.12085610111710889118562321318284539217e-5),
1452 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.59811533082647193392924345081953134304e-6),
1453 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.37211668706684650035086116219257276925e-8),
1454 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.62479830409039340826066305367893543134e-9),
1455 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.22039803134898937546371285610102850458e-11),
1456 };
1457
1458 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1459 }
1460 else if (x < 8) {
1461 RealType t = x - 4;
1462
1463
1464
1465
1466 BOOST_MATH_STATIC const RealType P[14] = {
1467 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.70720199535228802537946089633331273434e-2),
1468 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.85220706158476482443562698303252970927e-2),
1469 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.55090221054465759649629178911450010833e-2),
1470 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.70398047783095186291450019612979853708e-3),
1471 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.11846661331973171721224034349719801691e-3),
1472 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.83195024406409870789088752469490824640e-4),
1473 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.23908312140480103249294791529383548724e-5),
1474 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.40765128885655152415228193255890859830e-6),
1475 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.14294523267278070539100529759317560119e-7),
1476 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.26815059429007745850376987481747435820e-8),
1477 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.28142945635159623618312928455133399240e-10),
1478 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.77079683180868753715374495747422819326e-11),
1479 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.73710011278079325323578951018770847628e-13),
1480 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.70140037580287364298206334732060874507e-16),
1481 };
1482 BOOST_MATH_STATIC const RealType Q[16] = {
1483 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1484 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.36848014038411798213992770858203510748e0),
1485 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.15373052017549822413011375404872359177e-1),
1486 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.92705544967513282963463451395766172671e-1),
1487 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19899290805598090502434290420047460406e-1),
1488 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.74002906913724742582773116667380578990e-2),
1489 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.80632456977494447641985312297971970632e-3),
1490 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.53381530665983535467406445749348183915e-4),
1491 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.86606180756179817016240556949228031340e-5),
1492 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.49594666942152749850479792402078560469e-6),
1493 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.25231012522695972983928740617341887334e-7),
1494 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.34987086926725472733984045599487947378e-8),
1495 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.58286136970918021841189712851698747417e-10),
1496 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.12238357666199366902936267515573231037e-12),
1497 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.82464168044335183356132979380360583444e-14),
1498 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.40073718480172265670072434562833527076e-17),
1499 };
1500
1501 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1502 }
1503 else if (x < 16) {
1504 RealType t = x - 8;
1505
1506
1507
1508
1509 BOOST_MATH_STATIC const RealType P[16] = {
1510 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74847564444513000450056174922427854591e-2),
1511 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.56842503159303803254436983444304764079e-2),
1512 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.48504629497687889354406208309334148575e-3),
1513 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.62327083507366120871877936416427790391e-3),
1514 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.72062210557023828776202679230979309963e-4),
1515 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.19153025667221102770398900522196418041e-5),
1516 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.66248482185063262034022017727375829162e-6),
1517 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.57390218395059632327421809878050974588e-7),
1518 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.45520328522839835737631604118833792570e-9),
1519 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.76327978880339919462910339138428389322e-10),
1520 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.99700625463451418394515481232159889297e-12),
1521 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.82943476668680389338853032002472541164e-14),
1522 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19415284760817575957617090798914089413e-16),
1523 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.17080879333540200065368097274334363537e-19),
1524 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.09912208206107606750610288716869139753e-23),
1525 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.98451733054622166748935243139556132704e-26),
1526 };
1527 BOOST_MATH_STATIC const RealType Q[15] = {
1528 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1529 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.08148065380582488495702136465010348576e0),
1530 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.42385352331252779422725444021027377277e-1),
1531 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.66510412535270623169792008730183916611e-1),
1532 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.47952712144801508762945315513819636452e-2),
1533 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.20703092334999244212988997416711617790e-3),
1534 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.71658889250345012472529115544710926154e-4),
1535 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.63905601023452497974798277091285373919e-5),
1536 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.76730409484335386334980429532443217982e-6),
1537 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19139408077753398896224794522985050607e-7),
1538 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.58025872548387600940275201648443410419e-9),
1539 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.11369336267349152895272975096509109414e-11),
1540 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.56182954522937999103610817174373785571e-13),
1541 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.35452907177197742692545044913125982311e-15),
1542 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.23587924912460218189929226092439805175e-17),
1543 };
1544
1545 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1546 }
1547 else if (x < 32) {
1548 RealType t = x - 16;
1549
1550
1551
1552
1553 BOOST_MATH_STATIC const RealType P[15] = {
1554 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.22684103170563193014558918295924551173e-3),
1555 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.55222688816852408105912768186300290291e-3),
1556 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.60747505331765587662432023547517953629e-4),
1557 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.80463770266821887100086895337451846880e-5),
1558 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.19190824169154471000496746227725070963e-6),
1559 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.40646301571395681364881852739555404287e-7),
1560 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.15408836734496798091749932018121879724e-9),
1561 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.13676779930022341958128426888835497781e-11),
1562 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.02435098103190516418351075792372986932e-12),
1563 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.82018920071479061978244972592746216377e-15),
1564 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.26435061215428679536159320644587957335e-17),
1565 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.05298407883178633891153989998582851270e-20),
1566 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.61156860101928352010449210760843428372e-23),
1567 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.02156808288545876198121127510075217184e-27),
1568 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.65549196385656698597261688277898043367e-30),
1569 };
1570 BOOST_MATH_STATIC const RealType Q[14] = {
1571 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1572 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.03426141030409708635168766288764563749e-1),
1573 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.13808987755928828118915442251025992769e-1),
1574 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.52253239792170999949444502938290297674e-2),
1575 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33720936468171204432499390745432338841e-3),
1576 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.08713980159883984886576124842631646880e-5),
1577 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.43652846144339754840998823540656399165e-6),
1578 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.02849693617024492825330133490278326951e-7),
1579 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.14110017452008167954262319462808192536e-9),
1580 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.01462578814695350559338360744897649915e-11),
1581 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.73495817568046489613308117490508832084e-13),
1582 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.47445372925844096612021093857581987132e-15),
1583 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.08200002287534174751275097848899176785e-18),
1584 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.15305756373406702253187385797525419287e-21),
1585 };
1586
1587 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1588 }
1589 else if (x < 64) {
1590 RealType t = x - 32;
1591
1592
1593
1594
1595 BOOST_MATH_STATIC const RealType P[13] = {
1596 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.20357145727036120652264700679701054983e-3),
1597 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.95712324967981162396595365933255312698e-4),
1598 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.08619492652809635942960438372427086939e-5),
1599 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.37140224583881547818087260161723208444e-6),
1600 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.83073777522092069988595553041062506001e-8),
1601 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.00473542739040742110568810201412321512e-10),
1602 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.47447289601822506789553624164171452120e-12),
1603 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.70913574957198131397471307249294758738e-14),
1604 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.36538119628489354953085829178695645929e-16),
1605 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.00763343664814257170332492241110173166e-18),
1606 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.62297585950798764290583627210836077239e-21),
1607 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15780217054514513493147192853488153246e-24),
1608 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.31961589164397397724611386366339562789e-28),
1609 };
1610 BOOST_MATH_STATIC const RealType Q[15] = {
1611 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1612 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.26440207646105117747875545474828367516e-1),
1613 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.27872879091838733280518786463281413334e-2),
1614 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.34256572873114675776148923422025029494e-3),
1615 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.13595637397535037957995766856628205747e-5),
1616 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33745879863685053883024090247009549434e-6),
1617 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.41792226523670940279016788831933559977e-8),
1618 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.03966147662273388060545199475024100492e-10),
1619 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.62177951640260313354050335795080248910e-12),
1620 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.50650165210517365082118441264513277196e-14),
1621 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.48413283257020741389298806290302772976e-17),
1622 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16439276222123152748426700489921412654e-19),
1623 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.24969602890963356175782126478237865639e-22),
1624 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.08681155203261739689727004641345513984e-26),
1625 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.28282024196484688479115133027874255367e-30),
1626 };
1627
1628 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1629 }
1630 else {
1631 RealType x_cube = x * x * x;
1632 RealType t = (boost::math::isnormal)(x_cube) ? 1 / sqrt(x_cube) : 1 / pow(sqrt(x), 3);
1633
1634
1635
1636
1637 BOOST_MATH_STATIC const RealType P[8] = {
1638 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.98942280401432677939946059934381868476e-1),
1639 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.12426566605292130233061857505057433291e-1),
1640 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.91574528280329492283287073127040983832e1),
1641 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.69914217884224943794012165979483573091e1),
1642 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30178902028403564086640591437738216288e3),
1643 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.96515490341559353794378324810127583810e2),
1644 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.44343825578434751356083230369361399507e3),
1645 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.07224810408790092272497403739984510394e2),
1646 };
1647 BOOST_MATH_STATIC const RealType Q[7] = {
1648 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1649 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.32474438135610721926278423612948794250e-1),
1650 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.27594461167587027771303292526448542806e2),
1651 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.49207539478843628626934249487055017677e1),
1652 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.75094412095634602055738687636893575929e3),
1653 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.51642534474780515366628648516673270623e2),
1654 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.05977615003758056284424652420774587813e4),
1655 };
1656
1657 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t) * t;
1658 }
1659
1660 return result;
1661 }
1662
1663 template <class RealType>
1664 BOOST_MATH_GPU_ENABLED inline RealType mapairy_cdf_minus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 53>&)
1665 {
1666 BOOST_MATH_STD_USING
1667 RealType result;
1668
1669 if (x >= -1) {
1670 RealType t = x + 1;
1671
1672
1673
1674 BOOST_MATH_STATIC const RealType P[8] = {
1675 static_cast<RealType>(4.23238998449671083670e-1),
1676 static_cast<RealType>(4.95353582976475183891e-1),
1677 static_cast<RealType>(2.45823281826037784270e-1),
1678 static_cast<RealType>(7.29726507468813920788e-2),
1679 static_cast<RealType>(1.63332856186819713346e-2),
1680 static_cast<RealType>(2.82514634871307516142e-3),
1681 static_cast<RealType>(2.66220579589280704089e-4),
1682 static_cast<RealType>(3.09442180091323751049e-6),
1683 };
1684 BOOST_MATH_STATIC const RealType Q[7] = {
1685 static_cast<RealType>(1.),
1686 static_cast<RealType>(5.16241922223786900600e-1),
1687 static_cast<RealType>(2.75690727171711638879e-1),
1688 static_cast<RealType>(7.18707184893542884080e-2),
1689 static_cast<RealType>(1.87136800286819336797e-2),
1690 static_cast<RealType>(2.38383441176345054929e-3),
1691 static_cast<RealType>(3.23509126477812051983e-4),
1692 };
1693
1694 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1695 }
1696 else if (x >= -2) {
1697 RealType t = x + 2;
1698
1699
1700
1701 BOOST_MATH_STATIC const RealType P[8] = {
1702 static_cast<RealType>(1.62598955251978523175e-1),
1703 static_cast<RealType>(2.30154661502402196205e-1),
1704 static_cast<RealType>(1.29233975368291684522e-1),
1705 static_cast<RealType>(3.80919553916980965587e-2),
1706 static_cast<RealType>(8.17724414618808505948e-3),
1707 static_cast<RealType>(1.95816800210481122544e-3),
1708 static_cast<RealType>(3.35259917978421935141e-4),
1709 static_cast<RealType>(1.22071311320012805777e-5),
1710 };
1711 BOOST_MATH_STATIC const RealType Q[7] = {
1712 static_cast<RealType>(1.),
1713 static_cast<RealType>(9.63771793313770952352e-2),
1714 static_cast<RealType>(2.23602260938227310054e-1),
1715 static_cast<RealType>(9.21944797677283179038e-3),
1716 static_cast<RealType>(1.82181136341939651516e-2),
1717 static_cast<RealType>(1.11216849284965970458e-4),
1718 static_cast<RealType>(5.57446347676836375810e-4),
1719 };
1720
1721 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1722 }
1723 else {
1724 RealType s = exp(2 * x * x * x / 27) / sqrt(-x * x * x);
1725
1726 if (x >= -4) {
1727 RealType t = -x - 2;
1728
1729
1730
1731 BOOST_MATH_STATIC const RealType P[8] = {
1732 static_cast<RealType>(8.31806744221966404520e-1),
1733 static_cast<RealType>(1.34481067378012055850e0),
1734 static_cast<RealType>(9.12139427469494995264e-1),
1735 static_cast<RealType>(3.59706159222491124928e-1),
1736 static_cast<RealType>(9.48836332725688279299e-2),
1737 static_cast<RealType>(1.68259594978853951234e-2),
1738 static_cast<RealType>(1.89700733471520162946e-3),
1739 static_cast<RealType>(1.13854052826846329787e-4),
1740 };
1741 BOOST_MATH_STATIC const RealType Q[8] = {
1742 static_cast<RealType>(1.),
1743 static_cast<RealType>(1.29694286517571741097e0),
1744 static_cast<RealType>(7.99686735441213882518e-1),
1745 static_cast<RealType>(3.08198207583883597188e-1),
1746 static_cast<RealType>(7.97230139795658588972e-2),
1747 static_cast<RealType>(1.40742142048849462162e-2),
1748 static_cast<RealType>(1.58411440546277691506e-3),
1749 static_cast<RealType>(9.51560785730564046338e-5),
1750 };
1751
1752 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1753 }
1754 else if (x >= -8) {
1755 RealType t = -x - 4;
1756
1757
1758
1759 BOOST_MATH_STATIC const RealType P[8] = {
1760 static_cast<RealType>(1.10294551528734705946e0),
1761 static_cast<RealType>(1.26696377028973554615e0),
1762 static_cast<RealType>(6.63115985833429688941e-1),
1763 static_cast<RealType>(2.06289793717379095832e-1),
1764 static_cast<RealType>(4.11977615717846276227e-2),
1765 static_cast<RealType>(5.28620928618550859827e-3),
1766 static_cast<RealType>(4.04328442334023561279e-4),
1767 static_cast<RealType>(1.42364413902075896503e-5),
1768 };
1769 BOOST_MATH_STATIC const RealType Q[8] = {
1770 static_cast<RealType>(1.),
1771 static_cast<RealType>(1.09709853682665798542e0),
1772 static_cast<RealType>(5.63687797989627787500e-1),
1773 static_cast<RealType>(1.73604358560002859604e-1),
1774 static_cast<RealType>(3.44985744385890794044e-2),
1775 static_cast<RealType>(4.41683993064797272821e-3),
1776 static_cast<RealType>(3.37834206192286709492e-4),
1777 static_cast<RealType>(1.18951465786445720729e-5),
1778 };
1779
1780 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1781 }
1782 else if (x >= -16) {
1783 RealType t = -x - 8;
1784
1785
1786
1787 BOOST_MATH_STATIC const RealType P[7] = {
1788 static_cast<RealType>(1.18246847255744057280e0),
1789 static_cast<RealType>(8.41320657699741240497e-1),
1790 static_cast<RealType>(2.55093097377551881478e-1),
1791 static_cast<RealType>(4.21261576802732715976e-2),
1792 static_cast<RealType>(3.98805044659990523312e-3),
1793 static_cast<RealType>(2.04688276265993954527e-4),
1794 static_cast<RealType>(4.43354791268634655473e-6),
