Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:39:40

0001 //  Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com)
0002 //
0003 //  Use, modification and distribution are subject to the
0004 //  Boost Software License, Version 1.0. (See accompanying file
0005 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
0006 //
0007 // This module implements the Hyper-Exponential distribution.
0008 //
0009 // References:
0010 // - "Queueing Theory in Manufacturing Systems Analysis and Design" by H.T. Papadopolous, C. Heavey and J. Browne (Chapman & Hall/CRC, 1993)
0011 // - http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html
0012 // - http://en.wikipedia.org/wiki/Hyperexponential_distribution
0013 //
0014 
0015 #ifndef BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
0016 #define BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
0017 
0018 #include <boost/math/tools/cxx03_warn.hpp>
0019 #include <boost/math/distributions/complement.hpp>
0020 #include <boost/math/distributions/detail/common_error_handling.hpp>
0021 #include <boost/math/distributions/exponential.hpp>
0022 #include <boost/math/policies/policy.hpp>
0023 #include <boost/math/special_functions/fpclassify.hpp>
0024 #include <boost/math/tools/precision.hpp>
0025 #include <boost/math/tools/roots.hpp>
0026 #include <boost/math/tools/is_detected.hpp>
0027 #include <cstddef>
0028 #include <iterator>
0029 #include <limits>
0030 #include <numeric>
0031 #include <utility>
0032 #include <vector>
0033 #include <type_traits>
0034 #include <initializer_list>
0035 
0036 
0037 #ifdef _MSC_VER
0038 # pragma warning (push)
0039 # pragma warning(disable:4127) // conditional expression is constant
0040 # pragma warning(disable:4389) // '==' : signed/unsigned mismatch in test_tools
0041 #endif // _MSC_VER
0042 
0043 namespace boost { namespace math {
0044 
0045 namespace detail {
0046 
0047 template <typename Dist>
0048 typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function);
0049 
0050 } // Namespace detail
0051 
0052 
0053 template <typename RealT, typename PolicyT>
0054 class hyperexponential_distribution;
0055 
0056 
0057 namespace /*<unnamed>*/ { namespace hyperexp_detail {
0058 
0059 template <typename T>
0060 void normalize(std::vector<T>& v)
0061 {
0062    if(!v.size())
0063       return;  // Our error handlers will get this later
0064     const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0));
0065     T final_sum = 0;
0066     const typename std::vector<T>::iterator end = --v.end();
0067     for (typename std::vector<T>::iterator it = v.begin();
0068          it != end;
0069          ++it)
0070     {
0071         *it /= sum;
0072         final_sum += *it;
0073     }
0074     *end = 1 - final_sum;  // avoids round off errors, ensures the probs really do sum to 1.
0075 }
0076 
0077 template <typename RealT, typename PolicyT>
0078 bool check_probabilities(char const* function, std::vector<RealT> const& probabilities, RealT* presult, PolicyT const& pol)
0079 {
0080     BOOST_MATH_STD_USING
0081     const std::size_t n = probabilities.size();
0082     RealT sum = 0;
0083     for (std::size_t i = 0; i < n; ++i)
0084     {
0085         if (probabilities[i] < 0
0086             || probabilities[i] > 1
0087             || !(boost::math::isfinite)(probabilities[i]))
0088         {
0089             *presult = policies::raise_domain_error<RealT>(function,
0090                                                            "The elements of parameter \"probabilities\" must be >= 0 and <= 1, but at least one of them was: %1%.",
0091                                                            probabilities[i],
0092                                                            pol);
0093             return false;
0094         }
0095         sum += probabilities[i];
0096     }
0097 
0098     //
0099     // We try to keep phase probabilities correctly normalized in the distribution constructors,
0100     // however in practice we have to allow for a very slight divergence from a sum of exactly 1:
0101     //
0102     if (fabs(sum - 1) > tools::epsilon<RealT>() * 2)
0103     {
0104         *presult = policies::raise_domain_error<RealT>(function,
0105                                                        "The elements of parameter \"probabilities\" must sum to 1, but their sum is: %1%.",
0106                                                        sum,
0107                                                        pol);
0108         return false;
0109     }
0110 
0111     return true;
0112 }
0113 
0114 template <typename RealT, typename PolicyT>
0115 bool check_rates(char const* function, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
0116 {
0117     const std::size_t n = rates.size();
0118     for (std::size_t i = 0; i < n; ++i)
0119     {
0120         if (rates[i] <= 0
0121             || !(boost::math::isfinite)(rates[i]))
0122         {
0123             *presult = policies::raise_domain_error<RealT>(function,
0124                                                            "The elements of parameter \"rates\" must be > 0, but at least one of them is: %1%.",
0125                                                            rates[i],
0126                                                            pol);
0127             return false;
0128         }
0129     }
0130     return true;
0131 }
0132 
0133 template <typename RealT, typename PolicyT>
0134 bool check_dist(char const* function, std::vector<RealT> const& probabilities, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