1795 };
1796 BOOST_MATH_STATIC const RealType Q[7] = {
1797 static_cast<RealType>(1.),
1798 static_cast<RealType>(7.07103973315808077783e-1),
1799 static_cast<RealType>(2.13664682181055450396e-1),
1800 static_cast<RealType>(3.52218225168465984709e-2),
1801 static_cast<RealType>(3.33218664347896435919e-3),
1802 static_cast<RealType>(1.71025807471868853268e-4),
1803 static_cast<RealType>(3.70441884597642042665e-6),
1804 };
1805
1806 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1807 }
1808 else if (x >= -32) {
1809 RealType t = -x - 16;
1810
1811
1812
1813 BOOST_MATH_STATIC const RealType P[6] = {
1814 static_cast<RealType>(1.19497306481411168356e0),
1815 static_cast<RealType>(3.90497195765498241356e-1),
1816 static_cast<RealType>(5.13120330037626853257e-2),
1817 static_cast<RealType>(3.38574023921119491471e-3),
1818 static_cast<RealType>(1.12075935888344736993e-4),
1819 static_cast<RealType>(1.48743616420183584738e-6),
1820 };
1821 BOOST_MATH_STATIC const RealType Q[6] = {
1822 static_cast<RealType>(1.),
1823 static_cast<RealType>(3.26493785348088598123e-1),
1824 static_cast<RealType>(4.28813205161574223713e-2),
1825 static_cast<RealType>(2.82893073845390254969e-3),
1826 static_cast<RealType>(9.36442365966638579335e-5),
1827 static_cast<RealType>(1.24281651532469125315e-6),
1828 };
1829
1830 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1831 }
1832 else {
1833 result = 0;
1834 }
1835 }
1836
1837 return result;
1838 }
1839
1840 template <class RealType>
1841 BOOST_MATH_GPU_ENABLED inline RealType mapairy_cdf_minus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 113>&)
1842 {
1843 BOOST_MATH_STD_USING
1844 RealType result;
1845
1846 if (x >= -1) {
1847 RealType t = x + 1;
1848
1849
1850
1851
1852 BOOST_MATH_STATIC const RealType P[14] = {
1853 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.23238998449671083670041452413316011920e-1),
1854 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.14900991369455846775267187236501987891e-1),
1855 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.19132787054572299485638029221977944555e-1),
1856 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.87295743700300806662745209398368996653e-1),
1857 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.41994520703802035725356673887766112213e-2),
1858 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.78782099629586443747968633412271291734e-2),
1859 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.05200546520666366552864974572901349343e-3),
1860 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.51453477916196630939702866688348310208e-4),
1861 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15461354910584918402088506199099270742e-4),
1862 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.43371674256124419899137414410592359185e-5),
1863 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.35849788347057186916350200082990102088e-6),
1864 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.50359296597872967493549820191745700442e-8),
1865 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.21838020977580479741299141050400953125e-9),
1866 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.46723648594704078875476888175530463986e-12),
1867 };
1868 BOOST_MATH_STATIC const RealType Q[13] = {
1869 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1870 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.98700317671474659677458220091101276158e-1),
1871 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.00405631175818416028878082789095587658e-1),
1872 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.04189939150805562128632256692765842568e-1),
1873 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.03621065280443734565418469521814125946e-2),
1874 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.85722257874304617269018116436650330070e-2),
1875 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.24191409213079401989695901900760076094e-3),
1876 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.64269032641964601932953114106294883156e-4),
1877 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19289631274036494326058240677240511431e-4),
1878 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.41389309719775603006897751176159931569e-5),
1879 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.42000309062533491486426399210996541477e-6),
1880 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.02436961569668743353755318268149636644e-8),
1881 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.50130875023154569442119099173406269991e-9),
1882 };
1883
1884 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1885 }
1886 else if (x >= -2) {
1887 RealType t = x + 2;
1888
1889
1890
1891
1892 BOOST_MATH_STATIC const RealType P[14] = {
1893 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.62598955251978523174755901843430986522e-1),
1894 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.08127698872954954678270473317137288772e-1),
1895 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.70144997468767751317246482211703706086e-1),
1896 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.49486603823046766249106014234315835102e-1),
1897 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.07186495389828596786579668258622667573e-2),
1898 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.98334953533562948674335281457057445421e-2),
1899 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.44119017374895211020429143034854620303e-3),
1900 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.27080759819117162456137826659721634882e-3),
1901 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.53892796920597912362370019918933112349e-4),
1902 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.30530442651657077016130554430933607143e-5),
1903 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.04837779538527662990102489150650534390e-6),
1904 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.94354615171320374997141684442120888127e-7),
1905 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.30746545799073289786965697800049892311e-8),
1906 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.41870129065056783732691371215602982173e-9),
1907 };
1908 BOOST_MATH_STATIC const RealType Q[14] = {
1909 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1910 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.75919235734607601884356783586727272494e-1),
1911 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.57656678936617227532275100649989944452e-1),
1912 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.72617552401870454676736869003112018648e-1),
1913 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.59238104942208254162102314312757621047e-2),
1914 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.06040513359343987972917295603514840777e-2),
1915 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.26922840063034349024167652148593396307e-3),
1916 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.25628506630180107357627955876231943531e-3),
1917 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.81600387497542714853225329159728694926e-4),
1918 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.08210973846891324886779444820838563800e-5),
1919 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.68632477858150229792523037059221563861e-6),
1920 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.43542789104866782087701759971538600076e-7),
1921 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.70594730517167328271953424328890849790e-8),
1922 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.30162314557860623869079601905904538470e-9),
1923 };
1924
1925 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1926 }
1927 else {
1928 RealType s = exp(2 * x * x * x / 27) / sqrt(-x * x * x);
1929
1930 if (x >= -4) {
1931 RealType t = -x - 2;
1932
1933
1934
1935
1936 BOOST_MATH_STATIC const RealType P[16] = {
1937 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.31806744221966404520449104514474066823e-1),
1938 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.50292887071777664663197915067642779665e0),
1939 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.45140067157601150721516139901304901854e0),
1940 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.93227973605511286112712730820664209900e0),
1941 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74259108933048973391560053531348126900e0),
1942 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.77677252890665602191818487592154553094e-1),
1943 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.71843197238558832510595724454548089268e-1),
1944 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.62811778285151415483649897138119310816e-2),
1945 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74127763877120261698596916683136227034e-2),
1946 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.24832552591462216226478550702845438540e-3),
1947 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.93381036027487259940171548523889481080e-4),
1948 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.02261328789519398745019578211081412570e-5),
1949 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.75409238451885381267277435341417474231e-6),
1950 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.09526311389365895099871581844304449319e-7),
1951 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.96371756262605118060185816854433322493e-8),
1952 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.88472819535099746216179119978362211227e-10),
1953 };
1954 BOOST_MATH_STATIC const RealType Q[16] = {
1955 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1956 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.68923525157720774962908922391133419863e0),
1957 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.40714902096062779527207435671907059131e0),
1958 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.73120596883364361220343183559076165363e0),
1959 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.56331267512666685349409906638266569733e0),
1960 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.80956276267438042306216894159447642323e-1),
1961 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.34213468750936211385520570062547991332e-1),
1962 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.50081600968590616549654807511166706919e-2),
1963 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.47297208240850928379158677132220746750e-2),
1964 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.73392976579560287571141938466202325901e-3),
1965 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.13858821123741335782695407397784840241e-4),
1966 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.04103497389656828224053882850778186433e-5),
1967 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.81040189127998139689091455192659191796e-6),
1968 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.42176283104790992634826374270801565123e-7),
1969 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.64077137545614380065714904794220228239e-8),
1970 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.08139724991616322332901357866680220241e-10),
1971 };
1972
1973 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1974 }
1975 else if (x >= -8) {
1976 RealType t = -x - 4;
1977
1978
1979
1980
1981 BOOST_MATH_STATIC const RealType P[16] = {
1982 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.10294551528734705945662709421382590676e0),
1983 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.26135857114883288617323671166863478751e0),
1984 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.23504465936865651893193560109437792738e0),
1985 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.41598983788870071301270649341678962009e0),
1986 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.43871304031224174103636568402522086316e-1),
1987 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.22745720458050596514499383658714367529e-1),
1988 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.05976431838299244997805790000128175545e-2),
1989 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.32087500190238014890030606301748111874e-2),
1990 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.32754445514451500968404092049839985196e-3),
1991 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.31866016448921762610690552586049011375e-4),
1992 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.80197257671079297305525087998125408939e-5),
1993 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.44212088947602969374978384512149432847e-6),
1994 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.38857170416924025226203571589937286465e-7),
1995 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20239999218390467567339789443070294182e-8),
1996 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.93965060142992479149039624149602039394e-10),
1997 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.36407983918582149239548869529460234702e-12),
1998 };
1999 BOOST_MATH_STATIC const RealType Q[16] = {
2000 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2001 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.99867960957804580209868321228347067213e0),
2002 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.94236623527818880544030470097296139679e0),
2003 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21644866845440678050425616384656052588e0),
2004 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.48653919287388803523090727546630060490e-1),
2005 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.88696531788490258477870877792341909659e-1),
2006 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.11157356307921406032115084386689196255e-2),
2007 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.11071149696069503480091810333521267753e-2),
2008 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.95274844731679437274609760294652465905e-3),
2009 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.77971280158253322431071249000491659536e-4),
2010 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.18092258028773913076132483326275839950e-5),
2011 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.87773088535057996947643657676843842076e-6),
2012 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.99609277781492599950063871899582711550e-7),
2013 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.00465660598924300723542908245498229301e-8),
2014 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.29174652982710100418474261697035968379e-10),
2015 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.31746082236506935340972706820707017875e-12),
2016 };
2017
2018 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2019 }
2020 else if (x >= -16) {
2021 RealType t = -x - 8;
2022
2023
2024
2025
2026 BOOST_MATH_STATIC const RealType P[15] = {
2027 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.18246847255744057280356900905660312795e0),
2028 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.77955886026107125189834586992142580148e0),
2029 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.24948425302263641813107623611637262126e0),
2030 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.42593662659560333324287312162818766556e-1),
2031 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.62714138002904073145045478360748042164e-1),
2032 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.56008984285541289474850396553042124777e-2),
2033 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.84858048549330525583286373950733005244e-3),
2034 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.30578460156038467943968005946143934751e-4),
2035 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.93974868941529258700281962314167648967e-5),
2036 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.95086664204515648622431580749060079100e-6),
2037 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.57811968176644056830002158465591081929e-7),
2038 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.27814751838906948007289825582251221538e-9),
2039 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.06762893426725920159998333647896590440e-10),
2040 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.15388861641344998301210173677051088515e-12),
2041 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.83956842740198388242245209024484381888e-29),
2042 };
2043 BOOST_MATH_STATIC const RealType Q[14] = {
2044 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2045 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.50056124032615852703112365430040751173e0),
2046 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.05112559537845833793684655693572118348e0),
2047 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.55609497026127521043140534271852131858e-1),
2048 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.36430652394614121156238070755223942728e-1),
2049 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.98167215021940993097697777547641188697e-2),
2050 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.89418831310297071347013983522734394061e-3),
2051 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.10980717618462843498917526227524790487e-4),
2052 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.80119618735773019675212434416594954984e-5),
2053 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.13748676086657187580746476165248613583e-6),
2054 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.15424395860921826755718081823964568760e-7),
2055 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.75228896859720124469916340725146705309e-9),
2056 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.72759238269315282789451836388878919387e-10),
2057 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.79966603543593799412565926418879689461e-12),
2058 };
2059
2060 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2061 }
2062 else if (x >= -32) {
2063 RealType t = -x - 16;
2064
2065
2066
2067
2068 BOOST_MATH_STATIC const RealType P[12] = {
2069 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19497306481411168355692832231058399132e0),
2070 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.15593166681833539521403250736661720488e-1),
2071 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.54020260738207743315755235213180652303e-1),
2072 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.76467972857585566189917087631621063058e-2),
2073 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.97922795572348613358915532172847895070e-3),
2074 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.26998967192207380100354278434037095729e-4),
2075 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.32827180395699855050424881575240362199e-5),
2076 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.50587178182571637802022891868380669565e-6),
2077 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.78252548290929962236994183546354358888e-8),
2078 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.01519297007773622283120166415145520855e-9),
2079 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.29602226691665918537895803270497291716e-11),
2080 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.53666531487585211574942518181922132884e-14),
2081 };
2082 BOOST_MATH_STATIC const RealType Q[12] = {
2083 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2084 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.82230649578130958108098853863277631065e-1),
2085 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.12412482738973738235656376802445565005e-1),
2086 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.98320116955422615960870363549721494683e-2),
2087 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.99756654189000467678223166815845628725e-3),
2088 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.40414942475279981724792023159180203408e-4),
2089 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.78118445466942812088955228016254912391e-5),
2090 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.25827002637577602812624580692342616301e-6),
2091 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.99604467789028963216078448884632489822e-8),
2092 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.48237134334492289420105516726562561260e-10),
2093 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.08288201960155447241423587030002372229e-11),
2094 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.29720612489952110448407063201146274502e-14),
2095 };
2096
2097 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2098 }
2099 else if (x >= -64) {
2100 RealType t = -x - 32;
2101
2102
2103
2104
2105 BOOST_MATH_STATIC const RealType P[10] = {
2106 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19659414007358083585943280640656311534e0),
2107 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.36969140730640253987817932335415532846e-1),
2108 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.21946928005759888612066397569236165853e-2),
2109 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.08341720579009422518863704766395201498e-3),
2110 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.44908614491286780138818989614277172709e-4),
2111 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.54172482866925057749338312942859761961e-6),
2112 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.49281630950104861570255344237175124548e-8),
2113 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.27586759709416364899010676712546639820e-9),
2114 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.00054716479138657682306851175059678989e-11),
2115 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.48798342894235412426464893852098239746e-14),
2116 };
2117 BOOST_MATH_STATIC const RealType Q[10] = {
2118 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2119 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.81588658109851219975949691772676519853e-1),
2120 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.52583331848892383968186924120872369151e-2),
2121 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.57644670426430994363913234422346706991e-3),
2122 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21080164634428298820141591419770346977e-4),
2123 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.79484074949580980980061103238709314326e-6),
2124 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.93167250146504946763386377338487557826e-8),
2125 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06604193118724797924138056151582242604e-9),
2126 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.35999937789324222934257460080153249173e-12),
2127 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.91435929481043135336094426837156247599e-14),
2128 };
2129
2130 result = s * tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2131 }
2132 else {
2133 result = 0;
2134 }
2135 }
2136
2137 return result;
2138 }
2139
2140 template <class RealType>
2141 BOOST_MATH_GPU_ENABLED inline RealType mapairy_cdf_imp_prec(const RealType& x, bool complement, const boost::math::integral_constant<int, 53>& tag) {
2142 if (x >= 0) {
2143 return complement ? mapairy_cdf_plus_imp_prec(x, tag) : 1 - mapairy_cdf_plus_imp_prec(x, tag);
2144 }
2145 else if (x <= 0) {
2146 return complement ? 1 - mapairy_cdf_minus_imp_prec(x, tag) : mapairy_cdf_minus_imp_prec(x, tag);
2147 }
2148 else {
2149 return boost::math::numeric_limits<RealType>::quiet_NaN();
2150 }
2151 }
2152
2153 template <class RealType>
2154 BOOST_MATH_GPU_ENABLED inline RealType mapairy_cdf_imp_prec(const RealType& x, bool complement, const boost::math::integral_constant<int, 113>& tag) {
2155 if (x >= 0) {
2156 return complement ? mapairy_cdf_plus_imp_prec(x, tag) : 1 - mapairy_cdf_plus_imp_prec(x, tag);
2157 }
2158 else if (x <= 0) {
2159 return complement ? 1 - mapairy_cdf_minus_imp_prec(x, tag) : mapairy_cdf_minus_imp_prec(x, tag);
2160 }
2161 else {
2162 return boost::math::numeric_limits<RealType>::quiet_NaN();
2163 }
2164 }
2165
2166 template <class RealType, class Policy>
2167 BOOST_MATH_GPU_ENABLED inline RealType mapairy_cdf_imp(const mapairy_distribution<RealType, Policy>& dist, const RealType& x, bool complement) {
2168
2169
2170
2171
2172 BOOST_MATH_STD_USING
2173 constexpr auto function = "boost::math::cdf(mapairy<%1%>&, %1%)";
2174 RealType result = 0;
2175 RealType location = dist.location();
2176 RealType scale = dist.scale();
2177
2178 if (false == detail::check_location(function, location, &result, Policy()))
2179 {
2180 return result;
2181 }
2182 if (false == detail::check_scale(function, scale, &result, Policy()))
2183 {
2184 return result;
2185 }
2186 if (false == detail::check_x(function, x, &result, Policy()))
2187 {
2188 return result;
2189 }
2190
2191 typedef typename tools::promote_args<RealType>::type result_type;
2192 typedef typename policies::precision<result_type, Policy>::type precision_type;
2193 typedef boost::math::integral_constant<int,
2194 precision_type::value <= 0 ? 0 :
2195 precision_type::value <= 53 ? 53 :
2196 precision_type::value <= 113 ? 113 : 0
2197 > tag_type;
2198
2199 static_assert(tag_type::value, "The Map-Airy distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
2200
2201 RealType u = (x - location) / scale;
2202
2203 result = mapairy_cdf_imp_prec(u, complement, tag_type());
2204
2205 return result;
2206 }
2207
2208 template <class RealType>
2209 BOOST_MATH_GPU_ENABLED inline RealType mapairy_quantile_lower_imp_prec(const RealType& p, const boost::math::integral_constant<int, 53>&)
2210 {
2211 BOOST_MATH_STD_USING
2212 RealType result;
2213
2214 if (p >= 0.375) {
2215 RealType t = p - static_cast <RealType>(0.375);
2216
2217
2218
2219 BOOST_MATH_STATIC const RealType P[7] = {
2220 static_cast<RealType>(-1.17326074020471664075e0),
2221 static_cast<RealType>(1.51461298154568349598e0),
2222 static_cast<RealType>(1.19979368094343490487e1),
2223 static_cast<RealType>(-5.94882121521324108164e0),
2224 static_cast<RealType>(-2.20619749774447254528e1),
2225 static_cast<RealType>(7.17766543775229176131e0),
2226 static_cast<RealType>(4.79284243496552841508e0),
2227 };
2228 BOOST_MATH_STATIC const RealType Q[7] = {
2229 static_cast<RealType>(1.),
2230 static_cast<RealType>(1.76268072706610602584e0),
2231 static_cast<RealType>(-4.88492535243404839734e0),
2232 static_cast<RealType>(-5.67524172432687656881e0),
2233 static_cast<RealType>(6.83327389947131710596e0),
2234 static_cast<RealType>(2.91338085774159042709e0),
2235 static_cast<RealType>(-1.41108918944159283950e0),
2236 };
2237
2238 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2239 }
2240 else if (p >= 0.25) {
2241 RealType t = p - static_cast <RealType>(0.25);
2242
2243
2244
2245 BOOST_MATH_STATIC const RealType P[7] = {
2246 static_cast<RealType>(-1.63281240925531302762e0),
2247 static_cast<RealType>(-4.92351310795930780147e0),
2248 static_cast<RealType>(1.43448529253101759409e1),
2249 static_cast<RealType>(3.33182629948094299473e1),
2250 static_cast<RealType>(-3.06679026539368582747e1),
2251 static_cast<RealType>(-2.87298447423841965301e1),
2252 static_cast<RealType>(1.31575930750093554120e1),
2253 };
2254 BOOST_MATH_STATIC const RealType Q[6] = {
2255 static_cast<RealType>(1.),
2256 static_cast<RealType>(5.38761652244702318296e0),
2257 static_cast<RealType>(2.40932080746189543284e0),
2258 static_cast<RealType>(-1.69465870062123632126e1),
2259 static_cast<RealType>(-6.39998944283654848809e0),
2260 static_cast<RealType>(1.27168434054332272391e1),
2261 };
2262
2263 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2264 }
2265 else if (p >= 0.125) {
2266 RealType t = p - static_cast <RealType>(0.125);
2267
2268
2269
2270 BOOST_MATH_STATIC const RealType P[8] = {
2271 static_cast<RealType>(-2.18765177572396469657e0),
2272 static_cast<RealType>(-3.65752788934974426531e1),
2273 static_cast<RealType>(-1.81144810822028903904e2),
2274 static_cast<RealType>(-1.22434531262312950288e2),
2275 static_cast<RealType>(8.99451018491165823831e2),
2276 static_cast<RealType>(9.11333307522308410858e2),
2277 static_cast<RealType>(-8.76285742384616909177e2),
2278 static_cast<RealType>(-2.33786726970025938837e2),
2279 };
2280 BOOST_MATH_STATIC const RealType Q[8] = {
2281 static_cast<RealType>(1.),
2282 static_cast<RealType>(1.91797638291395345792e1),
2283 static_cast<RealType>(1.24293724082506952768e2),
2284 static_cast<RealType>(2.82393116012902543276e2),
2285 static_cast<RealType>(-1.80472369158936285558e1),
2286 static_cast<RealType>(-5.31764390192922827093e2),
2287 static_cast<RealType>(-5.60586018315854885788e1),
2288 static_cast<RealType>(1.21284324755968033098e2),
2289 };
2290
2291 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2292 }
2293 else if (ilogb(p) >= -4) {
2294 RealType t = -log2(ldexp(p, 3));
2295
2296
2297
2298 BOOST_MATH_STATIC const RealType P[6] = {
2299 static_cast<RealType>(-2.18765177572396470773e0),
2300 static_cast<RealType>(-2.19887766409334094428e0),
2301 static_cast<RealType>(-7.77080107207360785208e-1),
2302 static_cast<RealType>(-1.15551765136654549650e-1),
2303 static_cast<RealType>(-6.64711321022529990367e-3),
2304 static_cast<RealType>(-9.74212491048543799073e-5),
2305 };
2306 BOOST_MATH_STATIC const RealType Q[6] = {
2307 static_cast<RealType>(1.),
2308 static_cast<RealType>(7.91919722132624625590e-1),
2309 static_cast<RealType>(2.17415447268626558639e-1),
2310 static_cast<RealType>(2.41474762519410575392e-2),
2311 static_cast<RealType>(9.41084107182696904714e-4),
2312 static_cast<RealType>(6.65754108797614202364e-6),
2313 };
2314
2315 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2316 }
2317 else if (ilogb(p) >= -8) {
2318 RealType t = -log2(ldexp(p, 4));
2319
2320
2321
2322 BOOST_MATH_STATIC const RealType P[8] = {
2323 static_cast<RealType>(-2.59822399410385085335e0),
2324 static_cast<RealType>(-2.24306757759003016244e0),
2325 static_cast<RealType>(-7.36208578161752060979e-1),
2326 static_cast<RealType>(-1.15130762650287391576e-1),
2327 static_cast<RealType>(-8.77652386123688618995e-3),
2328 static_cast<RealType>(-2.96358888256575251437e-4),
2329 static_cast<RealType>(-3.33661282483762192446e-6),
2330 static_cast<RealType>(-4.19292241201527861927e-9),
2331 };
2332 BOOST_MATH_STATIC const RealType Q[7] = {
2333 static_cast<RealType>(1.),
2334 static_cast<RealType>(7.23065798041556418844e-1),
2335 static_cast<RealType>(1.96731305131315877264e-1),
2336 static_cast<RealType>(2.49952034298034383781e-2),
2337 static_cast<RealType>(1.49149568322111062242e-3),
2338 static_cast<RealType>(3.66010398525593921460e-5),
2339 static_cast<RealType>(2.46857713549279930857e-7),
2340 };
2341
2342 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2343 }
2344 else if (ilogb(p) >= -16) {
2345 RealType t = -log2(ldexp(p, 8));
2346
2347
2348
2349 BOOST_MATH_STATIC const RealType P[8] = {
2350 static_cast<RealType>(-3.67354365380697580447e0),
2351 static_cast<RealType>(-1.52181685844845957618e0),
2352 static_cast<RealType>(-2.40883948836320845233e-1),
2353 static_cast<RealType>(-1.82424079258401987512e-2),
2354 static_cast<RealType>(-6.75844978572417703979e-4),
2355 static_cast<RealType>(-1.11273358356809152121e-5),
2356 static_cast<RealType>(-6.12797605223700996671e-8),
2357 static_cast<RealType>(-3.78061321691170114390e-11),
2358 };
2359 BOOST_MATH_STATIC const RealType Q[7] = {
2360 static_cast<RealType>(1.),
2361 static_cast<RealType>(3.57770840766081587688e-1),
2362 static_cast<RealType>(4.81290550545412209056e-2),
2363 static_cast<RealType>(3.02079969075162071807e-3),
2364 static_cast<RealType>(8.89589626547135423615e-5),
2365 static_cast<RealType>(1.07618717290978464257e-6),
2366 static_cast<RealType>(3.57383804712249921193e-9),
2367 };
2368
2369 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2370 }
2371 else if (ilogb(p) >= -32) {
2372 RealType t = -log2(ldexp(p, 16));
2373
2374
2375
2376 BOOST_MATH_STATIC const RealType P[8] = {
2377 static_cast<RealType>(-4.92187819510636697128e0),
2378 static_cast<RealType>(-9.94924018698264727979e-1),
2379 static_cast<RealType>(-7.69914962772717316098e-2),
2380 static_cast<RealType>(-2.85558010159310978248e-3),
2381 static_cast<RealType>(-5.19022578720207406789e-5),
2382 static_cast<RealType>(-4.19975546950263453259e-7),
2383 static_cast<RealType>(-1.13886013623971006760e-9),
2384 static_cast<RealType>(-3.46758191090170732580e-13),
2385 };
2386 BOOST_MATH_STATIC const RealType Q[7] = {
2387 static_cast<RealType>(1.),
2388 static_cast<RealType>(1.77270673840643360017e-1),
2389 static_cast<RealType>(1.18099604045834575786e-2),
2390 static_cast<RealType>(3.66889581757166584963e-4),
2391 static_cast<RealType>(5.34484782554469770841e-6),
2392 static_cast<RealType>(3.19694601727035291809e-8),
2393 static_cast<RealType>(5.24649233511937214948e-11),
2394 };
2395
2396 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2397 }
2398 else if (ilogb(p) >= -64) {
2399 RealType t = -log2(ldexp(p, 32));
2400
2401
2402
2403 BOOST_MATH_STATIC const RealType P[8] = {
2404 static_cast<RealType>(-6.41443550638291133784e0),
2405 static_cast<RealType>(-6.38369359780748328332e-1),
2406 static_cast<RealType>(-2.43420704406734621618e-2),
2407 static_cast<RealType>(-4.45274771094277987075e-4),
2408 static_cast<RealType>(-3.99529078051262843241e-6),
2409 static_cast<RealType>(-1.59758677464731620413e-8),
2410 static_cast<RealType>(-2.14338367751477432622e-11),
2411 static_cast<RealType>(-3.23343844538964435927e-15),
2412 };
2413 BOOST_MATH_STATIC const RealType Q[7] = {
2414 static_cast<RealType>(1.),
2415 static_cast<RealType>(8.79845511272943785289e-2),
2416 static_cast<RealType>(2.90839059356197474893e-3),
2417 static_cast<RealType>(4.48172838083912540123e-5),
2418 static_cast<RealType>(3.23770691025690100895e-7),
2419 static_cast<RealType>(9.60156044379859908674e-10),
2420 static_cast<RealType>(7.81134095049301988435e-13),
2421 };
2422
2423 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2424 }
2425 else if (ilogb(p) >= -128) {
2426 RealType t = -log2(ldexp(p, 64));
2427
2428
2429
2430 BOOST_MATH_STATIC const RealType P[8] = {
2431 static_cast<RealType>(-8.23500806363233610938e0),
2432 static_cast<RealType>(-4.05652655284908839003e-1),
2433 static_cast<RealType>(-7.65978833819859622912e-3),
2434 static_cast<RealType>(-6.94194676058731901672e-5),
2435 static_cast<RealType>(-3.08771646223818451436e-7),
2436 static_cast<RealType>(-6.12443207313641110962e-10),
2437 static_cast<RealType>(-4.07882839359528825925e-13),
2438 static_cast<RealType>(-3.05720104049292610799e-17),
2439 };
2440 BOOST_MATH_STATIC const RealType Q[7] = {
2441 static_cast<RealType>(1.),
2442 static_cast<RealType>(4.37395212065018405474e-2),
2443 static_cast<RealType>(7.18654254114820140590e-4),
2444 static_cast<RealType>(5.50371158026951899491e-6),
2445 static_cast<RealType>(1.97583864365011234715e-8),
2446 static_cast<RealType>(2.91169706068202431036e-11),
2447 static_cast<RealType>(1.17716830382540977039e-14),
2448 };
2449
2450 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2451 }
2452 else if (ilogb(p) >= -256) {
2453 RealType t = -log2(ldexp(p, 128));
2454
2455
2456
2457 BOOST_MATH_STATIC const RealType P[8] = {
2458 static_cast<RealType>(-1.04845570631944023913e1),
2459 static_cast<RealType>(-2.56502856165700644836e-1),
2460 static_cast<RealType>(-2.40615394566347412600e-3),
2461 static_cast<RealType>(-1.08364601171893250764e-5),
2462 static_cast<RealType>(-2.39603255140022514289e-8),
2463 static_cast<RealType>(-2.36344017673944676435e-11),
2464 static_cast<RealType>(-7.83146284114485675414e-15),
2465 static_cast<RealType>(-2.92218240202835807955e-19),
2466 };
2467 BOOST_MATH_STATIC const RealType Q[7] = {
2468 static_cast<RealType>(1.),
2469 static_cast<RealType>(2.17740414929742679904e-2),
2470 static_cast<RealType>(1.78084231709097280884e-4),
2471 static_cast<RealType>(6.78870668961146609668e-7),
2472 static_cast<RealType>(1.21313439060489363960e-9),
2473 static_cast<RealType>(8.89917934953781122884e-13),
2474 static_cast<RealType>(1.79115540847944524599e-16),
2475 };
2476
2477 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2478 }
2479 else if (ilogb(p) >= -512) {
2480 RealType t = -log2(ldexp(p, 256));
2481
2482
2483
2484 BOOST_MATH_STATIC const RealType P[8] = {
2485 static_cast<RealType>(-1.32865827226175698181e1),
2486 static_cast<RealType>(-1.61802434199627472010e-1),
2487 static_cast<RealType>(-7.55642602577784211259e-4),
2488 static_cast<RealType>(-1.69457608092375302291e-6),
2489 static_cast<RealType>(-1.86612389867293722402e-9),
2490 static_cast<RealType>(-9.17015770142364635163e-13),
2491 static_cast<RealType>(-1.51422473889348610974e-16),
2492 static_cast<RealType>(-2.81661279271583206526e-21),
2493 };
2494 BOOST_MATH_STATIC const RealType Q[7] = {
2495 static_cast<RealType>(1.),
2496 static_cast<RealType>(1.08518414679241420227e-2),
2497 static_cast<RealType>(4.42335224797004486239e-5),
2498 static_cast<RealType>(8.40387821972524402121e-8),
2499 static_cast<RealType>(7.48486746424527560620e-11),
2500 static_cast<RealType>(2.73676810622938942041e-14),
2501 static_cast<RealType>(2.74588200481263214866e-18),
2502 };
2503
2504 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2505 }
2506 else if (ilogb(p) >= -1024) {
2507 RealType t = -log2(ldexp(p, 512));
2508
2509
2510
2511 BOOST_MATH_STATIC const RealType P[8] = {
2512 static_cast<RealType>(-1.67937186583822375593e1),
2513 static_cast<RealType>(-1.01958138247797604098e-1),
2514 static_cast<RealType>(-2.37409774265951876695e-4),
2515 static_cast<RealType>(-2.65483321307104128810e-7),
2516 static_cast<RealType>(-1.45803536947907216594e-10),
2517 static_cast<RealType>(-3.57375116523338994342e-14),
2518 static_cast<RealType>(-2.94401318006358820268e-18),
2519 static_cast<RealType>(-2.73260616170245224789e-23),
2520 };
2521 BOOST_MATH_STATIC const RealType Q[7] = {
2522 static_cast<RealType>(1.),
2523 static_cast<RealType>(5.41357843707822974161e-3),
2524 static_cast<RealType>(1.10082540037527566536e-5),
2525 static_cast<RealType>(1.04338126042963003178e-8),
2526 static_cast<RealType>(4.63619608458569600346e-12),
2527 static_cast<RealType>(8.45781310395535984099e-16),
2528 static_cast<RealType>(4.23432554226506409568e-20),
2529 };
2530
2531 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2532 }
2533 else {
2534 result = -boost::math::numeric_limits<RealType>::infinity();
2535 }
2536
2537 return result;
2538 }
2539
2540
2541 template <class RealType>
2542 BOOST_MATH_GPU_ENABLED inline RealType mapairy_quantile_lower_imp_prec(const RealType& p, const boost::math::integral_constant<int, 113>&)
2543 {
2544 BOOST_MATH_STD_USING
2545 RealType result;
2546
2547 if (p >= 0.4375) {
2548 RealType t = p - static_cast <RealType>(0.4375);
2549
2550
2551
2552
2553 BOOST_MATH_STATIC const RealType P[10] = {
2554 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.48344198262277235851026749871350753173e-1),
2555 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.18249834490570496537675012473572546187e0),
2556 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20191368895639224466285643454767208281e1),
2557 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.88388953372157636908236843798588258539e1),
2558 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.59477796311326067051769635858472572709e1),
2559 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.88799146700484120781026039104654730797e1),
2560 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.15708831983930955608517858269193800412e1),
2561 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.01389336086567891484877690859385409842e2),
2562 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.16683694881010716925933071465043323946e1),
2563 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.04356966421177683585461937085598186805e1),
2564 };
2565 BOOST_MATH_STATIC const RealType Q[11] = {
2566 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2567 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.75444066345435020043849341970820565274e-1),
2568 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.95105673975812427406540024601734210826e0),
2569 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.20381124524894051002242766595737443257e0),
2570 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.48370658634610329590305283520183480026e1),
2571 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.52213602242009530270284305006282822794e-1),
2572 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.91028722773916006242187843372209197705e1),
2573 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.76130245344411748356977700519731978720e0),
2574 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.30834721900169773543149860814908904224e1),
2575 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.37863084758381651884340710544840951679e0),