0135 {
0136     BOOST_MATH_STD_USING
0137     if (probabilities.size() != rates.size())
0138     {
0139         *presult = policies::raise_domain_error<RealT>(function,
0140                                                        R"(The parameters "probabilities" and "rates" must have the same length, but their size differ by: %1%.)",
0141                                                        fabs(static_cast<RealT>(probabilities.size())-static_cast<RealT>(rates.size())),
0142                                                        pol);
0143         return false;
0144     }
0145 
0146     return check_probabilities(function, probabilities, presult, pol)
0147            && check_rates(function, rates, presult, pol);
0148 }
0149 
0150 template <typename RealT, typename PolicyT>
0151 bool check_x(char const* function, RealT x, RealT* presult, PolicyT const& pol)
0152 {
0153     if (x < 0 || (boost::math::isnan)(x))
0154     {
0155         *presult = policies::raise_domain_error<RealT>(function, "The random variable must be >= 0, but is: %1%.", x, pol);
0156         return false;
0157     }
0158     return true;
0159 }
0160 
0161 template <typename RealT, typename PolicyT>
0162 bool check_probability(char const* function, RealT p, RealT* presult, PolicyT const& pol)
0163 {
0164     if (p < 0 || p > 1 || (boost::math::isnan)(p))
0165     {
0166         *presult = policies::raise_domain_error<RealT>(function, "The probability be >= 0 and <= 1, but is: %1%.", p, pol);
0167         return false;
0168     }
0169     return true;
0170 }
0171 
0172 template <typename RealT, typename PolicyT>
0173 RealT quantile_impl(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p, bool comp)
0174 {
0175     // Don't have a closed form so try to numerically solve the inverse CDF...
0176 
0177     typedef typename policies::evaluation<RealT, PolicyT>::type value_type;
0178     typedef typename policies::normalise<PolicyT,
0179                                          policies::promote_float<false>,
0180                                          policies::promote_double<false>,
0181                                          policies::discrete_quantile<>,
0182                                          policies::assert_undefined<> >::type forwarding_policy;
0183 
0184     static const char* function = comp ? "boost::math::quantile(const boost::math::complemented2_type<boost::math::hyperexponential_distribution<%1%>, %1%>&)"
0185                                        : "boost::math::quantile(const boost::math::hyperexponential_distribution<%1%>&, %1%)";
0186 
0187     RealT result = 0;
0188 
0189     if (!check_probability(function, p, &result, PolicyT()))
0190     {
0191         return result;
0192     }
0193 
0194     const std::size_t n = dist.num_phases();
0195     const std::vector<RealT> probs = dist.probabilities();
0196     const std::vector<RealT> rates = dist.rates();
0197 
0198     // A possible (but inaccurate) approximation is given below, where the
0199     // quantile is given by the weighted sum of exponential quantiles:
0200     RealT guess = 0;
0201     if (comp)
0202     {
0203         for (std::size_t i = 0; i < n; ++i)
0204         {
0205             const exponential_distribution<RealT,PolicyT> exp(rates[i]);
0206 
0207             guess += probs[i]*quantile(complement(exp, p));
0208         }
0209     }
0210     else
0211     {
0212         for (std::size_t i = 0; i < n; ++i)
0213         {
0214             const exponential_distribution<RealT,PolicyT> exp(rates[i]);
0215 
0216             guess += probs[i]*quantile(exp, p);
0217         }
0218     }
0219 
0220     // Fast return in case the Hyper-Exponential is essentially an Exponential
0221     if (n == 1)
0222     {
0223         return guess;
0224     }
0225 
0226     value_type q;
0227     q = detail::generic_quantile(hyperexponential_distribution<RealT,forwarding_policy>(probs, rates),
0228                                  p,
0229                                  guess,
0230                                  comp,
0231                                  function);
0232 
0233     result = policies::checked_narrowing_cast<RealT,forwarding_policy>(q, function);
0234 
0235     return result;
0236 }
0237 
0238 }} // Namespace <unnamed>::hyperexp_detail
0239 
0240 
0241 template <typename RealT = double, typename PolicyT = policies::policy<> >
0242 class hyperexponential_distribution
0243 {
0244     public: typedef RealT value_type;
0245     public: typedef PolicyT policy_type;
0246 
0247 
0248     public: hyperexponential_distribution()
0249     : probs_(1, 1),
0250       rates_(1, 1)
0251     {
0252         RealT err;
0253         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
0254                                     probs_,
0255                                     rates_,
0256                                     &err,
0257                                     PolicyT());
0258     }
0259 
0260     // Four arg constructor: no ambiguity here, the arguments must be two pairs of iterators:
0261     public: template <typename ProbIterT, typename RateIterT>
0262             hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,
0263                                           RateIterT rate_first, RateIterT rate_last)
0264     : probs_(prob_first, prob_last),
0265       rates_(rate_first, rate_last)
0266     {
0267         hyperexp_detail::normalize(probs_);
0268         RealT err;