2576 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.46880981703613838666108664771931239970e0),
2577 };
2578
2579 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2580 }
2581 else if (p >= 0.375) {
2582 RealType t = p - static_cast <RealType>(0.375);
2583
2584
2585
2586
2587 BOOST_MATH_STATIC const RealType P[11] = {
2588 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.17326074020471664204142312429732771661e0),
2589 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.23412560010002723970559712941124583385e0),
2590 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.83665111310407767293290698145068379130e1),
2591 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.38459476870110655357485107373883403534e1),
2592 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.28751995328228442619291346921055105808e1),
2593 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.31663592034507247231393516167247241037e1),
2594 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.13629333446941271397790762651183997586e2),
2595 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.80674058829101054663235662701823250421e1),
2596 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.53226182094253065852552393446365315319e1),
2597 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.14713948941614711932063053969010219677e1),
2598 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.62979741122708118776725634304028246971e0),
2599 };
2600 BOOST_MATH_STATIC const RealType Q[10] = {
2601 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2602 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.10550060286464202595779024353437346419e0),
2603 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.15893254630199957990897452211066782021e0),
2604 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.58964066823516762861256609311733069353e1),
2605 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.73352515261971291505497909338586980605e0),
2606 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.64737859211974163695241658186141083513e1),
2607 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.79137714768236053008878088337762178011e0),
2608 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.71851514659301019977259792564627124877e1),
2609 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.37210093190088984630526671624779422232e0),
2610 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06793750951779308425209267821815264457e1),
2611 };
2612
2613 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2614 }
2615 else if (p >= 0.25) {
2616 RealType t = p - static_cast <RealType>(0.25);
2617
2618
2619
2620
2621 BOOST_MATH_STATIC const RealType P[13] = {
2622 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.63281240925531315038207673147576291783e0),
2623 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.72733898245766165408685147762489513406e1),
2624 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.48666841594842113608962500631836790675e1),
2625 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.38711336213357101067420572773139678571e1),
2626 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.19536066931882831915715343914510496760e2),
2627 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.70911330354860558400876197129777829223e2),
2628 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.46138758869321272507090399082047865434e3),
2629 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.42653825421465476333482312795245170700e2),
2630 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.68040069633027903153088221686431049116e3),
2631 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.63017854949929226947577854802720988740e2),
2632 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.57362168966659376351959631576588023516e2),
2633 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.48386631313725080746815524770260451090e2),
2634 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.03293129698111279047104766073456412318e1),
2635 };
2636 BOOST_MATH_STATIC const RealType Q[13] = {
2637 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2638 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.29511778027351594854005887702013466376e1),
2639 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.66155745848864270109281703659789474448e1),
2640 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.25628362783798417463294553777015370203e1),
2641 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.93162726153946899828589402901015679821e2),
2642 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.51582398149308841534372162372276623400e2),
2643 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.55512400116480727630652657714109740448e2),
2644 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.11949742749256615588470329024257669470e2),
2645 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.28090154738508864776480712360731968283e0),
2646 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.44307717248171941824014971579691790721e2),
2647 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.33595130666758203099507440236958725924e-1),
2648 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.76156378002782668186592725145930755636e1),
2649 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.70446647862725980215630194019740606935e0),
2650 };
2651
2652 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2653 }
2654 else if (p >= 0.125) {
2655 RealType t = p - static_cast <RealType>(0.125);
2656
2657
2658
2659
2660 BOOST_MATH_STATIC const RealType P[15] = {
2661 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.18765177572396470161180571018467019660e0),
2662 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.16991481696416567893311341049825218287e1),
2663 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.25497491118598918048058751362064598010e3),
2664 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.00259915194411316966036757165146681474e4),
2665 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.20350803730836873687692010728689867756e4),
2666 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.75441278117456011071671644613599089820e4),
2667 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.18844967505497310645091822621081741562e5),
2668 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.84771867850847121528386231811667556346e5),
2669 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.78112436422992766542256241612018834150e5),
2670 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.82617957794395420193751983521804760378e5),
2671 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.77260227244465268981198741998181334875e5),
2672 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.61918290776044518321561351472048170874e5),
2673 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.10309368217936941851272359946015001037e5),
2674 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.68917274690585744147547352309416731690e5),
2675 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.96914697182030973966321601422851730384e4),
2676 };
2677 BOOST_MATH_STATIC const RealType Q[15] = {
2678 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2679 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.98063872144867195074924232601423646991e1),
2680 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.65911346382127464683324945513128779971e2),
2681 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.02451223307009464199634546540152067898e3),
2682 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.12662676019712475980273334769644047369e4),
2683 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.77637305574675655673572303462430608857e4),
2684 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.65900204382557635710258095712789133767e4),
2685 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.61649498173261886264315880770449636676e5),
2686 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.29867325788870863753779283018061152414e5),
2687 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.31375646045453788071216808289409712455e4),
2688 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.91053361331987954531162452163243245571e5),
2689 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30917504462260061766689326034981496723e5),
2690 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.95779171217851232246427282884386844906e5),
2691 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.07234815204245866330282860014624832711e4),
2692 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21353269292094971546479026200435095695e4),
2693 };
2694
2695 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2696 }
2697 else if (ilogb(p) >= -4) {
2698 RealType t = -log2(ldexp(p, 3));
2699
2700
2701
2702
2703 BOOST_MATH_STATIC const RealType P[11] = {
2704 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.18765177572396470161180571018467025793e0),
2705 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.94718878144788678915739777385667044494e0),
2706 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.01760622104142726407095836139719210570e0),
2707 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.27585388152893587017559610649258643106e0),
2708 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.26494992809545184138230791849722703452e-1),
2709 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.19962820888633928632710264415572027960e-2),
2710 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.10249328404135065767844288193594496173e-3),
2711 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.94733898567966142295343935527193851633e-4),
2712 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.10350856810280579594619259121755788797e-6),
2713 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.23852908701349250480831167491889740823e-7),
2714 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.61008160195204632725691076288641221707e-10),
2715 };
2716 BOOST_MATH_STATIC const RealType Q[11] = {
2717 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2718 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.59109221235949005113322202980300291082e0),
2719 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07119192591092503378838510797916225920e0),
2720 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.97313678065269932508447079892684333156e-1),
2721 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.85743007214453288049750256975889151838e-2),
2722 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21504290861269099964963866156493713716e-2),
2723 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.00880286431998922077891394903879512720e-3),
2724 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.78806057460269900288838437267359072282e-5),
2725 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15390284861815831078443996558014864171e-6),
2726 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.09877166004503937701692216421704042881e-8),
2727 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.01544823753120969225271131241177003165e-11),
2728 };
2729
2730 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2731 }
2732 else if (ilogb(p) >= -8) {
2733 RealType t = -log2(ldexp(p, 4));
2734
2735
2736
2737
2738 BOOST_MATH_STATIC const RealType P[15] = {
2739 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.59822399410385083283727681965013517187e0),
2740 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.30676107401101401386206170152508285083e0),
2741 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.14999782004905950712290914501961213222e0),
2742 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.33941786334132569296061539102765384372e0),
2743 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.67220197146826865151515598496049341734e-1),
2744 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.80553562310354708419148501358813792297e-2),
2745 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.69365728863553037992854715314245847166e-3),
2746 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.66571611322125393586164383361858996769e-4),
2747 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.60112572827002965346926427208336150737e-5),
2748 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.82368436189138780270310776927920829805e-6),
2749 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.53112953085778860983110669544602606343e-8),
2750 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.47363651755817041383574210879856850108e-10),
2751 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.56959356177318833325064543662295824581e-12),
2752 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.16259632533790175212174199386945953139e-14),
2753 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.51102540845397821195190063256442894688e-18),
2754 };
2755 BOOST_MATH_STATIC const RealType Q[14] = {
2756 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2757 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.51733661576324699382035973518172469602e0),
2758 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.01435607980568082538278883569729476204e0),
2759 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.93274478117803447229185270863587786287e-1),
2760 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.79695020433868416640781960667235896490e-2),
2761 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.64179255575983014759473815411232853821e-2),
2762 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.88411076775875459504324039642698874213e-3),
2763 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.47924359965537384942568979646011627522e-4),
2764 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.80915944234873904741224397674033111178e-6),
2765 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.67530059257263142305079790717032648103e-7),
2766 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.59778634436027309520742387952911132163e-9),
2767 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.45772841855129835242992919296397034883e-11),
2768 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.40356170422999016176996652783329671363e-13),
2769 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.31127037096552892520323998665757802862e-16),
2770 };
2771
2772 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2773 }
2774 else if (ilogb(p) >= -16) {
2775 RealType t = -log2(ldexp(p, 8));
2776
2777
2778
2779
2780 BOOST_MATH_STATIC const RealType P[15] = {
2781 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.67354365380697578246790709817724831418e0),
2782 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.98681625368564496421038758088088788795e0),
2783 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.07310677200866436332040539417232353673e0),
2784 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.24429836496456823308103613923194387860e-1),
2785 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.02985399190977938381625172095575017346e-2),
2786 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.76782196972948240235456454778537838123e-3),
2787 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.74449002785643398012450514191731166637e-4),
2788 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.59599894044461264694825875303563328822e-6),
2789 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.25326249969126313897827328136779597159e-7),
2790 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.41714701672521323699602179629851858792e-9),
2791 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.43197925999694667433180053594831915164e-11),
2792 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.84385683045691486021670951412023644809e-13),
2793 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.34484740544060627138216383389282372695e-15),
2794 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.69717198111130468014375331439613690658e-18),
2795 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.54464319402577486444841981479085908190e-22),
2796 };
2797 BOOST_MATH_STATIC const RealType Q[14] = {
2798 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2799 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.56568169258142086426383908572004868200e-1),
2800 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.52144703581828715720555168887427064424e-1),
2801 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.87268567039210776554113754014224005739e-2),
2802 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.04907480436107533324385788289629535047e-3),
2803 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.05063218951887755000006493061952858632e-4),
2804 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.88707869862323507236241669797692957827e-5),
2805 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.12876335369047582931728838551780783006e-6),
2806 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.96657547014655679104867167083078285517e-8),
2807 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.05799908632250375607393338998205481867e-10),
2808 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.26543514080500125624753383852230043206e-12),
2809 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.02102501711063497529014782040893679505e-14),
2810 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.91577723105757841509716090936343311518e-17),
2811 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.13824283239122976911704652025193325941e-20),
2812 };
2813
2814 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2815 }
2816 else if (ilogb(p) >= -32) {
2817 RealType t = -log2(ldexp(p, 16));
2818
2819
2820
2821
2822 BOOST_MATH_STATIC const RealType P[15] = {
2823 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.92187819510636694694450607724165689649e0),
2824 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.97763858433958798529675258052376253402e0),
2825 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.51315096979196319830162238831654165509e-1),
2826 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.63462872759639470195664268077372442947e-2),
2827 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.42843455093529447002457295994721102683e-3),
2828 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.09839699044798405685726233251577671229e-4),
2829 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.42918585783783247934440868680748693033e-6),
2830 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.39927851612709063686969934343256912856e-8),
2831 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.08811978806833318962489621493456773153e-9),
2832 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.05790315329766847040100971840989677130e-11),
2833 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.45479905512618918078640786598987515012e-14),
2834 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.26725031195260767541308143946590024995e-16),
2835 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.93921283405116349017396651678347306610e-19),
2836 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.46989755992471397407520449698676945629e-22),
2837 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.84098833615882764168840211033822541979e-26),
2838 };
2839 BOOST_MATH_STATIC const RealType Q[14] = {
2840 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2841 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.76933186134913044021577076301874622292e-1),
2842 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.25794095712489484166470336696962749356e-2),
2843 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.02367257449622569623375613790000874499e-3),
2844 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.72422948147678152291655497515112236849e-4),
2845 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.54841786738844966378222670550160421679e-5),
2846 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.40690766057741905625149753730480294357e-7),
2847 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.57722740290698689456097239435447030950e-9),
2848 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.12202417878861628530322715231540006386e-10),
2849 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.52053248659561670052645118655279630611e-13),
2850 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.93156242508301535729374373870786335203e-15),