0269         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
0270                                     probs_,
0271                                     rates_,
0272                                     &err,
0273                                     PolicyT());
0274     }
0275     private: template <typename T, typename = void>
0276              struct is_iterator
0277              {
0278                  static constexpr bool value = false;
0279              };
0280 
0281              template <typename T>
0282              struct is_iterator<T, boost::math::tools::void_t<typename std::iterator_traits<T>::difference_type>>
0283              {
0284                  // std::iterator_traits<T>::difference_type returns void for invalid types
0285                  static constexpr bool value = !std::is_same<typename std::iterator_traits<T>::difference_type, void>::value;
0286              };
0287 
0288     // Two arg constructor from 2 ranges, we SFINAE this out of existence if
0289     // either argument type is incrementable as in that case the type is
0290     // probably an iterator:
0291     public: template <typename ProbRangeT, typename RateRangeT, 
0292                       typename std::enable_if<!is_iterator<ProbRangeT>::value && 
0293                                               !is_iterator<RateRangeT>::value, bool>::type = true>
0294             hyperexponential_distribution(ProbRangeT const& prob_range,
0295                                           RateRangeT const& rate_range)
0296     : probs_(std::begin(prob_range), std::end(prob_range)),
0297       rates_(std::begin(rate_range), std::end(rate_range))
0298     {
0299         hyperexp_detail::normalize(probs_);
0300 
0301         RealT err;
0302         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
0303                                     probs_,
0304                                     rates_,
0305                                     &err,
0306                                     PolicyT());
0307     }
0308 
0309     // Two arg constructor for a pair of iterators: we SFINAE this out of
0310     // existence if neither argument types are incrementable.
0311     // Note that we allow different argument types here to allow for
0312     // construction from an array plus a pointer into that array.
0313     public: template <typename RateIterT, typename RateIterT2, 
0314                       typename std::enable_if<is_iterator<RateIterT>::value || 
0315                                               is_iterator<RateIterT2>::value, bool>::type = true>
0316             hyperexponential_distribution(RateIterT const& rate_first, 
0317                                           RateIterT2 const& rate_last)
0318     : probs_(std::distance(rate_first, rate_last), 1), // will be normalized below
0319       rates_(rate_first, rate_last)
0320     {
0321         hyperexp_detail::normalize(probs_);
0322 
0323         RealT err;
0324         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
0325                                     probs_,
0326                                     rates_,
0327                                     &err,
0328                                     PolicyT());
0329     }
0330 
0331       // Initializer list constructor: allows for construction from array literals:
0332 public: hyperexponential_distribution(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2)
0333       : probs_(l1.begin(), l1.end()),
0334         rates_(l2.begin(), l2.end())
0335       {
0336          hyperexp_detail::normalize(probs_);
0337 
0338          RealT err;
0339          hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
0340             probs_,
0341             rates_,
0342             &err,
0343             PolicyT());
0344       }
0345 
0346 public: hyperexponential_distribution(std::initializer_list<RealT> l1)
0347       : probs_(l1.size(), 1),
0348         rates_(l1.begin(), l1.end())
0349       {
0350          hyperexp_detail::normalize(probs_);
0351 
0352          RealT err;
0353          hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
0354             probs_,
0355             rates_,
0356             &err,
0357             PolicyT());
0358       }
0359 
0360     // Single argument constructor: argument must be a range.
0361     public: template <typename RateRangeT>
0362     hyperexponential_distribution(RateRangeT const& rate_range)
0363     : probs_(std::distance(std::begin(rate_range), std::end(rate_range)), 1), // will be normalized below
0364       rates_(std::begin(rate_range), std::end(rate_range))
0365     {
0366         hyperexp_detail::normalize(probs_);
0367 
0368         RealT err;
0369         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
0370                                     probs_,
0371                                     rates_,
0372                                     &err,
0373                                     PolicyT());
0374     }
0375 
0376     public: std::vector<RealT> probabilities() const
0377     {
0378         return probs_;
0379     }
0380 
0381     public: std::vector<RealT> rates() const
0382     {
0383         return rates_;
0384     }
0385 
0386     public: std::size_t num_phases() const
0387     {
0388         return rates_.size();
0389     }
0390 
0391 
0392     private: std::vector<RealT> probs_;
0393     private: std::vector<RealT> rates_;
0394 }; // class hyperexponential_distribution
0395 
0396 
0397 // Convenient type synonym for double.
0398 typedef hyperexponential_distribution<double> hyperexponential;
0399 
0400 
0401 // Range of permissible values for random variable x
0402 template <typename RealT, typename PolicyT>
0403 std::pair<RealT,RealT> range(hyperexponential_distribution<RealT,PolicyT> const&)
0404 {
0405     if (std::numeric_limits<RealT>::has_infinity)
0406     {
0407         return std::make_pair(static_cast<RealT>(0), std::numeric_limits<RealT>::infinity()); // 0 to +inf.
0408     }
0409 
0410     return std::make_pair(static_cast<RealT>(0), tools::max_value<RealT>()); // 0 to +<max value>
0411 }
0412 
0413 // Range of supported values for random variable x.
0414 // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
0415 template <typename RealT, typename PolicyT>
0416 std::pair<RealT,RealT> support(hyperexponential_distribution<RealT,PolicyT> const&)
0417 {
0418     return std::make_pair(tools::min_value<RealT>(), tools::max_value<RealT>()); // <min value> to +<max value>.
0419 }
0420 
0421 template <typename RealT, typename PolicyT>
0422 RealT pdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
0423 {
0424     BOOST_MATH_STD_USING
0425     RealT result = 0;
0426 
0427     if (!hyperexp_detail::check_x("boost::math::pdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
0428     {
0429         return result;
0430     }
0431 
0432     const std::size_t n = dist.num_phases();
0433     const std::vector<RealT> probs = dist.probabilities();
0434     const std::vector<RealT> rates = dist.rates();
0435 
0436     for (std::size_t i = 0; i < n; ++i)
0437     {
0438         const exponential_distribution<RealT,PolicyT> exp(rates[i]);
0439 
0440         result += probs[i]*pdf(exp, x);
0441         //result += probs[i]*rates[i]*exp(-rates[i]*x);
0442     }
0443 
0444     return result;
0445 }
0446 
0447 template <typename RealT, typename PolicyT>
0448 RealT cdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
0449 {
0450     RealT result = 0;
0451 
0452     if (!hyperexp_detail::check_x("boost::math::cdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
0453     {
0454         return result;
0455     }
0456 
0457     const std::size_t n = dist.num_phases();
0458     const std::vector<RealT> probs = dist.probabilities();
0459     const std::vector<RealT> rates = dist.rates();
0460 
0461     for (std::size_t i = 0; i < n; ++i)
0462     {
0463         const exponential_distribution<RealT,PolicyT> exp(rates[i]);
0464 
0465         result += probs[i]*cdf(exp, x);
0466     }
0467 
0468     return result;
0469 }
0470 
0471 template <typename RealT, typename PolicyT>
0472 RealT quantile(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p)
0473 {
0474     return hyperexp_detail::quantile_impl(dist, p , false);
0475 }
0476 
0477 template <typename RealT, typename PolicyT>
0478 RealT cdf(complemented2_type<hyperexponential_distribution<RealT,PolicyT>, RealT> const& c)
0479 {
0480     RealT const& x = c.param;
0481     hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
0482 
0483     RealT result = 0;
0484 
0485     if (!hyperexp_detail::check_x("boost::math::cdf(boost::math::complemented2_type<const boost::math::hyperexponential_distribution<%1%>&, %1%>)", x, &result, PolicyT()))
0486     {
0487         return result;
0488     }
0489 
0490     const std::size_t n = dist.num_phases();
0491     const std::vector<RealT> probs = dist.probabilities();
0492     const std::vector<RealT> rates = dist.rates();
0493 
0494     for (std::size_t i = 0; i < n; ++i)
0495     {
0496         const exponential_distribution<RealT,PolicyT> exp(rates[i]);
0497 
0498         result += probs[i]*cdf(complement(exp, x));
0499     }
0500 
0501     return result;
0502 }
0503 
0504 
0505 template <typename RealT, typename PolicyT>
0506 RealT quantile(complemented2_type<hyperexponential_distribution<RealT, PolicyT>, RealT> const& c)
0507 {
0508     RealT const& p = c.param;
0509     hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
0510 
0511     return hyperexp_detail::quantile_impl(dist, p , true);
0512 }
0513 
0514 template <typename RealT, typename PolicyT>
0515 RealT mean(hyperexponential_distribution<RealT, PolicyT> const& dist)