2851 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.40767922796889118151219837068812449420e-17),
2852 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.83472702205100162081157644960354192597e-20),
2853 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.07575352729625387198150555665307193572e-24),
2854 };
2855
2856 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2857 }
2858 else if (ilogb(p) >= -64) {
2859 RealType t = -log2(ldexp(p, 32));
2860
2861
2862
2863
2864 BOOST_MATH_STATIC const RealType P[15] = {
2865 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.41443550638291131009585191506467028820e0),
2866 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.27887396494095561461365753577189254063e0),
2867 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.12752633002089885479040650194288302309e-1),
2868 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.79073355729340068320968150408320521772e-3),
2869 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.92104558368762745368896313096467732214e-4),
2870 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.31521786147036353766882145733055166296e-6),
2871 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.69209485282228501578601478546441260206e-8),
2872 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.17440286764020598209076590905417295956e-10),
2873 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.24323354132100896221825450145208350291e-12),
2874 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.53395893728239001663242998169841168859e-14),
2875 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.68737623513761169307963299679882178852e-17),
2876 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.34293243065056704017609034428511365032e-19),
2877 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.16077944943653158589001897848048630079e-22),
2878 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.62195354664281744711336666974567406606e-26),
2879 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.34400562353945663460416286570988365992e-30),
2880 };
2881 BOOST_MATH_STATIC const RealType Q[14] = {
2882 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2883 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.87838171063584994806998206766890809367e-1),
2884 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.55395225505766120991458653457272783334e-2),
2885 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.45282436421694718640472363162421055686e-4),
2886 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.29570159526914149727970023744213510609e-5),
2887 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.75502365627517415214497786524319814617e-7),
2888 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.74140267916464056408693097635546173776e-9),
2889 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.53554952415602030474322188152855226456e-11),
2890 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.25818606585833092910042975933757268581e-13),
2891 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.79945579370700383986587672831350689541e-15),
2892 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.64188969985517050219881299229805701044e-18),
2893 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.59811800080967790439078895802795103852e-21),
2894 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.28225402720788909349967839966304553864e-24),
2895 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.22313199865592821923485268860178384308e-28),
2896 };
2897
2898 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2899 }
2900 else if (ilogb(p) >= -128) {
2901 RealType t = -log2(ldexp(p, 64));
2902
2903
2904
2905
2906 BOOST_MATH_STATIC const RealType P[15] = {
2907 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.23500806363233607692361021471929016922e0),
2908 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.16747938711332885952564885548768072606e-1),
2909 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.58252672740225210061031286151136185818e-2),
2910 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.15477223656783400505701577048140375949e-4),
2911 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.51130817987857130928725357067032472382e-5),
2912 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.68955185187558206711296837951129048907e-7),
2913 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.30418343536824247801373327173028702308e-9),
2914 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.96029044368524575193330776540736319950e-12),
2915 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.53259926294848786440686413056632823519e-14),
2916 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.09476918795964320022985872737468492126e-17),
2917 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.20864569882477440934325776445799604204e-20),
2918 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.01321468510611172635388570487951907905e-23),
2919 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.45079221107904118975166347269173516170e-26),
2920 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.36559452694774774399884349254686988041e-30),
2921 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.92396730553947142987611521115040472261e-35),
2922 };
2923 BOOST_MATH_STATIC const RealType Q[14] = {
2924 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2925 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.36599681872296382199486815169747516110e-2),
2926 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.86330544720458446620644055149504593514e-3),
2927 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.23793435123936109978741252388806998743e-5),
2928 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.41867848381419339587560909646887411175e-6),
2929 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.46493580168298395584601073832432583371e-8),
2930 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.03537470107933172406224278121518518287e-10),
2931 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.00375884189083338846655326801486182158e-13),
2932 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.62515041281615938158455493618149216047e-15),
2933 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.42337949780187570810208014464208536484e-18),
2934 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.40196890950995648233637422892711654146e-21),
2935 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.11894256193449973803773962108906527772e-24),
2936 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.00900961462911160554915139090711911885e-27),
2937 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.65825716532665817972751320034032284421e-32),
2938 };
2939
2940 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2941 }
2942 else if (ilogb(p) >= -256) {
2943 RealType t = -log2(ldexp(p, 128));
2944
2945
2946
2947
2948 BOOST_MATH_STATIC const RealType P[15] = {
2949 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.04845570631944023525776899386112795330e1),
2950 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.18146685146173151383718092529868406030e-1),
2951 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.13255476532916847606354932879190731233e-2),
2952 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.44228173780288838603949849889291143631e-4),
2953 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.18663599891768480607165516401619315227e-6),
2954 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.61193813386433438633008774630150180359e-9),
2955 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.54402603714659392010463991032389692959e-11),
2956 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.76816632514967325885563032378775486543e-14),
2957 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.22774672528068516513970610441705738842e-16),
2958 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.47312348271366325243169398780745416279e-19),
2959 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.10984325972747808970318612951079014854e-22),
2960 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.81620524028936785168005732104270722618e-26),
2961 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.03443227423068771484783389914203726108e-29),
2962 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.02313300749670214384591200940841254958e-34),
2963 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.40321396496046206171642334628524367374e-39),
2964 };
2965 BOOST_MATH_STATIC const RealType Q[14] = {
2966 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2967 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.67292043485384876322219919215413286868e-2),
2968 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.61652550158809553935603664087740554258e-4),
2969 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.14722810796821047167211543031044501921e-5),
2970 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.78954660078305461714050086730116257387e-8),
2971 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.52794892087101750452585357544956835504e-10),
2972 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.59652255206657812422503741672829368618e-12),
2973 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.84914442937017449248597857220675602148e-15),
2974 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.23662183613814475007146598734598810102e-18),
2975 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.55388618781592901470236982277678753407e-21),
2976 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.20418178834057564300014964843066904024e-24),
2977 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.48606639104883413456676877330419513129e-27),
2978 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.39845313960416564778273486179935754019e-31),
2979 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.14538443937605324316706211070799970095e-35),
2980 };
2981
2982 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
2983 }
2984 else if (ilogb(p) >= -512) {
2985 RealType t = -log2(ldexp(p, 256));
2986
2987
2988
2989
2990 BOOST_MATH_STATIC const RealType P[15] = {
2991 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.32865827226175697711590794217590458484e1),
2992 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.27551166309670994513910580518431041518e-1),
2993 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.57161482253140058637495100797888501265e-3),
2994 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.26908727392152312216118985392395130974e-5),
2995 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.31391169101865809627389212651592902649e-8),
2996 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.58926174475498352884244229017384309804e-10),
2997 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.97074898765380614681225071978849430802e-13),
2998 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.59852103341093122669197704225736036199e-16),
2999 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.97287954178083606552531325613580819555e-19),
3000 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.57634773176875526612407357244997035312e-22),
3001 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.34467233210713881817055138794482883359e-25),
3002 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.91236170873875898506577053309622472122e-29),
3003 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.12220990075567880730037575497818287435e-33),
3004 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.20881889651487527801970182542596258873e-37),
3005 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.56848486878078288956741060120464349537e-43),
3006 };
3007 BOOST_MATH_STATIC const RealType Q[14] = {
3008 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3009 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.33267370502089423930888060969568705647e-2),
3010 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.39632352029900752622967578086289898150e-4),
3011 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.42703739831525305516280300008439396218e-6),
3012 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.45767617531685380458878368024246654652e-9),
3013 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.40344962756110545138002101382437142038e-11),
3014 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.47015258371290492450093115369080460499e-14),
3015 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.97280918936580227687603348219414768787e-17),
3016 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.40441024286579579491205384492088325576e-20),
3017 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.26130000914236204012152918399995098882e-23),
3018 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.03893990417552709151955156348527062863e-27),
3019 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.12687002255767114781771099969545907763e-31),
3020 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.74218645918961186861014420578277888513e-35),
3021 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.36897549168687040570349702061165281706e-39),
3022 };
3023
3024 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3025 }
3026 else if (ilogb(p) >= -1024) {
3027 RealType t = -log2(ldexp(p, 512));
3028
3029
3030
3031
3032 BOOST_MATH_STATIC const RealType P[15] = {
3033 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.67937186583822375017526293948703697225e1),
3034 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.06681764321003187068904973985967908140e-1),
3035 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.12508887240195683379004033347903251977e-3),
3036 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.56847823157999127998977939588643284176e-6),
3037 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.31281869105767454049413701029676766275e-9),
3038 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.01498951390503036399081209706853095793e-11),
3039 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.72866867304007090391517734634589972858e-15),
3040 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.44819806993104486828983054294866921869e-18),
3041 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.91441365806306460165885645136864045231e-21),
3042 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.71364347097027340365042558634044496149e-25),
3043 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.63601648491144929836375956218857970640e-28),
3044 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.76948956673676441236280803645598939735e-32),
3045 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.47367651137203634311843318915161504046e-37),
3046 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.83187517541957887917067558455828915184e-41),
3047 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.21480186561579326423946788448005430367e-47),
3048 };
3049 BOOST_MATH_STATIC const RealType Q[14] = {
3050 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3051 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16494591376838053609854716130343599036e-2),
3052 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.97651667629616309497454026431358820357e-5),
3053 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.77741398674456235952879526959641925087e-7),
3054 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.39478109667902532743651043316724748827e-10),
3055 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.35965905056304225411108295866332882930e-13),
3056 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.83206524996481183422082802793852630990e-16),
3057 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.30320324476590103123012385840054658401e-19),
3058 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.30322948189714718819437477682869360798e-23),
3059 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.43729790298535728717477691270336818161e-26),
3060 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.89788697114251966298674871919685298106e-30),
3061 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.43510901856942238937717065880365530871e-34),
3062 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.38232043389918216652459244727737381677e-38),
3063 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.64599465785019268214108345671361994702e-43),
3064 };
3065
3066 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3067 }
3068 else if (ilogb(p) >= -2048) {
3069 RealType t = -log2(ldexp(p, 1024));
3070
3071
3072
3073
3074 BOOST_MATH_STATIC const RealType P[15] = {
3075 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.11959316095291435774375635827672517008e1),
3076 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.30292575371366023255165927527306483022e-1),
3077 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.54260157439166096303943109715675142318e-4),
3078 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.61232819199170639867079290977704351939e-7),
3079 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.74481972848503486840161528924694379655e-10),
3080 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.98283577906243441829434029827766571263e-13),
3081 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.90691715740583828769850056130458574520e-16),
3082 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.31354728925505346732804698899977180508e-20),
3083 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.42545288372836698650371589645832759416e-23),
3084 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.12901629676328680681102537492164204387e-27),
3085 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.99690040253176100731314099573187027309e-31),
3086 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.07899506956133955785140496937520311210e-35),
3087 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.88607240095256436460507438213387199067e-40),
3088 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.78815984551154095621830792130401294111e-45),
3089 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.20516030880916148179297554212609531432e-51),
3090 };
3091 BOOST_MATH_STATIC const RealType Q[14] = {
3092 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3093 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.81973541224235020744673910266545976833e-3),
3094 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.49156990107280109344880219729275939242e-5),
3095 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.21606730563542176411852745162267260946e-8),
3096 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.11449329529433741944366607648360521674e-11),
3097 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.35659138507940819452801802756409587220e-14),
3098 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.95708516718550485872934856595725983907e-18),
3099 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.78871290972777009292563576533612002908e-21),
3100 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.60955318960542258732596447917271198307e-25),
3101 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.72437581728117963125690670426402194936e-29),
3102 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.77473938855958487119889840032590783232e-33),
3103 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.66198494713809467076392278745811981500e-37),
3104 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.34142897042941614778352280692901008538e-42),
3105 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.98791658647635156162347063765388728959e-47),
3106 };
3107
3108 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3109 }
3110 else if (ilogb(p) >= -4096) {
3111 RealType t = -log2(ldexp(p, 2048));
3112
3113
3114
3115
3116 BOOST_MATH_STATIC const RealType P[15] = {
3117 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.67307564006689676593687414536012112755e1),
3118 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.21005690250741024744367516466433711478e-2),
3119 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.11537345869365655126739041291119096558e-4),
3120 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.82910297156061391001507891422501792453e-8),
3121 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.51574933516708249049824513935386420692e-11),
3122 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.56433757960363802088718489136097249753e-14),
3123 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.74248235865301086829849817739500215149e-18),
3124 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.19151506367084295119369434315371762091e-22),
3125 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.98518959000360170320183116510466814569e-26),
3126 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.21330422702314763225472001861559380186e-30),
3127 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.44346922987964428874014866468161821471e-34),
3128 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.59773305152191273570416120169527607421e-39),
3129 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.81894412321532723356954669501665983316e-44),
3130 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.25766346856943928908756472385992861288e-49),
3131 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.44601448994095786447982489957909713982e-55),
3132 };
3133 BOOST_MATH_STATIC const RealType Q[14] = {
3134 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3135 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.90814053669730896497462224007523900520e-3),
3136 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.72450689508305973756255440356759005330e-6),
3137 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.76517273086984384225845151573287252506e-9),
3138 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.31844251885317815627707511621078762352e-12),
3139 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.22689324865113257769413663010725436393e-16),
3140 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.27524826460469866934006001123700331335e-20),
3141 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.39172850948322201614266822896191911031e-23),
3142 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.40343613937272428197414545004329993769e-27),
3143 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.17936773028976355507339458927541970545e-32),
3144 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.66512598049860260933817550698863263184e-36),
3145 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.06432209670481882442649684139775366719e-41),
3146 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.10247886333916820534393624270217678968e-46),
3147 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.40899321122058714028548211810431871877e-51),
3148 };
3149
3150 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3151 }
3152 else if (ilogb(p) >= -8192) {
3153 RealType t = -log2(ldexp(p, 4096));
3154
3155
3156
3157
3158 BOOST_MATH_STATIC const RealType P[15] = {
3159 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.36960987939726803544369406181770745475e1),
3160 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.17239311695985070524235502979761682692e-2),
3161 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.51192208811996535244435318068035492922e-5),
3162 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.38938553034896173195617671475670860841e-8),
3163 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.55156910900732478717648524688116855303e-12),
3164 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.14905040433940475292279950923000597280e-16),
3165 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.35237464492052939771487320880614968639e-20),
3166 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.07937000518607459141766382199896010484e-24),
3167 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.42797358100745086706362563988598447929e-28),
3168 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.27871637324128856529004325499921407260e-32),
3169 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.99553669724530906250814559570819049401e-37),
3170 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.04272644552406682186928100080598582627e-42),
3171 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.70093315570856725077212325128817808000e-47),
3172 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.51767319872105260145583037426067406953e-53),
3173 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.87159268409640967747617639113346310759e-59),
3174 };
3175 BOOST_MATH_STATIC const RealType Q[14] = {
3176 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3177 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.45350026842128595165328480395513258721e-3),
3178 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.30398532102631290226106936127181928207e-7),
3179 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.45242264812189519858570105609209495630e-10),
3180 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.22745462510042159972414219082495434039e-14),
3181 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.31834645038348794443252730265421155969e-17),
3182 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.44590392528760847619123404904356730177e-21),
3183 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.08436623062305193311891193246627599030e-25),
3184 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.46542554766048266351202730449796918707e-30),
3185 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.78672067064478133389628198943161640913e-34),
3186 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.56573050761582685018467077197376031818e-39),
3187 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.92145137276530136848088270840255715047e-44),
3188 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.96933863894082533505471662180541379922e-49),
3189 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.92661972206232945959915223259585457082e-55),
3190 };
3191
3192 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3193 }
3194 else if (ilogb(p) >= -16384) {
3195 RealType t = -log2(ldexp(p, 8192));
3196
3197
3198
3199
3200 BOOST_MATH_STATIC const RealType P[15] = {
3201 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.24662793339079714510108682543625432532e1),
3202 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.25841960642102016210295419419373971750e-2),
3203 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.10589156998251704634852108689102850747e-5),
3204 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.18697614924486382142056819421294206504e-9),
3205 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.79445222262445726654186491785652765635e-13),
3206 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.41847338407338901513049755299049551186e-17),
3207 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.44550500540299259432401029904726959214e-21),
3208 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.97463434518480676079167684683604645092e-26),
3209 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.68404349202062958045327516688040625516e-30),
3210 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.14018837476359778654965300153810397742e-35),
3211 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.67726222606571327724434861967972555751e-40),
3212 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.48082398191886705229604237754446294033e-45),
3213 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.28534456209055262678153908192583037946e-51),
3214 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.99466700145428173772768099494881455874e-57),
3215 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.43473066278196981345209422626769148425e-63),
3216 };
3217 BOOST_MATH_STATIC const RealType Q[14] = {
3218 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3219 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.26570199429958856038191879713341034013e-4),
3220 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.32484776300757286079244074394356908390e-7),
3221 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.31234182027812869096733088981702059020e-11),
3222 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.13711443044675425837293030288097468867e-15),
3223 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.11480036828082409994688474687120865023e-19),
3224 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.25592803132287127389756949487347562847e-23),
3225 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.45726006695535760451195102271978072855e-28),
3226 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.13082170504731110487003517418453709982e-32),
3227 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.48217827031663836930337143509338210426e-37),
3228 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.47389053144555736191304002865419453269e-42),
3229 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.90980968229123572201281013063229644814e-47),
3230 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.79448544326289688123648457587797649323e-53),
3231 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.56179793347045575604935927245529360950e-59),
3232 };
3233
3234 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3235 }
3236 else {
3237 result = -boost::math::numeric_limits<RealType>::infinity();
3238 }
3239
3240 return result;
3241 }
3242
3243 template <class RealType>
3244 BOOST_MATH_GPU_ENABLED inline RealType mapairy_quantile_upper_imp_prec(const RealType& p, const boost::math::integral_constant<int, 53>&)
3245 {
3246 BOOST_MATH_STD_USING
3247 RealType result;
3248
3249 if (p >= 0.25) {
3250 RealType t = p - static_cast <RealType>(0.25);
3251
3252
3253
3254 BOOST_MATH_STATIC const RealType P[8] = {
3255 static_cast<RealType>(4.81512108276093785320e-1),
3256 static_cast<RealType>(-2.74296316128959647914e0),
3257 static_cast<RealType>(-3.29973875964825685757e1),
3258 static_cast<RealType>(-4.87536980816224603581e1),
3259 static_cast<RealType>(8.22233203036734027999e1),
3260 static_cast<RealType>(1.21654607908452130093e2),
3261 static_cast<RealType>(-6.66681853240657307279e1),
3262 static_cast<RealType>(-4.28101952511581488588e1),
3263 };
3264 BOOST_MATH_STATIC const RealType Q[10] = {
3265 static_cast<RealType>(1.),
3266 static_cast<RealType>(8.20189490825315245036e0),
3267 static_cast<RealType>(1.63469912146101848441e1),
3268 static_cast<RealType>(-1.52740920318273920072e1),
3269 static_cast<RealType>(-5.41684560257839409762e1),
3270 static_cast<RealType>(6.51733677169299416471e0),
3271 static_cast<RealType>(3.93092001388102589237e1),
3272 static_cast<RealType>(-9.59983666140749481195e-1),
3273 static_cast<RealType>(-9.95648827557655863699e-1),
3274 static_cast<RealType>(-1.32007124426778083829e0),
3275 };
3276
3277 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3278 }
3279 else if (p >= 0.125) {
3280 RealType t = p - static_cast <RealType>(0.125);
3281
3282
3283
3284 BOOST_MATH_STATIC const RealType P[7] = {
3285 static_cast<RealType>(1.70276979914029733585e0),
3286 static_cast<RealType>(2.09991992116646276165e1),
3287 static_cast<RealType>(2.26775403775298867998e1),
3288 static_cast<RealType>(-4.85384304722129472833e2),
3289 static_cast<RealType>(-1.47107146466495573999e3),
3290 static_cast<RealType>(-7.08748473959943943929e1),
3291 static_cast<RealType>(1.54245210917147215257e3),
3292 };
3293 BOOST_MATH_STATIC const RealType Q[8] = {
3294 static_cast<RealType>(1.),
3295 static_cast<RealType>(2.13092357122115486375e1),
3296 static_cast<RealType>(1.57318281834689144053e2),
3297 static_cast<RealType>(4.42261730187813035957e2),
3298 static_cast<RealType>(2.10814431586717588454e2),
3299 static_cast<RealType>(-6.36700983439599552504e2),
3300 static_cast<RealType>(-2.82923881266630617596e2),
3301 static_cast<RealType>(1.36613971025062750340e2),
3302 };
3303
3304 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3305 }
3306 else if (ilogb(p) >= -4) {
3307 RealType t = -log2(ldexp(p, 3));
3308
3309
3310
3311 BOOST_MATH_STATIC const RealType P[8] = {
3312 static_cast<RealType>(4.25692449785074345588e-1),
3313 static_cast<RealType>(3.10963501706596356267e-1),
3314 static_cast<RealType>(2.91357806215297069863e-2),
3315 static_cast<RealType>(2.34716342676849303244e-2),
3316 static_cast<RealType>(5.83137296293361915583e-3),
3317 static_cast<RealType>(3.71792415497884868748e-4),
3318 static_cast<RealType>(1.59538372221030642757e-4),
3319 static_cast<RealType>(4.74040834029330213692e-6),
3320 };
3321 BOOST_MATH_STATIC const RealType Q[8] = {
3322 static_cast<RealType>(1.),
3323 static_cast<RealType>(4.14801234415100707213e-1),
3324 static_cast<RealType>(1.04693730144480856638e-1),
3325 static_cast<RealType>(3.81581484862997435076e-2),
3326 static_cast<RealType>(8.95334009127358617362e-3),
3327 static_cast<RealType>(1.43316686981760147226e-3),
3328 static_cast<RealType>(1.81367766024620080990e-4),
3329 static_cast<RealType>(1.54779999748286671973e-5),
3330 };
3331
3332 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3333 }
3334 else if (ilogb(p) >= -8) {
3335 RealType t = -log2(ldexp(p, 4));
3336
3337
3338
3339 BOOST_MATH_STATIC const RealType P[11] = {
3340 static_cast<RealType>(5.07341098045260541890e-1),
3341 static_cast<RealType>(3.11771145411143166935e-1),
3342 static_cast<RealType>(1.74515601081894060888e-1),
3343 static_cast<RealType>(8.46576990174024231338e-2),
3344 static_cast<RealType>(2.57510090204322149315e-2),
3345 static_cast<RealType>(8.26605326867021684811e-3),
3346 static_cast<RealType>(1.73081423934722046819e-3),
3347 static_cast<RealType>(3.36314161099011673569e-4),
3348 static_cast<RealType>(4.50990441180388912803e-5),
3349 static_cast<RealType>(4.53513191985642134268e-6),
3350 static_cast<RealType>(2.62304611053075404923e-7),
3351 };
3352 BOOST_MATH_STATIC const RealType Q[11] = {
3353 static_cast<RealType>(1.),
3354 static_cast<RealType>(5.28225379952156944029e-1),
3355 static_cast<RealType>(3.49662079845715371907e-1),
3356 static_cast<RealType>(1.45408903426879603625e-1),
3357 static_cast<RealType>(5.06773501409016231879e-2),
3358 static_cast<RealType>(1.45385556714043243731e-2),
3359 static_cast<RealType>(3.31235831325018043744e-3),
3360 static_cast<RealType>(6.06977554525543056050e-4),
3361 static_cast<RealType>(8.42406730405209749492e-5),
3362 static_cast<RealType>(8.32337989541696717905e-6),
3363 static_cast<RealType>(4.84923196546857128337e-7),
3364 };
3365
3366 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3367 }
3368 else if (ilogb(p) >= -16) {
3369 RealType t = -log2(ldexp(p, 8));
3370
3371
3372
3373 BOOST_MATH_STATIC const RealType P[10] = {
3374 static_cast<RealType>(5.41774626094491510395e-1),
3375 static_cast<RealType>(4.11060141334529017898e-1),
3376 static_cast<RealType>(1.48195601801946264526e-1),
3377 static_cast<RealType>(3.33881552814492855873e-2),
3378 static_cast<RealType>(5.20893974732203890418e-3),
3379 static_cast<RealType>(5.84734765774178832854e-4),
3380 static_cast<RealType>(4.71028150898133935445e-5),
3381 static_cast<RealType>(2.59185739450631464618e-6),
3382 static_cast<RealType>(7.77428184258777394627e-8),
3383 static_cast<RealType>(2.51255632629650930196e-14),
3384 };
3385 BOOST_MATH_STATIC const RealType Q[9] = {
3386 static_cast<RealType>(1.),
3387 static_cast<RealType>(7.58341767924960527280e-1),
3388 static_cast<RealType>(2.73511775500642961539e-1),
3389 static_cast<RealType>(6.16011987856129890130e-2),
3390 static_cast<RealType>(9.61296002312356116021e-3),
3391 static_cast<RealType>(1.07890675777726076554e-3),
3392 static_cast<RealType>(8.69223632953458271977e-5),
3393 static_cast<RealType>(4.78248875031756169279e-6),
3394 static_cast<RealType>(1.43460852065144859304e-7),
3395 };
3396
3397 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3398 }
3399 else if (ilogb(p) >= -32) {
3400 RealType t = -log2(ldexp(p, 16));
3401
3402
3403
3404 BOOST_MATH_STATIC const RealType P[9] = {
3405 static_cast<RealType>(5.41926067826974905066e-1),
3406 static_cast<RealType>(4.86926556246548518715e-1),
3407 static_cast<RealType>(2.11963908288176005856e-1),
3408 static_cast<RealType>(5.92200639925655576883e-2),
3409 static_cast<RealType>(1.18859816815542567438e-2),
3410 static_cast<RealType>(1.76833662992855443754e-3),
3411 static_cast<RealType>(2.21226152157950219596e-4),
3412 static_cast<RealType>(1.50444847316426133872e-5),
3413 static_cast<RealType>(1.87458213915373906356e-6),
3414 };
3415 BOOST_MATH_STATIC const RealType Q[9] = {
3416 static_cast<RealType>(1.),
3417 static_cast<RealType>(8.98511036742503939380e-1),
3418 static_cast<RealType>(3.91130673008184655152e-1),
3419 static_cast<RealType>(1.09277016228474605069e-1),
3420 static_cast<RealType>(2.19328471889880028208e-2),
3421 static_cast<RealType>(3.26305879571349016107e-3),
3422 static_cast<RealType>(4.08222014684743492069e-4),
3423 static_cast<RealType>(2.77611385768697969181e-5),
3424 static_cast<RealType>(3.45911046256304795257e-6),
3425 };
3426
3427 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3428 }
3429 else {
3430 RealType p_square = p * p;
3431
3432 if ((boost::math::isnormal)(p_square)) {
3433 result = 1 / cbrt(p_square * constants::two_pi<RealType>());
3434 }
3435 else if (p > 0) {
3436 result = 1 / (cbrt(p) * cbrt(p) * cbrt(constants::two_pi<RealType>()));
3437 }
3438 else {
3439 result = boost::math::numeric_limits<RealType>::infinity();
3440 }
3441 }
3442
3443 return result;
3444 }
3445
3446
3447 template <class RealType>
3448 BOOST_MATH_GPU_ENABLED inline RealType mapairy_quantile_upper_imp_prec(const RealType& p, const boost::math::integral_constant<int, 113>&)
3449 {
3450 BOOST_MATH_STD_USING
3451 RealType result;
3452
3453 if (p >= 0.375) {
3454 RealType t = p - static_cast <RealType>(0.375);
3455
3456
3457
3458
3459 BOOST_MATH_STATIC const RealType P[13] = {
3460 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.00474815142578902619056852805926666121e-1),
3461 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.56422290947427848191079775267512708223e0),
3462 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.70103710180837859003070678080056933649e1),
3463 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.08521918131449191445864593768320217287e1),
3464 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.29340655781369686013042530147130581054e2),
3465 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.24198237124638368989049118891909723118e1),
3466 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.43382878809828906953609389440800537385e2),
3467 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.45564809127564867825118566276365267035e1),
3468 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.75881247317499884393790698530115428373e2),
3469 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.55845932095942777602241134226597158364e1),
3470 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.41328261385867825781522154621962338450e2),
3471 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.06758225510372847658316203115073730186e1),
3472 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.10895417312529385966062255102265009972e0),
3473 };
3474 BOOST_MATH_STATIC const RealType Q[12] = {
3475 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3476 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.88252553879196710256650370298744093367e0),
3477 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.54875259600848880869571364891152935969e0),
3478 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.78589587338618424770295921221996471887e1),
3479 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.15356831947775532414727361010652423453e1),
3480 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.12951532118504570745988981200579372124e2),
3481 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.48163841544376327168780999614703092433e1),
3482 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.56786609618056303930232548304847911521e2),
3483 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.25610739352108840474197350343978451729e1),
3484 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.27063786175330237448255839666252978603e1),
3485 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.11941093895004369510720986032269722254e0),
3486 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.51487618026728514833542002963603231101e1),
3487 };
3488
3489 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3490 }
3491 else if (p >= 0.25) {
3492 RealType t = p - static_cast <RealType>(0.25);
3493
3494
3495
3496
3497 BOOST_MATH_STATIC const RealType P[14] = {
3498 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.81512108276093787175849069715334402323e-1),
3499 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.24417080443497141096829831516758083481e0),
3500 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.67006165991083501886186268944009973084e1),
3501 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.74402382755828993223083868408545308340e2),
3502 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.49182541725192134610277727922493871787e2),
3503 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.67273564707254788337557775618297381267e1),
3504 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.73476432616329813096120568871900178919e3),
3505 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.31235376166262024838125198332476698090e3),
3506 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.59379285677781413393733801325840617522e3),
3507 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.38151434050794836595564739176884302539e3),
3508 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.33534676810383673962443893459127818078e3),
3509 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.38110822236764293910895765875742805411e3),
3510 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.42750073722992463087082849671338957023e2),
3511 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.54255748148299874514839812717054396793e2),
3512 };
3513 BOOST_MATH_STATIC const RealType Q[13] = {
3514 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3515 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.64823387375875361292425741663822893626e1),
3516 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.02973633484731117050245517938177308809e2),
3517 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.71288209768693917630236009171518272534e2),
3518 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.23837527610546426062625864735895938014e1),
3519 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.05056816585729983223036277071927165555e3),
3520 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.48087477651935811184913947280572029967e3),
3521 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04631058325147527913398256133791276127e3),
3522 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.69813394441679590721342220435891453447e3),
3523 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.92323371456465893290687995174952942311e2),
3524 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.68542430563281320943284015587559056621e3),
3525 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.17969051793607842221356465819951568080e1),
3526 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.82773308760283383020168853159163391394e2),
3527 };
3528
3529 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3530 }
3531 else if (p >= 0.125) {
3532 RealType t = p - static_cast <RealType>(0.125);
3533
3534
3535
3536
3537 BOOST_MATH_STATIC const RealType P[15] = {
3538 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.70276979914029738186601698003670175907e0),
3539 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.63126762626382548478172664328434577553e1),
3540 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04190225271045202674546813475341133174e3),
3541 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.93523974140998850492859698545966806498e3),
3542 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.19814006186501010136822066747124777014e4),
3543 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.55931423620290859807616748030589502039e4),
3544 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.78874021192395317496507459296221703565e5),
3545 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.03860533237347587977439662522389465152e6),
3546 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.77882648875352690605815508748162607271e6),
3547 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.05498612167816258406694194925933958145e6),
3548 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.05326361485692298778330190198630232666e7),
3549 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.85827791876754731187453265804790139032e5),
3550 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.93719378006868242377955041137674308589e6),
3551 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.56839957539576784391036362196229047625e5),
3552 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.95604329277359828898502487252547842378e6),
3553 };
3554 BOOST_MATH_STATIC const RealType Q[16] = {
3555 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3556 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.79208640567193066236912382037923299779e1),
3557 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.94775812217734059201656828286490832145e2),
3558 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16467934643564936346029555887148320030e4),
3559 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.35525720248600096849901920839060920346e4),
3560 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.69760913594243328874861534307039589127e5),
3561 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.32330501005950982838953061458838040612e5),
3562 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.79610639577090112327353399739315606205e5),
3563 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.43314292923292828425630915931385776182e6),
3564 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.97538885038058371436244702169375622661e6),
3565 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.48431896958634429210349441846613832681e5),
3566 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.93459449030820736960297236799012798749e6),
3567 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.67200014823529787381847745962773726408e6),
3568 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.37035571075060153491151970623824940994e6),
3569 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.22682822001329636071591164177026394518e5),
3570 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.09781406768816062486819491582960840983e4),
3571 };
3572
3573 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
3574 }
3575 else if (ilogb(p) >= -4) {
3576 RealType t = -log2(ldexp(p, 3));
3577
3578
3579
3580
3581 BOOST_MATH_STATIC const RealType P[14] = {
3582 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.25692449785074345466504245009175450649e-1),
3583 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.75679137667345136118441108839649360362e-1),
3584 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06171803174020856964914440692439080669e-2),
3585 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.87798066278592051163038122952593080648e-2),
3586 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20070543183347459409303407166630392077e-2),
3587 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.13457391270614708627745403376469848816e-4),
3588 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06743974464224003715510181633693539914e-3),
3589 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16870984737226212814217822779976770316e-4),
3590 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21845093091651861426944931268861694026e-5),
3591 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.85357146081877929591916782097540632519e-6),
3592 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.19085800299127898508052519062782284785e-8),
3593 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.41985644250494046067095909812634573318e-7),
3594 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.30857042700765443668305406695750760693e-9),
3595 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.10466412567107519640190849286913680449e-10),
3596 };
3597 BOOST_MATH_STATIC const RealType Q[14] = {
3598 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3599 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.31914248618040435028023418981527961171e-1),
3600 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.73578090645412656850163531828709850171e-2),
3601 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.57329813782272411333511950903192234311e-2),
3602 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.62736127875896578315177123764520823372e-2),
3603 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.76809643836078823237530990091078867553e-3),
3604 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.32026948719622983920194944841520771986e-3),
3605 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.45051018027743807545734050620973716634e-4),
3606 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.58281707210621813556068724127478674938e-5),
3607 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.63884527227517358294732620995363921547e-6),
3608 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15973602356223075515067915930205826229e-6),
3609 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.35069439950884795002182517078104942615e-7),
3610 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15454119109586223908613596754794988609e-8),
3611 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.55273685376557721039847456564342945576e-10),
3612 };
3613
3614 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3615 }
3616 else if (ilogb(p) >= -8) {
3617 RealType t = -log2(ldexp(p, 4));
3618
3619
3620
3621
3622 BOOST_MATH_STATIC const RealType P[23] = {
3623 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.07341098045260497471001948654506267614e-1),
3624 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16518383383878659278973043343250842753e-1),
3625 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.10029094208424121908983949243560936013e-1),
3626 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.04771840726172284780129819470963100749e-2),
3627 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.34173170868011689830672637082451998700e-2),
3628 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.41990262178664512140746911398264330173e-2),
3629 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.06779488545758366708787010705581103705e-3),
3630 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.41892665233583725631482443019441608726e-3),
3631 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.20692306716979208762785454648538891867e-4),
3632 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.11097906809673639231336894729060830995e-4),
3633 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.37476591232600886363441107536706973169e-5),
3634 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.02659053066396720145189153810309784416e-5),
3635 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.02209877191642023279303996697953314344e-6),
3636 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.56663781532392665205516573323950583901e-7),
3637 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.95655734237060800145227277584749429063e-7),
3638 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.06357695252098035545383649954315685077e-8),
3639 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.78759045059235560356343893064681290047e-9),
3640 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.95881339136963512103591745337914059651e-10),
3641 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.70156441275519927563064848389865812060e-11),
3642 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.99745225746277063516394774908346367811e-12),
3643 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.45718440382347867317547921045052714102e-13),
3644 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.39027665085346558512961348663034579801e-14),
3645 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.05739751797738770096482688062542436470e-15),
3646 };
3647 BOOST_MATH_STATIC const RealType Q[23] = {
3648 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3649 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.43370372582239919321785765900615222895e-1),
3650 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.52872159582703775260145036441128318159e-1),
3651 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.28243735290178057451806192890274584778e-1),
3652 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.93375398009812888642212045868197435998e-2),
3653 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.73364866677217419593129631900708646445e-2),
3654 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.53645928499107852437053167521160449434e-2),
3655 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.74280939589407863107682593092148442428e-3),
3656 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.80095449855178765594835180574448729793e-3),
3657 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.65924845456946706158946250220103271334e-4),
3658 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.52170861715436344002253767944763106994e-4),
3659 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.87246437551620484806338690322735878649e-5),
3660 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.88631873230311653853089809596759382095e-6),
3661 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.84478812152918182782333415475103623486e-6),
3662 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.47998768403859674841488325856607782853e-7),
3663 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.82364683269852480160620586102339743788e-8),
3664 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.65854316058742127585142691993199177898e-9),
3665 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.11358340340462071552670838135645042498e-9),
3666 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.22818744671190957896035448856159685984e-10),
3667 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.11038729491846772238262374112315536796e-11),
3668 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.21355801166652957655438257794658921155e-13),
3669 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.41278271853370874105923461404291742454e-14),
3670 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.95100373579692323015092323646110838623e-15),
3671 };
3672
3673 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3674 }
3675 else if (ilogb(p) >= -16) {
3676 RealType t = -log2(ldexp(p, 8));
3677
3678
3679
3680
3681 BOOST_MATH_STATIC const RealType P[21] = {
3682 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.41774626094491452462664949805613444094e-1),
3683 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.96383089261273022706449773421031102175e-1),
3684 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.16315295073029174376617863024082371446e-1),
3685 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.65377894193914426949840018839915119410e-1),
3686 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33210993830236821503160637845009556016e-1),
3687 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.69315463529653886947182738378630780083e-2),
3688 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.09869947341518160436616160018702590834e-3),
3689 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.44331691052908906654005398143769791881e-3),
3690 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.13131413925652085071882765653750661678e-4),
3691 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.64441840437413591336927030249538399459e-5),
3692 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.78393581596372725434038621824715039765e-6),
3693 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.50239319821178575427758224587858938204e-7),
3694 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.92619647697287767235953207451871137149e-8),
3695 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.26901081456833267780600560830367533351e-9),
3696 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.12151768312254597726918329997945574766e-11),
3697 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.36907507996686107513673694597817437197e-12),
3698 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.31699373909892506279113260845246144240e-13),
3699 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.11230682511893290562864133995544214588e-15),
3700 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.44627067257461788044784631155226503036e-17),
3701 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.39869585157420474301450400944478312794e-18),
3702 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.82128612844034824876694595066123093042e-27),
3703 };
3704 BOOST_MATH_STATIC const RealType Q[20] = {
3705 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3706 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.65414405277042133067228113526697909557e0),
3707 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.32179221250476209346757936207079534440e0),
3708 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.74217392682100275524983756207618144313e-1),
3709 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.45810448055940046896534973720645113799e-1),
3710 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.81487408603233765436807980794697048675e-2),
3711 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.49442843848941402948883852684502731460e-2),
3712 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.66330842256792791665907478718489013963e-3),
3713 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.93285292223845804061941359223505045576e-4),
3714 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.87966347754794288681626114849829710697e-5),
3715 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.13711644429711675111080150193733607164e-6),
3716 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.61758862007482013187806625777101452737e-7),
3717 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.55435556106272558989915248980090731639e-8),
3718 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.34166571320580242213843747025082914011e-9),
3719 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.31411360099525131959755145015018410429e-10),
3720 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.21684839228785650625270026640716752452e-12),
3721 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.43021096301255274530428188746599779008e-13),
3722 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.58831290247776456235908211620983180005e-15),
3723 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74309280855806399632683315923592902203e-16),
3724 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.58097100528573186098159133443927182780e-18),
3725 };
3726
3727 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3728 }
3729 else if (ilogb(p) >= -32) {
3730 RealType t = -log2(ldexp(p, 16));
3731
3732
3733
3734
3735 BOOST_MATH_STATIC const RealType P[19] = {
3736 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.41926067826974814669251179264786585885e-1),
3737 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.21141529920003643675474888047093566280e-1),
3738 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.59964592861304582755436075901659426485e-1),
3739 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.95135112971576806260593571877646426022e-2),
3740 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.12322024725362032809787183337883163254e-3),
3741 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.96758465518847580191799508363466893068e-4),
3742 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.12389553946694902774213055563291192175e-4),
3743 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04599236076217479033545023949602272721e-5),
3744 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.16143771174487665823565565218797804931e-7),
3745 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.38966874413947625866830582082846088427e-8),
3746 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.02590325514935982607907975481732376204e-9),
3747 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.44376747400143802055827426602151525955e-10),
3748 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.82088624006657184426589019067893704020e-12),
3749 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.95757210706845964048697237729100056232e-13),
3750 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.36096213291559182424937062842308387702e-15),
3751 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.14362780521873256616533770657488533993e-16),
3752 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.73571098395815275003552523759665474105e-18),
3753 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.47286214854389274681661944885238913581e-20),
3754 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.73701196181204039400706651811524874455e-34),
3755 };
3756 BOOST_MATH_STATIC const RealType Q[18] = {
3757 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3758 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.77119890916406072259446489508263892540e-1),
3759 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.95177888809731859578167185583119074026e-1),
3760 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.29131027214559081111011582466619105016e-2),
3761 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.31442657037887347262737789825299661237e-2),
3762 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.83928863984637222329515960387531101267e-3),
3763 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.07389089078167127136964851949662391744e-4),
3764 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.93013847797006474150589676891548600820e-5),
3765 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.50600573851533884594030683413819219915e-6),
3766 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.94539484213971921794449107859541806317e-8),
3767 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.58360895032645281635534287874266252341e-9),
3768 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.66414102108217999886628042310332365446e-10),
3769 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07411076181287950822375436854492998754e-11),
3770 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.61224937285582228022463072515935601355e-13),
3771 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.89242339209389981530783624934733098598e-15),
3772 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.11030225010379194015550512905872992373e-16),
3773 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.20285566539355859922818448335043495666e-18),
3774 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.71782855576364068752705740544460766362e-20),
3775 };
3776
3777 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3778 }
3779 else if (ilogb(p) >= -64) {
3780 RealType t = -log2(ldexp(p, 32));
3781
3782
3783
3784
3785 BOOST_MATH_STATIC const RealType P[18] = {
3786 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.41926070139289008206183757488364846894e-1),
3787 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.78434820569480998586988738136492447574e-1),
3788 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.07939171933509333571821660328723436210e-1),
3789 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.92438439347811482522082798370060349739e-2),
3790 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.24288918322433485413615362874371441367e-2),
3791 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.04437759300344740815274986587186340509e-3),
3792 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.74063952231188399929705762263485071234e-4),
3793 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.07228849610363181194047955109059900544e-5),
3794 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.93120850707001212714821992328252707694e-6),
3795 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.40911049607879914351205073608184243057e-7),
3796 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.71898232013947717725198847649536278438e-8),
3797 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06963706982203753050300400912657068823e-9),
3798 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.79849166632277658631839126599110199710e-11),
3799 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.74682085785152276503345630444792840850e-12),
3800 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.09650236336641219916377836114077389212e-13),
3801 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.97326394822836529817663710792553753811e-15),
3802 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.26635728806398747570910072594323836441e-17),
3803 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.96470010392255781222480229189380065951e-18),
3804 };
3805 BOOST_MATH_STATIC const RealType Q[18] = {
3806 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
3807 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.82841492468725267177870050157374330523e-1),
3808 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.83703946702662950408034486958999188355e-1),
3809 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.09320896703777230915306208582393356690e-1),
3810 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.29346630787642344947323515884281464979e-2),
3811 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.77242894492599243245354774839232776944e-3),
3812 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.05722029871614922850936250945431594997e-4),
3813 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.66920224988248720006255827987385374411e-5),
3814 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.40887155754772190509572243444386095560e-6),
3815 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.44545968319921473942351968892623238920e-7),
3816 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.17198676140022989760684932594389017027e-8),
3817 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.97376935482567419865730773801543995320e-9),
3818 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06997835790265899882151030367297786861e-10),
3819 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.06862653266619706928282319356971834957e-12),
3820 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.02334307903766790059473763725329176667e-13),
3821 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.33174535634931487079630169746402085699e-15),
3822 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.70989324903345102377898775620363767855e-16),
3823 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.47067260145014475572799216996976703615e-18),
3824 };
3825
3826 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
3827 }
3828 else {
3829 RealType p_square = p * p;
3830
3831 if ((boost::math::isnormal)(p_square)) {
3832 result = 1 / cbrt(p_square * constants::two_pi<RealType>());
3833 }
3834 else if (p > 0) {
3835 result = 1 / (cbrt(p) * cbrt(p) * cbrt(constants::two_pi<RealType>()));
3836 }
3837 else {
3838 result = boost::math::numeric_limits<RealType>::infinity();
3839 }
3840 }
3841
3842 return result;
3843 }
3844
3845 template <class RealType>
3846 BOOST_MATH_GPU_ENABLED inline RealType mapairy_quantile_imp_prec(const RealType& p, bool complement, const boost::math::integral_constant<int, 53>& tag)
3847 {
3848 if (p > 0.5) {
3849 return !complement ? mapairy_quantile_upper_imp_prec(1 - p, tag) : mapairy_quantile_lower_imp_prec(1 - p, tag);
3850 }
3851
3852 return complement ? mapairy_quantile_upper_imp_prec(p, tag) : mapairy_quantile_lower_imp_prec(p, tag);
3853 }
3854
3855 template <class RealType>
3856 BOOST_MATH_GPU_ENABLED inline RealType mapairy_quantile_imp_prec(const RealType& p, bool complement, const boost::math::integral_constant<int, 113>& tag)
3857 {
3858 if (p > 0.5) {
3859 return !complement ? mapairy_quantile_upper_imp_prec(1 - p, tag) : mapairy_quantile_lower_imp_prec(1 - p, tag);
3860 }
3861
3862 return complement ? mapairy_quantile_upper_imp_prec(p, tag) : mapairy_quantile_lower_imp_prec(p, tag);
3863 }
3864
3865 template <class RealType, class Policy>
3866 BOOST_MATH_GPU_ENABLED inline RealType mapairy_quantile_imp(const mapairy_distribution<RealType, Policy>& dist, const RealType& p, bool complement)
3867 {
3868
3869
3870
3871 constexpr auto function = "boost::math::quantile(mapairy<%1%>&, %1%)";
3872 BOOST_MATH_STD_USING
3873
3874 RealType result = 0;
3875 RealType scale = dist.scale();
3876 RealType location = dist.location();
3877
3878 if (false == detail::check_location(function, location, &result, Policy()))
3879 {
3880 return result;
3881 }
3882 if (false == detail::check_scale(function, scale, &result, Policy()))
3883 {
3884 return result;
3885 }
3886 if (false == detail::check_probability(function, p, &result, Policy()))
3887 {
3888 return result;
3889 }
3890
3891 typedef typename tools::promote_args<RealType>::type result_type;
3892 typedef typename policies::precision<result_type, Policy>::type precision_type;
3893 typedef boost::math::integral_constant<int,
3894 precision_type::value <= 0 ? 0 :
3895 precision_type::value <= 53 ? 53 :
3896 precision_type::value <= 113 ? 113 : 0
3897 > tag_type;
3898
3899 static_assert(tag_type::value, "The Map-Airy distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
3900
3901 result = location + scale * mapairy_quantile_imp_prec(p, complement, tag_type());
3902
3903 return result;
3904 }
3905
3906 template <class RealType>
3907 BOOST_MATH_GPU_ENABLED inline RealType mapairy_mode_imp_prec(const boost::math::integral_constant<int, 53>&)
3908 {
3909 return static_cast<RealType>(-1.16158727113597068525);
3910 }
3911
3912 template <class RealType>
3913 BOOST_MATH_GPU_ENABLED inline RealType mapairy_mode_imp_prec(const boost::math::integral_constant<int, 113>&)
3914 {
3915 return BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.1615872711359706852500000803029112987);
3916 }
3917
3918 template <class RealType, class Policy>
3919 BOOST_MATH_GPU_ENABLED inline RealType mapairy_mode_imp(const mapairy_distribution<RealType, Policy>& dist)
3920 {
3921
3922
3923 constexpr auto function = "boost::math::mode(mapairy<%1%>&, %1%)";
3924 BOOST_MATH_STD_USING
3925
3926 RealType result = 0;
3927 RealType scale = dist.scale();
3928 RealType location = dist.location();
3929
3930 if (false == detail::check_location(function, location, &result, Policy()))
3931 {
3932 return result;
3933 }
3934 if (false == detail::check_scale(function, scale, &result, Policy()))
3935 {
3936 return result;
3937 }
3938
3939 typedef typename tools::promote_args<RealType>::type result_type;
3940 typedef typename policies::precision<result_type, Policy>::type precision_type;
3941 typedef boost::math::integral_constant<int,
3942 precision_type::value <= 0 ? 0 :
3943 precision_type::value <= 53 ? 53 :
3944 precision_type::value <= 113 ? 113 : 0
3945 > tag_type;
3946
3947 static_assert(tag_type::value, "The Map-Airy distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
3948
3949 result = location + scale * mapairy_mode_imp_prec<RealType>(tag_type());
3950
3951 return result;
3952 }
3953
3954 template <class RealType>
3955 BOOST_MATH_GPU_ENABLED inline RealType mapairy_median_imp_prec(const boost::math::integral_constant<int, 53>&)
3956 {
3957 return static_cast<RealType>(-0.71671068545502205332);
3958 }
3959
3960 template <class RealType>
3961 BOOST_MATH_GPU_ENABLED inline RealType mapairy_median_imp_prec(const boost::math::integral_constant<int, 113>&)
3962 {
3963 return BOOST_MATH_BIG_CONSTANT(RealType, 113, -0.71671068545502205331700196278067230944440);
3964 }
3965
3966 template <class RealType, class Policy>
3967 BOOST_MATH_GPU_ENABLED inline RealType mapairy_median_imp(const mapairy_distribution<RealType, Policy>& dist)
3968 {
3969
3970
3971 constexpr auto function = "boost::math::median(mapairy<%1%>&, %1%)";
3972 BOOST_MATH_STD_USING
3973
3974 RealType result = 0;
3975 RealType scale = dist.scale();
3976 RealType location = dist.location();
3977
3978 if (false == detail::check_location(function, location, &result, Policy()))
3979 {
3980 return result;
3981 }
3982 if (false == detail::check_scale(function, scale, &result, Policy()))
3983 {
3984 return result;
3985 }
3986
3987 typedef typename tools::promote_args<RealType>::type result_type;
3988 typedef typename policies::precision<result_type, Policy>::type precision_type;
3989 typedef boost::math::integral_constant<int,
3990 precision_type::value <= 0 ? 0 :
3991 precision_type::value <= 53 ? 53 :
3992 precision_type::value <= 113 ? 113 : 0
3993 > tag_type;
3994
3995 static_assert(tag_type::value, "The Map-Airy distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
3996
3997 result = location + scale * mapairy_median_imp_prec<RealType>(tag_type());
3998
3999 return result;
4000 }
4001
4002 template <class RealType>
4003 BOOST_MATH_GPU_ENABLED inline RealType mapairy_entropy_imp_prec(const boost::math::integral_constant<int, 53>&)
4004 {
4005 return static_cast<RealType>(2.00727681841065634600);
4006 }
4007
4008 template <class RealType>
4009 BOOST_MATH_GPU_ENABLED inline RealType mapairy_entropy_imp_prec(const boost::math::integral_constant<int, 113>&)
4010 {
4011 return BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.0072768184106563460003025875575283708);
4012 }
4013
4014 template <class RealType, class Policy>
4015 BOOST_MATH_GPU_ENABLED inline RealType mapairy_entropy_imp(const mapairy_distribution<RealType, Policy>& dist)
4016 {
4017
4018
4019 constexpr auto function = "boost::math::entropy(mapairy<%1%>&, %1%)";
4020 BOOST_MATH_STD_USING
4021
4022 RealType result = 0;
4023 RealType scale = dist.scale();
4024
4025 if (false == detail::check_scale(function, scale, &result, Policy()))
4026 {
4027 return result;
4028 }
4029
4030 typedef typename tools::promote_args<RealType>::type result_type;
4031 typedef typename policies::precision<result_type, Policy>::type precision_type;
4032 typedef boost::math::integral_constant<int,
4033 precision_type::value <= 0 ? 0 :
4034 precision_type::value <= 53 ? 53 :
4035 precision_type::value <= 113 ? 113 : 0
4036 > tag_type;
4037
4038 static_assert(tag_type::value, "The Map-Airy distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
4039
4040 result = mapairy_entropy_imp_prec<RealType>(tag_type()) + log(scale);
4041
4042 return result;
4043 }
4044
4045 }
4046
4047 template <class RealType = double, class Policy = policies::policy<> >
4048 class mapairy_distribution
4049 {
4050 public:
4051 typedef RealType value_type;
4052 typedef Policy policy_type;
4053
4054 BOOST_MATH_GPU_ENABLED mapairy_distribution(RealType l_location = 0, RealType l_scale = 1)
4055 : mu(l_location), c(l_scale)
4056 {
4057 constexpr auto function = "boost::math::mapairy_distribution<%1%>::mapairy_distribution";
4058 RealType result = 0;
4059 detail::check_location(function, l_location, &result, Policy());
4060 detail::check_scale(function, l_scale, &result, Policy());
4061 }
4062
4063 BOOST_MATH_GPU_ENABLED RealType location()const
4064 {
4065 return mu;
4066 }
4067 BOOST_MATH_GPU_ENABLED RealType scale()const
4068 {
4069 return c;
4070 }
4071
4072 private:
4073 RealType mu;
4074 RealType c;
4075 };
4076
4077 typedef mapairy_distribution<double> mapairy;
4078
4079 #ifdef __cpp_deduction_guides
4080 template <class RealType>
4081 mapairy_distribution(RealType) -> mapairy_distribution<typename boost::math::tools::promote_args<RealType>::type>;
4082 template <class RealType>
4083 mapairy_distribution(RealType, RealType) -> mapairy_distribution<typename boost::math::tools::promote_args<RealType>::type>;
4084 #endif
4085
4086 template <class RealType, class Policy>
4087 BOOST_MATH_GPU_ENABLED inline const boost::math::pair<RealType, RealType> range(const mapairy_distribution<RealType, Policy>&)
4088 {
4089 BOOST_MATH_IF_CONSTEXPR (boost::math::numeric_limits<RealType>::has_infinity)
4090 {
4091 return boost::math::pair<RealType, RealType>(-boost::math::numeric_limits<RealType>::infinity(), boost::math::numeric_limits<RealType>::infinity());
4092 }
4093 else
4094 {
4095 using boost::math::tools::max_value;
4096 return boost::math::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
4097 }
4098 }
4099
4100 template <class RealType, class Policy>
4101 BOOST_MATH_GPU_ENABLED inline const boost::math::pair<RealType, RealType> support(const mapairy_distribution<RealType, Policy>&)
4102 {
4103
4104 BOOST_MATH_IF_CONSTEXPR (boost::math::numeric_limits<RealType>::has_infinity)
4105 {
4106 return boost::math::pair<RealType, RealType>(-boost::math::numeric_limits<RealType>::infinity(), boost::math::numeric_limits<RealType>::infinity());
4107 }
4108 else
4109 {
4110 using boost::math::tools::max_value;
4111 return boost::math::pair<RealType, RealType>(-tools::max_value<RealType>(), max_value<RealType>());
4112 }
4113 }
4114
4115 template <class RealType, class Policy>
4116 BOOST_MATH_GPU_ENABLED inline RealType pdf(const mapairy_distribution<RealType, Policy>& dist, const RealType& x)
4117 {
4118 return detail::mapairy_pdf_imp(dist, x);
4119 }
4120
4121 template <class RealType, class Policy>
4122 BOOST_MATH_GPU_ENABLED inline RealType cdf(const mapairy_distribution<RealType, Policy>& dist, const RealType& x)
4123 {
4124 return detail::mapairy_cdf_imp(dist, x, false);
4125 }
4126
4127 template <class RealType, class Policy>
4128 BOOST_MATH_GPU_ENABLED inline RealType quantile(const mapairy_distribution<RealType, Policy>& dist, const RealType& p)
4129 {
4130 return detail::mapairy_quantile_imp(dist, p, false);
4131 }
4132
4133 template <class RealType, class Policy>
4134 BOOST_MATH_GPU_ENABLED inline RealType cdf(const complemented2_type<mapairy_distribution<RealType, Policy>, RealType>& c)
4135 {
4136 return detail::mapairy_cdf_imp(c.dist, c.param, true);
4137 }
4138
4139 template <class RealType, class Policy>
4140 BOOST_MATH_GPU_ENABLED inline RealType quantile(const complemented2_type<mapairy_distribution<RealType, Policy>, RealType>& c)
4141 {
4142 return detail::mapairy_quantile_imp(c.dist, c.param, true);
4143 }
4144
4145 template <class RealType, class Policy>
4146 BOOST_MATH_GPU_ENABLED inline RealType mean(const mapairy_distribution<RealType, Policy> &dist)
4147 {
4148 return dist.location();
4149 }
4150
4151 template <class RealType, class Policy>
4152 BOOST_MATH_GPU_ENABLED inline RealType variance(const mapairy_distribution<RealType, Policy>& )
4153 {
4154 return boost::math::numeric_limits<RealType>::infinity();
4155 }
4156
4157 template <class RealType, class Policy>
4158 BOOST_MATH_GPU_ENABLED inline RealType mode(const mapairy_distribution<RealType, Policy>& dist)
4159 {
4160 return detail::mapairy_mode_imp(dist);
4161 }
4162
4163 template <class RealType, class Policy>
4164 BOOST_MATH_GPU_ENABLED inline RealType median(const mapairy_distribution<RealType, Policy>& dist)
4165 {
4166 return detail::mapairy_median_imp(dist);
4167 }
4168
4169 template <class RealType, class Policy>
4170 BOOST_MATH_GPU_ENABLED inline RealType skewness(const mapairy_distribution<RealType, Policy>& )
4171 {
4172
4173 typedef typename Policy::assert_undefined_type assert_type;
4174 static_assert(assert_type::value == 0, "The Map-Airy Distribution has no skewness");
4175
4176 return policies::raise_domain_error<RealType>(
4177 "boost::math::skewness(mapairy<%1%>&)",
4178 "The Map-Airy distribution does not have a skewness: "
4179 "the only possible return value is %1%.",
4180 boost::math::numeric_limits<RealType>::quiet_NaN(), Policy());
4181 }
4182
4183 template <class RealType, class Policy>
4184 BOOST_MATH_GPU_ENABLED inline RealType kurtosis(const mapairy_distribution<RealType, Policy>& )
4185 {
4186
4187 typedef typename Policy::assert_undefined_type assert_type;
4188 static_assert(assert_type::value == 0, "The Map-Airy Distribution has no kurtosis");
4189
4190 return policies::raise_domain_error<RealType>(
4191 "boost::math::kurtosis(mapairy<%1%>&)",
4192 "The Map-Airy distribution does not have a kurtosis: "
4193 "the only possible return value is %1%.",
4194 boost::math::numeric_limits<RealType>::quiet_NaN(), Policy());
4195 }
4196
4197 template <class RealType, class Policy>
4198 BOOST_MATH_GPU_ENABLED inline RealType kurtosis_excess(const mapairy_distribution<RealType, Policy>& )
4199 {
4200
4201 typedef typename Policy::assert_undefined_type assert_type;
4202 static_assert(assert_type::value == 0, "The Map-Airy Distribution has no kurtosis excess");
4203
4204 return policies::raise_domain_error<RealType>(
4205 "boost::math::kurtosis_excess(mapairy<%1%>&)",
4206 "The Map-Airy distribution does not have a kurtosis: "
4207 "the only possible return value is %1%.",
4208 boost::math::numeric_limits<RealType>::quiet_NaN(), Policy());
4209 }
4210
4211 template <class RealType, class Policy>
4212 BOOST_MATH_GPU_ENABLED inline RealType entropy(const mapairy_distribution<RealType, Policy>& dist)
4213 {
4214 return detail::mapairy_entropy_imp(dist);
4215 }
4216
4217 }}
4218
4219
4220 #endif