0516 {
0517     RealT result = 0;
0518 
0519     const std::size_t n = dist.num_phases();
0520     const std::vector<RealT> probs = dist.probabilities();
0521     const std::vector<RealT> rates = dist.rates();
0522 
0523     for (std::size_t i = 0; i < n; ++i)
0524     {
0525         const exponential_distribution<RealT,PolicyT> exp(rates[i]);
0526 
0527         result += probs[i]*mean(exp);
0528     }
0529 
0530     return result;
0531 }
0532 
0533 template <typename RealT, typename PolicyT>
0534 RealT variance(hyperexponential_distribution<RealT, PolicyT> const& dist)
0535 {
0536     RealT result = 0;
0537 
0538     const std::size_t n = dist.num_phases();
0539     const std::vector<RealT> probs = dist.probabilities();
0540     const std::vector<RealT> rates = dist.rates();
0541 
0542     for (std::size_t i = 0; i < n; ++i)
0543     {
0544         result += probs[i]/(rates[i]*rates[i]);
0545     }
0546 
0547     const RealT mean = boost::math::mean(dist);
0548 
0549     result = 2*result-mean*mean;
0550 
0551     return result;
0552 }
0553 
0554 template <typename RealT, typename PolicyT>
0555 RealT skewness(hyperexponential_distribution<RealT,PolicyT> const& dist)
0556 {
0557     BOOST_MATH_STD_USING
0558     const std::size_t n = dist.num_phases();
0559     const std::vector<RealT> probs = dist.probabilities();
0560     const std::vector<RealT> rates = dist.rates();
0561 
0562     RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
0563     RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
0564     RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
0565     for (std::size_t i = 0; i < n; ++i)
0566     {
0567         const RealT p = probs[i];
0568         const RealT r = rates[i];
0569         const RealT r2 = r*r;
0570         const RealT r3 = r2*r;
0571 
0572         s1 += p/r;
0573         s2 += p/r2;
0574         s3 += p/r3;
0575     }
0576 
0577     const RealT s1s1 = s1*s1;
0578 
0579     const RealT num = (6*s3 - (3*(2*s2 - s1s1) + s1s1)*s1);
0580     const RealT den = (2*s2 - s1s1);
0581 
0582     return num / pow(den, static_cast<RealT>(1.5));
0583 }
0584 
0585 template <typename RealT, typename PolicyT>
0586 RealT kurtosis(hyperexponential_distribution<RealT,PolicyT> const& dist)
0587 {
0588     const std::size_t n = dist.num_phases();
0589     const std::vector<RealT> probs = dist.probabilities();
0590     const std::vector<RealT> rates = dist.rates();
0591 
0592     RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
0593     RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
0594     RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
0595     RealT s4 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^4}
0596     for (std::size_t i = 0; i < n; ++i)
0597     {
0598         const RealT p = probs[i];
0599         const RealT r = rates[i];
0600         const RealT r2 = r*r;
0601         const RealT r3 = r2*r;
0602         const RealT r4 = r3*r;
0603 
0604         s1 += p/r;
0605         s2 += p/r2;
0606         s3 += p/r3;
0607         s4 += p/r4;
0608     }
0609 
0610     const RealT s1s1 = s1*s1;
0611 
0612     const RealT num = (24*s4 - 24*s3*s1 + 3*(2*(2*s2 - s1s1) + s1s1)*s1s1);
0613     const RealT den = (2*s2 - s1s1);
0614 
0615     return num/(den*den);
0616 }
0617 
0618 template <typename RealT, typename PolicyT>
0619 RealT kurtosis_excess(hyperexponential_distribution<RealT,PolicyT> const& dist)
0620 {
0621     return kurtosis(dist) - 3;
0622 }
0623 
0624 template <typename RealT, typename PolicyT>
0625 RealT mode(hyperexponential_distribution<RealT,PolicyT> const& /*dist*/)
0626 {
0627     return 0;
0628 }
0629 
0630 }} // namespace boost::math
0631 
0632 #ifdef _MSC_VER
0633 #pragma warning (pop)
0634 #endif
0635 // This include must be at the end, *after* the accessors
0636 // for this distribution have been defined, in order to
0637 // keep compilers that support two-phase lookup happy.
0638 #include <boost/math/distributions/detail/derived_accessors.hpp>
0639 #include <boost/math/distributions/detail/generic_quantile.hpp>
0640 
0641 #endif // BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL