File indexing completed on 2025-09-17 08:35:26
0001
0002
0003
0004
0005
0006
0007 #ifndef BOOST_STATS_HOLTSMARK_HPP
0008 #define BOOST_STATS_HOLTSMARK_HPP
0009
0010 #ifdef _MSC_VER
0011 #pragma warning(push)
0012 #pragma warning(disable : 4127)
0013 #endif
0014
0015 #include <boost/math/tools/config.hpp>
0016 #include <boost/math/tools/numeric_limits.hpp>
0017 #include <boost/math/tools/tuple.hpp>
0018 #include <boost/math/tools/type_traits.hpp>
0019 #include <boost/math/constants/constants.hpp>
0020 #include <boost/math/distributions/complement.hpp>
0021 #include <boost/math/distributions/detail/common_error_handling.hpp>
0022 #include <boost/math/distributions/detail/derived_accessors.hpp>
0023 #include <boost/math/tools/rational.hpp>
0024 #include <boost/math/special_functions/cbrt.hpp>
0025 #include <boost/math/policies/policy.hpp>
0026 #include <boost/math/policies/error_handling.hpp>
0027 #include <boost/math/tools/promotion.hpp>
0028
0029 #ifndef BOOST_MATH_HAS_NVRTC
0030 #include <boost/math/distributions/fwd.hpp>
0031 #include <boost/math/tools/big_constant.hpp>
0032 #include <utility>
0033 #include <cmath>
0034 #endif
0035
0036 namespace boost { namespace math {
0037 template <class RealType, class Policy>
0038 class holtsmark_distribution;
0039
0040 namespace detail {
0041
0042 template <class RealType>
0043 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_pdf_plus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 53>&)
0044 {
0045 BOOST_MATH_STD_USING
0046 RealType result;
0047
0048 if (x < 1) {
0049
0050
0051 BOOST_MATH_STATIC const RealType P[8] = {
0052 static_cast<RealType>(2.87352751452164445024e-1),
0053 static_cast<RealType>(1.18577398160636011811e-3),
0054 static_cast<RealType>(-2.16526599226820153260e-2),
0055 static_cast<RealType>(2.06462093371223113592e-3),
0056 static_cast<RealType>(2.43382128013710116747e-3),
0057 static_cast<RealType>(-2.15930711444603559520e-4),
0058 static_cast<RealType>(-1.04197836740809694657e-4),
0059 static_cast<RealType>(1.74679078247026597959e-5),
0060 };
0061 BOOST_MATH_STATIC const RealType Q[8] = {
0062 static_cast<RealType>(1.),
0063 static_cast<RealType>(4.12654472808214997252e-3),
0064 static_cast<RealType>(2.93891863033354755743e-1),
0065 static_cast<RealType>(8.70867222155141724171e-3),
0066 static_cast<RealType>(3.15027515421842640745e-2),
0067 static_cast<RealType>(2.11141832312672190669e-3),
0068 static_cast<RealType>(1.23545521355569424975e-3),
0069 static_cast<RealType>(1.58181113865348637475e-4),
0070 };
0071
0072 result = tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
0073 }
0074 else if (x < 2) {
0075 RealType t = x - 1;
0076
0077
0078
0079 BOOST_MATH_STATIC const RealType P[8] = {
0080 static_cast<RealType>(2.02038159607840130389e-1),
0081 static_cast<RealType>(-1.20368541260123112191e-2),
0082 static_cast<RealType>(-3.19235497414059987151e-3),
0083 static_cast<RealType>(8.88546222140257289852e-3),
0084 static_cast<RealType>(-5.37287599824602316660e-4),
0085 static_cast<RealType>(-2.39059149972922243276e-4),
0086 static_cast<RealType>(9.19551014849109417931e-5),
0087 static_cast<RealType>(-8.45210544648986348854e-6),
0088 };
0089 BOOST_MATH_STATIC const RealType Q[8] = {
0090 static_cast<RealType>(1.),
0091 static_cast<RealType>(6.11634701234079515138e-1),
0092 static_cast<RealType>(4.39922162828115412952e-1),
0093 static_cast<RealType>(1.73609068791154078128e-1),
0094 static_cast<RealType>(6.15831808473403962054e-2),
0095 static_cast<RealType>(1.64364949550314788638e-2),
0096 static_cast<RealType>(2.94399615562137394932e-3),
0097 static_cast<RealType>(4.99662797033514776061e-4),
0098 };
0099
0100 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0101 }
0102 else if (x < 4) {
0103 RealType t = x - 2;
0104
0105
0106
0107 BOOST_MATH_STATIC const RealType P[10] = {
0108 static_cast<RealType>(8.45396231261375200568e-2),
0109 static_cast<RealType>(-9.15509628797205847643e-3),
0110 static_cast<RealType>(1.82052933284907579374e-2),
0111 static_cast<RealType>(-2.44157914076021125182e-4),
0112 static_cast<RealType>(8.40871885414177705035e-4),
0113 static_cast<RealType>(7.26592615882060553326e-5),
0114 static_cast<RealType>(-1.87768359214600016641e-6),
0115 static_cast<RealType>(1.65716961206268668529e-6),
0116 static_cast<RealType>(-1.73979640146948858436e-7),
0117 static_cast<RealType>(7.24351142163396584236e-9),
0118 };
0119 BOOST_MATH_STATIC const RealType Q[9] = {
0120 static_cast<RealType>(1.),
0121 static_cast<RealType>(8.88099527896838765666e-1),
0122 static_cast<RealType>(6.53896948546877341992e-1),
0123 static_cast<RealType>(2.96296982585381844864e-1),
0124 static_cast<RealType>(1.14107585229341489833e-1),
0125 static_cast<RealType>(3.08914671331207488189e-2),
0126 static_cast<RealType>(7.03139384769200902107e-3),
0127 static_cast<RealType>(1.01201814277918577790e-3),
0128 static_cast<RealType>(1.12200113270398674535e-4),
0129 };
0130
0131 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0132 }
0133 else if (x < 8) {
0134 RealType t = x - 4;
0135
0136
0137
0138 BOOST_MATH_STATIC const RealType P[11] = {
0139 static_cast<RealType>(1.36729417918039395222e-2),
0140 static_cast<RealType>(1.19749117683408419115e-2),
0141 static_cast<RealType>(6.26780921592414207398e-3),
0142 static_cast<RealType>(1.84846137440857608948e-3),
0143 static_cast<RealType>(3.39307829797262466829e-4),
0144 static_cast<RealType>(2.73606960463362090866e-5),
0145 static_cast<RealType>(-1.14419838471713498717e-7),
0146 static_cast<RealType>(1.64552336875610576993e-8),
0147 static_cast<RealType>(-7.95501797873739398143e-10),
0148 static_cast<RealType>(2.55422885338760255125e-11),
0149 static_cast<RealType>(-4.12196487201928768038e-13),
0150 };
0151 BOOST_MATH_STATIC const RealType Q[9] = {
0152 static_cast<RealType>(1.),
0153 static_cast<RealType>(1.61334003864149486454e0),
0154 static_cast<RealType>(1.28348868912975898501e0),
0155 static_cast<RealType>(6.36594545291321210154e-1),
0156 static_cast<RealType>(2.11478937436277242988e-1),
0157 static_cast<RealType>(4.71550897200311391579e-2),
0158 static_cast<RealType>(6.64679677197059316835e-3),
0159 static_cast<RealType>(4.93706832858615742810e-4),
0160 static_cast<RealType>(9.26919465059204396228e-6),
0161 };
0162
0163 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0164 }
0165 else if (x < 16) {
0166 RealType t = x - 8;
0167
0168
0169
0170 BOOST_MATH_STATIC const RealType P[8] = {
0171 static_cast<RealType>(1.90649774685568282390e-3),
0172 static_cast<RealType>(7.43708409389806210196e-4),
0173 static_cast<RealType>(9.53777347766128955847e-5),
0174 static_cast<RealType>(3.79800193823252979170e-6),
0175 static_cast<RealType>(2.84836656088572745575e-8),
0176 static_cast<RealType>(-1.22715411241721187620e-10),
0177 static_cast<RealType>(8.56789906419220801109e-13),
0178 static_cast<RealType>(-4.17784858891714869163e-15),
0179 };
0180 BOOST_MATH_STATIC const RealType Q[7] = {
0181 static_cast<RealType>(1.),
0182 static_cast<RealType>(7.29383849235788831455e-1),
0183 static_cast<RealType>(2.16287201867831015266e-1),
0184 static_cast<RealType>(3.28789040872705709070e-2),
0185 static_cast<RealType>(2.64660789801664804789e-3),
0186 static_cast<RealType>(1.03662724048874906931e-4),
0187 static_cast<RealType>(1.47658125632566407978e-6),
0188 };
0189
0190 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0191 }
0192 else if (x < 32) {
0193 RealType t = x - 16;
0194
0195
0196
0197 BOOST_MATH_STATIC const RealType P[9] = {
0198 static_cast<RealType>(3.07231582988207590928e-4),
0199 static_cast<RealType>(5.16108848485823513911e-5),
0200 static_cast<RealType>(3.05776014220862257678e-6),
0201 static_cast<RealType>(7.64787444325088143218e-8),
0202 static_cast<RealType>(7.40426355029090813961e-10),
0203 static_cast<RealType>(1.57451122102115077046e-12),
0204 static_cast<RealType>(-2.14505675750572782093e-15),
0205 static_cast<RealType>(5.11204601013038698192e-18),
0206 static_cast<RealType>(-9.00826023095223871551e-21),
0207 };
0208 BOOST_MATH_STATIC const RealType Q[8] = {
0209 static_cast<RealType>(1.),
0210 static_cast<RealType>(3.28966789835486457746e-1),
0211 static_cast<RealType>(4.46981634258601621625e-2),
0212 static_cast<RealType>(3.22521297380474263906e-3),
0213 static_cast<RealType>(1.31985203433890010111e-4),
0214 static_cast<RealType>(3.01507121087942156530e-6),
0215 static_cast<RealType>(3.47777238523841835495e-8),
0216 static_cast<RealType>(1.50780503777979189972e-10),
0217 };
0218
0219 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0220 }
0221 else if (x < 64) {
0222 RealType t = x - 32;
0223
0224
0225
0226 BOOST_MATH_STATIC const RealType P[8] = {
0227 static_cast<RealType>(5.25741312407933720817e-5),
0228 static_cast<RealType>(2.34425802342454046697e-6),
0229 static_cast<RealType>(3.30042747965497652847e-8),
0230 static_cast<RealType>(1.58564820095683252738e-10),
0231 static_cast<RealType>(1.54070758384735212486e-13),
0232 static_cast<RealType>(-8.89232435250437247197e-17),
0233 static_cast<RealType>(8.14099948000080417199e-20),
0234 static_cast<RealType>(-4.61828164399178360925e-23),
0235 };
0236 BOOST_MATH_STATIC const RealType Q[7] = {
0237 static_cast<RealType>(1.),
0238 static_cast<RealType>(1.23544974283127158019e-1),
0239 static_cast<RealType>(6.01210465184576626802e-3),
0240 static_cast<RealType>(1.45390926665383063500e-4),
0241 static_cast<RealType>(1.80594709695117864840e-6),
0242 static_cast<RealType>(1.06088985542982155880e-8),
0243 static_cast<RealType>(2.20287881724613104903e-11),
0244 };
0245
0246 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0247 }
0248 else {
0249 RealType t = 1 / sqrt(x * x * x);
0250
0251
0252
0253 BOOST_MATH_STATIC const RealType P[4] = {
0254 static_cast<RealType>(2.99206710301074508455e-1),
0255 static_cast<RealType>(-8.62469397757826072306e-1),
0256 static_cast<RealType>(1.74661995423629075890e-1),
0257 static_cast<RealType>(8.75909164947413479137e-1),
0258 };
0259 BOOST_MATH_STATIC const RealType Q[3] = {
0260 static_cast<RealType>(1.),
0261 static_cast<RealType>(-6.07405848111002255020e0),
0262 static_cast<RealType>(1.34068401972703571636e1),
0263 };
0264
0265 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t) * t / x;
0266 }
0267
0268 return result;
0269 }
0270
0271
0272 template <class RealType>
0273 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_pdf_plus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 113>&)
0274 {
0275 BOOST_MATH_STD_USING
0276 RealType result;
0277
0278 if (x < 1) {
0279
0280
0281
0282 BOOST_MATH_STATIC const RealType P[14] = {
0283 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.87352751452164445024482162286994868262e-1),
0284 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.07622509000285763173795736744991173600e-2),
0285 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.75004930885780661923539070646503039258e-2),
0286 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.72358602484766333657370198137154157310e-4),
0287 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.80082654994455046054228833198744292689e-3),
0288 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.53887200727615005180492399966262970151e-4),
0289 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07684195532179300820096260852073763880e-4),
0290 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.39151986881253768780523679256708455051e-6),
0291 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.31700721746247708002568205696938014069e-6),
0292 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.52538425285394123789751606057231671946e-7),
0293 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.13997198703138372752313576244312091598e-8),
0294 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74788965317036115104204201740144738267e-9),
0295 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.18994723428163008965406453309272880204e-10),
0296 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.49208308902369087634036371223527932419e-11),
0297 };
0298 BOOST_MATH_STATIC const RealType Q[15] = {
0299 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0300 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.07053963271862256947338846403373278592e-1),
0301 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.30146528469038357598785392812229655811e-1),
0302 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.22168809220570888957518451361426420755e-2),
0303 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.30911708477464424748895247790513118077e-2),
0304 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.32037605861909345291211474811347056388e-3),
0305 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.37380742268959889784160508321242249326e-3),
0306 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.17777859396994816599172003124202701362e-4),
0307 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.69357597449425742856874347560067711953e-4),
0308 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.22061268498705703002731594804187464212e-5),
0309 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.03685918248668999775572498175163352453e-5),
0310 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.42037705933347925911510259098903765388e-6),
0311 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.13651251802353350402740200231061151003e-7),
0312 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.15390928968620849348804301589542546367e-8),
0313 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.96186359077726620124148756657971390386e-9),
0314 };
0315
0316 result = tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
0317 }
0318 else if (x < 2) {
0319 RealType t = x - 1;
0320
0321
0322
0323
0324 BOOST_MATH_STATIC const RealType P[14] = {
0325 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.02038159607840130388931544845552929992e-1),
0326 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.85240836242909590376775233472494840074e-2),
0327 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.92928437142375928121954427888812334305e-2),
0328 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.56075992368354834619445578502239925632e-3),
0329 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.85410663490566091471288623735720924369e-3),
0330 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.09160661432404033681463938555133581443e-4),
0331 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.60290555290385646856693819798655258098e-4),
0332 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.24420942563054709904053017769325945705e-5),
0333 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.06370233020823161157791461691510091864e-6),
0334 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.51562554221298564845071290898761434388e-7),
0335 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.77361020844998296791409508640756247324e-8),
0336 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.10768937536097342883548728871352580308e-9),
0337 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.97810512763454658214572490850146305033e-10),
0338 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.77430867682132459087084564268263825239e-11),
0339 };
0340 BOOST_MATH_STATIC const RealType Q[15] = {
0341 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0342 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.30030169049261634787262795838348954434e-1),
0343 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.45935676273909940847479638179887855033e-1),
0344 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.14724239378269259016679286177700667008e-1),
0345 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21580123796578745240828564510740594111e-1),
0346 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.70287348745451818082884807214512422940e-2),
0347 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.46859813604124308580987785473592196488e-2),
0348 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.49627445316021031361394030382456867983e-3),
0349 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.05157712406194406440213776605199788051e-3),
0350 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.91541875103990251411297099611180353187e-4),
0351 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.47960462287955806798879139599079388744e-5),
0352 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.80126815763067695392857052825785263211e-6),
0353 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04569118116204820761181992270024358122e-6),
0354 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.63024381269503801668229632579505279520e-8),
0355 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.00967434338725770754103109040982001783e-8),
0356 };
0357
0358 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0359 }
0360 else if (x < 4) {
0361 RealType t = x - 2;
0362
0363
0364
0365
0366 BOOST_MATH_STATIC const RealType P[17] = {
0367 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.45396231261375200568114750897618690566e-2),
0368 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.83107635287140466760500899510899613385e-3),
0369 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.71690205829238281191309321676655995475e-2),
0370 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.95995611963950467634398178757261552497e-3),
0371 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.52444689050426648467863527289016233648e-3),
0372 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.40423239472181137610649503303203209123e-4),
0373 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.72181273738390251101985797318639680476e-4),
0374 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.11423032981781501087311583401963332916e-5),
0375 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.37255768388351332508195641748235373885e-5),
0376 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.25140171472943043666747084376053803301e-6),
0377 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.98925617316135247540832898350427842870e-7),
0378 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.27532592227329144332335468302536835334e-8),
0379 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.25846339430429852334026937219420930290e-9),
0380 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.17852693845678292024334670662803641322e-10),
0381 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.60008761860786244203651832067697976835e-11),
0382 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.85474213475378978699789357283744252832e-13),
0383 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.05561259222780127064607109581719435800e-15),
0384 };
0385 BOOST_MATH_STATIC const RealType Q[17] = {
0386 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0387 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.08902510590064634965634560548380735284e0),
0388 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.60127698266075086782895988567899172787e-1),
0389 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.73299227011247478433171171063045855612e-1),
0390 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.94019328695445269130845646745771017029e-1),
0391 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21478511930928822349285105322914093227e-1),
0392 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.42888485420705779382804725954524839381e-2),
0393 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.36839484685440714657854206969200824442e-2),
0394 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.77082068469251728028552451884848161629e-3),
0395 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.92625563541021144576900067220082880950e-4),
0396 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.88302521658522279293312672887766072876e-4),
0397 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.37703703342287521257351386589629343948e-5),
0398 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.32454189932655869016489443530062686013e-6),
0399 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.81822848072558151338694737514507945151e-7),
0400 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.40176559099032106726456059226930240477e-8),
0401 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.55722115663529425797132143276461872035e-9),
0402 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.18236697046568703899375072798708359035e-10),
0403 };
0404
0405 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0406 }
0407 else if (x < 8) {
0408 RealType t = x - 4;
0409
0410
0411
0412
0413 BOOST_MATH_STATIC const RealType P[20] = {
0414 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.36729417918039395222067998266923903488e-2),
0415 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.05780369334958736210688756060527042344e-2),
0416 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.88449456199223796440901487003885388570e-2),
0417 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20213624124017393492512893302682417041e-2),
0418 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.95009975955570002297453163471062373746e-3),
0419 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.35668345583965001606910217518443864382e-3),
0420 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.69006847702829685253055277085000792826e-4),
0421 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.08366922884479491780654020783735539561e-4),
0422 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.71834368599657597252633517017213868956e-5),
0423 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.88269472722301903965736220481240654265e-6),
0424 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.37797139843759131750966129487745639531e-6),
0425 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.72390971590654495025982276782257590019e-7),
0426 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.68354503497961090303189233611418754374e-8),
0427 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20749461042713568368181066233478264894e-9),
0428 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.71167265100639100355339812752823628805e-11),
0429 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.37497033071709741762372104386727560387e-12),
0430 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.08992504249040731356693038222581843266e-15),
0431 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.03311745412603363076896897060158476094e-17),
0432 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.89266184062176002518506060373755160893e-19),
0433 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.22157263424086267338486564980223658130e-22),
0434 };
0435 BOOST_MATH_STATIC const RealType Q[19] = {
0436 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0437 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.24254809760594824834854946949546737102e0),
0438 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.66740386908805016172202899592418717176e0),
0439 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.17175023341071972435947261868288366592e0),
0440 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33939409711833786730168591434519989589e0),
0441 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.58859674176126567295417811572162232222e-1),
0442 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.66346764121676348703738437519493817401e-1),
0443 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.00687534341032230207422557716131339293e-2),
0444 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.57352381181825892637055619366793541271e-2),
0445 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.23955067096868711061473058513398543786e-3),
0446 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.28279376429637301814743591831507047825e-3),
0447 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.22380760186302431267562571014519501842e-4),
0448 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.21421839279245792393425090284615681867e-5),
0449 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.80151544531415207189620615654737831345e-6),
0450 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.57177992740786529976179511261318869505e-7),
0451 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.54223623314672019530719165336863142227e-8),
0452 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.26447311109866547647645308621478963788e-9),
0453 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.76514314007336173875469200193103772775e-11),
0454 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.63785420481380041892410849615596985103e-13),
0455 };
0456
0457 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0458 }
0459 else if (x < 16) {
0460 RealType t = x - 8;
0461
0462
0463
0464
0465 BOOST_MATH_STATIC const RealType P[17] = {
0466 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.90649774685568282389553481307707005425e-3),
0467 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.70151946710788532273869130544473159961e-3),
0468 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.76188245008605985768921328976193346788e-3),
0469 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.94997481586873355765607596415761713534e-4),
0470 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.83556339450065349619118429405554762845e-4),
0471 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.39766178753196196595432796889473826698e-5),
0472 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.48835240264191055418415753552383932859e-6),
0473 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.23205178959384483669515397903609703992e-7),
0474 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.80665018951397281836428650435128239368e-8),
0475 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.27113208299726105096854812628329439191e-9),
0476 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.75272882929773945317046764560516449105e-11),
0477 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.73174017370926101455204470047842394787e-13),
0478 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.55548825213165929101134655786361059720e-15),
0479 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.79786015549170518239230891794588988732e-17),
0480 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.73060731998834750292816218696923192789e-20),
0481 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.62842837946576938669447109511449827857e-23),
0482 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33878078951302606409419167741041897986e-26),
0483 };
0484 BOOST_MATH_STATIC const RealType Q[17] = {
0485 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0486 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.75629880937514507004822969528240262723e0),
0487 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.43883005193126748135739157335919076027e0),
0488 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.26826935326347315479579835343751624245e-1),
0489 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.52263130214924169696993839078084050641e-1),
0490 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.34708681216662922818631865761136370252e-2),
0491 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19079618273418070513605131981401070622e-2),
0492 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.68812668867590621701228940772852924670e-3),
0493 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.81323523265546812020317698573638573275e-4),
0494 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.46655191174052062382710487986225631851e-5),
0495 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.79864553144116347379916608661549264281e-7),
0496 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.81866770335021233700248077520029108331e-8),
0497 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15408288688082935176022095799735538723e-9),
0498 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.29421875915133979067465908221270435168e-11),
0499 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.74564282803894180881025348633912184161e-13),
0500 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.69782249847887916810010605635064672269e-15),
0501 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.85875986197737611300062229945990879767e-18),
0502 };
0503
0504 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0505 }
0506 else if (x < 32) {
0507 RealType t = x - 16;
0508
0509
0510
0511
0512 BOOST_MATH_STATIC const RealType P[15] = {
0513 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.07231582988207590928480356376941073734e-4),
0514 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.35574911514921623999866392865480652576e-4),
0515 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.60219401814297026945664630716309317015e-5),
0516 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.84927222345566515103807882976184811760e-6),
0517 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.96327408363203008584583124982694689234e-7),
0518 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.86684048703029160378252571846517319101e-9),
0519 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.65469175974819997602752600929172261626e-10),
0520 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.21842057555380199566706533446991680612e-12),
0521 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.53555106309423641769303386628162522042e-14),
0522 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.92686543698369260585325449306538016446e-16),
0523 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.01838615452860702770059987567879856504e-18),
0524 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.65492535746962514730615062374864701860e-21),
0525 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.53395563720606494853374354984531107080e-24),
0526 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.99957357701259203151690416786669242677e-28),
0527 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.46357124817620384236108395837490629563e-31),
0528 };
0529 BOOST_MATH_STATIC const RealType Q[15] = {
0530 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0531 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.02259092175256156108200465685980768901e-1),
0532 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.63438230616954606028022008517920766366e-1),
0533 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.63880061357592661176130881772975919418e-2),
0534 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.81911305852397235014131637306820512975e-3),
0535 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.09690724408294608306577482852270088377e-4),
0536 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.11275552068434583356476295833517496456e-5),
0537 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.24681861037105338446379750828324925566e-7),
0538 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16034379416965004687140768474445096709e-8),
0539 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.23234481703249409689976894391287818596e-10),
0540 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.93297387560911081670605071704642179017e-12),
0541 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.50338428974314371000017727660753886621e-14),
0542 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.27897854868353937080739431205940604582e-16),
0543 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.37798740524930029176790562876868493344e-19),
0544 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.29920082153439260734550295626576101192e-22),
0545 };
0546
0547 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0548 }
0549 else if (x < 64) {
0550 RealType t = x - 32;
0551
0552
0553
0554
0555 BOOST_MATH_STATIC const RealType P[15] = {
0556 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.25741312407933720816582583160953651639e-5),
0557 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.04434146174674791036848306058526901384e-6),
0558 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.68959516304795838166182070164492846877e-7),
0559 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.78859935261158263390023581309925613858e-8),
0560 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.21854067989018450973827853792407054510e-10),
0561 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20573856697340412957421887367218135538e-11),
0562 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30843538021351383101589538141878424462e-13),
0563 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.05991458689384045976214216819611949900e-16),
0564 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.82253708752556965233757129893944884411e-18),
0565 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.97645331663303764054986066027964294209e-21),
0566 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.69353366461654917577775981574517182648e-24),
0567 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.59050144462227302681332505386238071973e-27),
0568 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.85165507189649330971049854127575847359e-31),
0569 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.70711310565669331853925519429988855964e-34),
0570 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.72047006026700174884151916064158941262e-38),
0571 };
0572 BOOST_MATH_STATIC const RealType Q[14] = {
0573 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0574 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.50985661940624198574968436548711898948e-1),
0575 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.81705882167596649186405364717835589894e-2),
0576 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.86537779048672498307196786015602357729e-3),
0577 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.09555188550938733096253930959407749063e-5),
0578 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.41930442687159455334801545898059105733e-6),
0579 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.09084284266255183930305946875294557622e-8),
0580 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.58122754063904909636061457739518406730e-10),
0581 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.91800215912676651584368499126132687326e-12),
0582 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.66413330532845384974993669138524203429e-14),
0583 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.65919563020196445006309683624384862816e-16),
0584 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.61596083414169579692212575079167989319e-19),
0585 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16321386033703806802403099255708972015e-21),
0586 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.90892719803158002834365234646982537288e-25),
0587 };
0588
0589 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0590 }
0591 else {
0592 RealType t = 1 / sqrt(x * x * x);
0593
0594
0595
0596
0597 BOOST_MATH_STATIC const RealType P[8] = {
0598 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.99206710301074508454959544950786401357e-1),
0599 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.75243304700875633383991614142545185173e0),
0600 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.69652690455351600373808930804785330828e1),
0601 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.36233941060408773406522171349397343951e2),
0602 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.28958973553713980463808202034854958375e2),
0603 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.55704950313835982743029388151551925282e2),
0604 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.28767698270323629107775935552991333781e2),
0605 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.80591252844738626580182351673066365090e1),
0606 };
0607 BOOST_MATH_STATIC const RealType Q[7] = {
0608 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0609 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.57593243741246726197476469913307836496e1),
0610 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.99458751269722094414105565700775283458e2),
0611 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.91043982880665229427553316951582511317e3),
0612 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.99054490423334526438490907473548839751e3),
0613 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.36948968143124830402744607365089118030e4),
0614 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.13781639547150826385071482161074041168e4),
0615 };
0616
0617 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t) * t / x;
0618 }
0619
0620 return result;
0621 }
0622
0623
0624 template <class RealType>
0625 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_pdf_imp_prec(const RealType& x, const boost::math::integral_constant<int, 53> &tag) {
0626 BOOST_MATH_STD_USING
0627
0628 return holtsmark_pdf_plus_imp_prec<RealType>(abs(x), tag);
0629 }
0630
0631 template <class RealType>
0632 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_pdf_imp_prec(const RealType& x, const boost::math::integral_constant<int, 113>& tag) {
0633 BOOST_MATH_STD_USING
0634
0635 return holtsmark_pdf_plus_imp_prec<RealType>(abs(x), tag);
0636 }
0637
0638 template <class RealType, class Policy>
0639 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_pdf_imp(const holtsmark_distribution<RealType, Policy>& dist, const RealType& x) {
0640
0641
0642
0643
0644 BOOST_MATH_STD_USING
0645 constexpr auto function = "boost::math::pdf(holtsmark<%1%>&, %1%)";
0646 RealType result = 0;
0647 RealType location = dist.location();
0648 RealType scale = dist.scale();
0649
0650 if (false == detail::check_location(function, location, &result, Policy()))
0651 {
0652 return result;
0653 }
0654 if (false == detail::check_scale(function, scale, &result, Policy()))
0655 {
0656 return result;
0657 }
0658 if (false == detail::check_x(function, x, &result, Policy()))
0659 {
0660 return result;
0661 }
0662
0663 typedef typename tools::promote_args<RealType>::type result_type;
0664 typedef typename policies::precision<result_type, Policy>::type precision_type;
0665 typedef boost::math::integral_constant<int,
0666 precision_type::value <= 0 ? 0 :
0667 precision_type::value <= 53 ? 53 :
0668 precision_type::value <= 113 ? 113 : 0
0669 > tag_type;
0670
0671 static_assert(tag_type::value, "The Holtsmark distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
0672
0673 RealType u = (x - location) / scale;
0674
0675 result = holtsmark_pdf_imp_prec(u, tag_type()) / scale;
0676
0677 return result;
0678 }
0679
0680 template <class RealType>
0681 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_cdf_plus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 53>&)
0682 {
0683 BOOST_MATH_STD_USING
0684 RealType result;
0685
0686 if (x < 0.5) {
0687
0688
0689 BOOST_MATH_STATIC const RealType P[6] = {
0690 static_cast<RealType>(5.0e-1),
0691 static_cast<RealType>(-1.34752580674786639030e-1),
0692 static_cast<RealType>(1.86318418252163378528e-2),
0693 static_cast<RealType>(1.04499798132512381447e-2),
0694 static_cast<RealType>(-1.60831910014592923855e-3),
0695 static_cast<RealType>(1.38823662364438342844e-4),
0696 };
0697 BOOST_MATH_STATIC const RealType Q[7] = {
0698 static_cast<RealType>(1.),
0699 static_cast<RealType>(3.05200341554753776087e-1),
0700 static_cast<RealType>(2.12663999430421346175e-1),
0701 static_cast<RealType>(7.23836000984872591553e-2),
0702 static_cast<RealType>(1.67941072412796299986e-2),
0703 static_cast<RealType>(4.71213644318790580839e-3),
0704 static_cast<RealType>(5.86825130959777535991e-4),
0705 };
0706
0707 result = tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
0708 }
0709 else if (x < 1) {
0710 RealType t = x - 0.5f;
0711
0712
0713
0714 BOOST_MATH_STATIC const RealType P[7] = {
0715 static_cast<RealType>(3.60595773518728397351e-1),
0716 static_cast<RealType>(5.75238626843218819756e-1),
0717 static_cast<RealType>(-3.31245319943021227117e-1),
0718 static_cast<RealType>(1.48132966310216368831e-1),
0719 static_cast<RealType>(-2.32875122617713403365e-2),
0720 static_cast<RealType>(2.08038303148835575624e-3),
0721 static_cast<RealType>(6.01511310581302829460e-6),
0722 };
0723 BOOST_MATH_STATIC const RealType Q[7] = {
0724 static_cast<RealType>(1.),
0725 static_cast<RealType>(2.32264360456739861886e0),
0726 static_cast<RealType>(6.39715443864749851087e-1),
0727 static_cast<RealType>(5.03940458163958921325e-1),
0728 static_cast<RealType>(8.84780893031413729292e-2),
0729 static_cast<RealType>(3.01497774031208621961e-2),
0730 static_cast<RealType>(3.45886005612108195390e-3),
0731 };
0732
0733 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0734 }
0735 else if (x < 2) {
0736 RealType t = x - 1;
0737
0738
0739
0740 BOOST_MATH_STATIC const RealType P[8] = {
0741 static_cast<RealType>(2.43657975600729535515e-1),
0742 static_cast<RealType>(-6.02286263626532324632e-2),
0743 static_cast<RealType>(4.68361231392743283350e-2),
0744 static_cast<RealType>(-1.13497179885838883972e-3),
0745 static_cast<RealType>(1.20141595689136205012e-3),
0746 static_cast<RealType>(3.02402304689333413256e-4),
0747 static_cast<RealType>(-1.22652173865646814676e-6),
0748 static_cast<RealType>(2.29521832683440044997e-6),
0749 };
0750 BOOST_MATH_STATIC const RealType Q[9] = {
0751 static_cast<RealType>(1.),
0752 static_cast<RealType>(5.82002427359748247121e-1),
0753 static_cast<RealType>(3.96529686558825119743e-1),
0754 static_cast<RealType>(1.49690294526117385174e-1),
0755 static_cast<RealType>(5.15049953937764895435e-2),
0756 static_cast<RealType>(1.30218216530450637564e-2),
0757 static_cast<RealType>(2.53640337919037463659e-3),
0758 static_cast<RealType>(3.79575042317720710311e-4),
0759 static_cast<RealType>(2.94034997185982139717e-5),
0760 };
0761
0762 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0763 }
0764 else if (x < 4) {
0765 RealType t = x - 2;
0766
0767
0768
0769 BOOST_MATH_STATIC const RealType P[9] = {
0770 static_cast<RealType>(1.05039829654829164883e-1),
0771 static_cast<RealType>(1.66621813028423002562e-2),
0772 static_cast<RealType>(2.93820049104275137099e-2),
0773 static_cast<RealType>(3.36850260303189378587e-3),
0774 static_cast<RealType>(2.27925819398326978014e-3),
0775 static_cast<RealType>(1.66394162680543987783e-4),
0776 static_cast<RealType>(4.51400415642703075050e-5),
0777 static_cast<RealType>(2.12164734714059446913e-7),
0778 static_cast<RealType>(1.69306881760242775488e-8),
0779 };
0780 BOOST_MATH_STATIC const RealType Q[9] = {
0781 static_cast<RealType>(1.),
0782 static_cast<RealType>(9.63461239051296108254e-1),
0783 static_cast<RealType>(6.54183344973801096611e-1),
0784 static_cast<RealType>(2.92007762594247903696e-1),
0785 static_cast<RealType>(1.00918751132022401499e-1),
0786 static_cast<RealType>(2.55899135910670703945e-2),
0787 static_cast<RealType>(4.85740416919283630358e-3),
0788 static_cast<RealType>(6.11435190489589619906e-4),
0789 static_cast<RealType>(4.10953248859973756440e-5),
0790 };
0791
0792 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0793 }
0794 else if (x < 8) {
0795 RealType t = x - 4;
0796
0797
0798
0799 BOOST_MATH_STATIC const RealType P[8] = {
0800 static_cast<RealType>(3.05754562114095142887e-2),
0801 static_cast<RealType>(3.25462617990002726083e-2),
0802 static_cast<RealType>(1.78205524297204753048e-2),
0803 static_cast<RealType>(5.61565369088816402420e-3),
0804 static_cast<RealType>(1.05695297340067353106e-3),
0805 static_cast<RealType>(9.93588579804511250576e-5),
0806 static_cast<RealType>(2.94302107205379334662e-6),
0807 static_cast<RealType>(1.09016076876928010898e-8),
0808 };
0809 BOOST_MATH_STATIC const RealType Q[9] = {
0810 static_cast<RealType>(1.),
0811 static_cast<RealType>(1.51164395622515150122e0),
0812 static_cast<RealType>(1.09391911233213526071e0),
0813 static_cast<RealType>(4.77950346062744800732e-1),
0814 static_cast<RealType>(1.34082684956852773925e-1),
0815 static_cast<RealType>(2.37572579895639589816e-2),
0816 static_cast<RealType>(2.41806218388337284640e-3),
0817 static_cast<RealType>(1.10378140456646280084e-4),
0818 static_cast<RealType>(1.31559373832822136249e-6),
0819 };
0820
0821 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0822 }
0823 else if (x < 16) {
0824 RealType t = x - 8;
0825
0826
0827
0828 BOOST_MATH_STATIC const RealType P[8] = {
0829 static_cast<RealType>(9.47408470248235718880e-3),
0830 static_cast<RealType>(4.70888722333356024081e-3),
0831 static_cast<RealType>(8.66397831692913140221e-4),
0832 static_cast<RealType>(7.11721056656424862090e-5),
0833 static_cast<RealType>(2.56320582355149253994e-6),
0834 static_cast<RealType>(3.37749186035552101702e-8),
0835 static_cast<RealType>(8.32182844837952178153e-11),
0836 static_cast<RealType>(-8.80541360484428526226e-14),
0837 };
0838 BOOST_MATH_STATIC const RealType Q[8] = {
0839 static_cast<RealType>(1.),
0840 static_cast<RealType>(6.98261117346347123707e-1),
0841 static_cast<RealType>(1.97823959738695249267e-1),
0842 static_cast<RealType>(2.89311735096848395080e-2),
0843 static_cast<RealType>(2.30087055379997473849e-3),
0844 static_cast<RealType>(9.60592522700377510007e-5),
0845 static_cast<RealType>(1.84474415187428058231e-6),
0846 static_cast<RealType>(1.14339998084523151203e-8),
0847 };
0848
0849 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0850 }
0851 else if (x < 32) {
0852 RealType t = x - 16;
0853
0854
0855
0856 BOOST_MATH_STATIC const RealType P[8] = {
0857 static_cast<RealType>(3.19610991747326729867e-3),
0858 static_cast<RealType>(5.11880074251341162590e-4),
0859 static_cast<RealType>(2.80704092977662888563e-5),
0860 static_cast<RealType>(6.31310155466346114729e-7),
0861 static_cast<RealType>(5.29618446795457166842e-9),
0862 static_cast<RealType>(9.20292337847562746519e-12),
0863 static_cast<RealType>(-9.16761719448360345363e-15),
0864 static_cast<RealType>(1.20433396121606479712e-17),
0865 };
0866 BOOST_MATH_STATIC const RealType Q[7] = {
0867 static_cast<RealType>(1.),
0868 static_cast<RealType>(2.56283944667056551858e-1),
0869 static_cast<RealType>(2.56811818304462676948e-2),
0870 static_cast<RealType>(1.26678062261253559927e-3),
0871 static_cast<RealType>(3.17001344827541091252e-5),
0872 static_cast<RealType>(3.68737201224811007437e-7),
0873 static_cast<RealType>(1.47625352605312785910e-9),
0874 };
0875
0876 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0877 }
0878 else if (x < 64) {
0879 RealType t = x - 32;
0880
0881
0882
0883 BOOST_MATH_STATIC const RealType P[8] = {
0884 static_cast<RealType>(1.11172037056341397612e-3),
0885 static_cast<RealType>(7.84545643188695076893e-5),
0886 static_cast<RealType>(1.94862940242223222641e-6),
0887 static_cast<RealType>(2.02704958737259525509e-8),
0888 static_cast<RealType>(7.99772378955335076832e-11),
0889 static_cast<RealType>(6.62544230949971310060e-14),
0890 static_cast<RealType>(-3.18234118727325492149e-17),
0891 static_cast<RealType>(2.03424457039308806437e-20),
0892 };
0893 BOOST_MATH_STATIC const RealType Q[7] = {
0894 static_cast<RealType>(1.),
0895 static_cast<RealType>(1.17861198759233241198e-1),
0896 static_cast<RealType>(5.45962263583663240699e-3),
0897 static_cast<RealType>(1.25274651876378267111e-4),
0898 static_cast<RealType>(1.46857544539612002745e-6),
0899 static_cast<RealType>(8.06441204620771968579e-9),
0900 static_cast<RealType>(1.53682779460286464073e-11),
0901 };
0902
0903 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
0904 }
0905 else {
0906 RealType x_cube = x * x * x;
0907 RealType t = static_cast<RealType>((boost::math::isnormal)(x_cube) ? 1 / sqrt(x_cube) : 1 / pow(sqrt(x), 3));
0908
0909
0910
0911 BOOST_MATH_STATIC const RealType P[4] = {
0912 static_cast<RealType>(1.99471140200716338970e-1),
0913 static_cast<RealType>(-6.90933799347184400422e-1),
0914 static_cast<RealType>(4.30385245884336871950e-1),
0915 static_cast<RealType>(3.52790131116013716885e-1),
0916 };
0917 BOOST_MATH_STATIC const RealType Q[3] = {
0918 static_cast<RealType>(1.),
0919 static_cast<RealType>(-5.05959751628952574534e0),
0920 static_cast<RealType>(8.04408113719341786819e0),
0921 };
0922
0923 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t) * t;
0924 }
0925
0926 return result;
0927 }
0928
0929 template <class RealType>
0930 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_cdf_plus_imp_prec(const RealType& x, const boost::math::integral_constant<int, 113>&)
0931 {
0932 BOOST_MATH_STD_USING
0933 RealType result;
0934
0935 if (x < 0.5) {
0936
0937
0938
0939 BOOST_MATH_STATIC const RealType P[12] = {
0940 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.0e-1),
0941 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.48548242430636907136192799540229598637e-1),
0942 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.31541453581608245475805834922621529866e-1),
0943 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.16579064508490250336159593502955219069e-2),
0944 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.61598809551362112011328341554044706550e-2),
0945 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.15119245273512554325709429759983470969e-3),
0946 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.02145196753734867721148927112307708045e-3),
0947 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.90817224464950088663183617156145065001e-4),
0948 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.69596202760983052482358128481956242532e-5),
0949 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.50461337222845025623869078372182437091e-6),
0950 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.62777995800923647521692709390412901586e-7),
0951 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.63937253747323898965514197114021890186e-8),
0952 };
0953 BOOST_MATH_STATIC const RealType Q[12] = {
0954 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0955 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.76090180430550757765787254935343576341e-2),
0956 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.07685236907561593034104428156351640194e-1),
0957 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.27770556484351179553611274487979706736e-2),
0958 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.99201460869149634331004096815257398515e-2),
0959 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.70139000408086498153685620963430185837e-3),
0960 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.74682544708653069148470666809094453722e-3),
0961 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.57607114117485446922700160080966856243e-4),
0962 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.01069214414741946409122492979083487977e-4),
0963 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.19996282759031441186748256811206136921e-6),
0964 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.60933466092746543579699079418115420013e-6),
0965 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.92780739162611243933581782562159603862e-8),
0966 };
0967
0968 result = tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
0969 }
0970 else if (x < 1) {
0971 RealType t = x - 0.5;
0972
0973
0974
0975
0976 BOOST_MATH_STATIC const RealType P[12] = {
0977 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.60595773518728397925852903878144761766e-1),
0978 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.46999595154527091473427440379143006753e-1),
0979 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.36962313432466566724352608642383560211e-2),
0980 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.08387290167105915393692028475888846796e-2),
0981 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.34156151832478939276011262838869269011e-2),
0982 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.15970594471853166393830585755485842021e-3),
0983 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.47022841547527682761332752928069503835e-3),
0984 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.01955019188793323293925482112543902560e-4),
0985 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.03069493388735516695142799880566783261e-4),
0986 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.61367662035593735709965982000611000987e-5),
0987 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.62800430658278408539398798888955969345e-6),
0988 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.22300086876618079439960709120163780513e-8),
0989 };
0990 BOOST_MATH_STATIC const RealType Q[12] = {
0991 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
0992 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.19740977756009966244249035150363085180e-1),
0993 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.39394884078938560974435920719979860046e-1),
0994 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.97107758486905601309707335353809421910e-2),
0995 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.36594079604957733960211938310153276332e-2),
0996 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.85712904264673773213248691029253356702e-4),
0997 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.87605080555629969548037543637523346061e-3),
0998 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.26356599628579249350545909071984757938e-4),
0999 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.79582114368994462181480978781382155103e-4),
1000 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.00970375323007336435151032145023199020e-5),
1001 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.06528824060244313614177859412028348352e-6),
1002 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.13914667697998291289987140319652513139e-7),
1003 };
1004
1005 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1006 }
1007 else if (x < 2) {
1008 RealType t = x - 1;
1009
1010
1011
1012
1013 BOOST_MATH_STATIC const RealType P[14] = {
1014 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.43657975600729535499895880792984203140e-1),
1015 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.37090874182351552816526775008685285108e-2),
1016 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.70793783828569126853147999925198280654e-2),
1017 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.27295555253412802819195403503721983066e-3),
1018 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.95916890788873842705597506423512639342e-3),
1019 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.93625795791721417553345795882983866640e-4),
1020 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.73237387099610415336810752053706403935e-4),
1021 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.08118655139419640900853055479087235138e-5),
1022 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74920069862339840183963818219485580710e-5),
1023 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.59015304773612605296533206093582658838e-6),
1024 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.57256820413579442950151375512313072105e-7),
1025 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.36240848333000575199740403759568680951e-8),
1026 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.53890585580518120552628221662318725825e-9),
1027 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.59245311730292556271235324976832000740e-10),
1028 };
1029 BOOST_MATH_STATIC const RealType Q[16] = {
1030 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1031 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.49800491033591771256676595185869442663e-1),
1032 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.35827615015880595229881139361463765537e-1),
1033 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.41657125931991211322147702760511651998e-1),
1034 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.11782602975553967179829921562737846592e-1),
1035 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.79410805176258968660086532862367842847e-2),
1036 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.22872839892405613311532856773434270554e-2),
1037 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.23742349724658114137235071924317934569e-3),
1038 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.80350762663884259375711329227548815674e-4),
1039 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.59501693037547119094683008622867020131e-4),
1040 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.86068186167498269806443077840917848151e-5),
1041 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.36940342373887783231154918541990667741e-6),
1042 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.48911186460768204167014270878839691938e-7),
1043 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.55051094964993052272146587430780404904e-8),
1044 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.96312716130620326771080033656930839768e-9),
1045 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.45496951385730104726429368791951742738e-10),
1046 };
1047
1048 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1049 }
1050 else if (x < 4) {
1051 RealType t = x - 2;
1052
1053
1054
1055
1056 BOOST_MATH_STATIC const RealType P[17] = {
1057 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.05039829654829170780787685299556996311e-1),
1058 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.28948022754388615368533934448107849329e-2),
1059 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.34139151583225691775740839359914493385e-2),
1060 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.13366377215523066657592295006960955345e-2),
1061 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.08045462837998791188853367062130086996e-2),
1062 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.37648565386728404881404199616182064711e-3),
1063 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.14881702523183566448187346081007871684e-3),
1064 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.73169022445183613027772635992366708052e-4),
1065 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.86434609673325793686202636939208406356e-5),
1066 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.20865083025640755296377488921536984172e-5),
1067 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.24550087063009488023243811976147518386e-6),
1068 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.78763689691843975658550702147832072016e-7),
1069 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.53901449493513509116902285044951137217e-8),
1070 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.64133451376958243174967226929215155126e-9),
1071 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.78021916681275593923355425070000331160e-10),
1072 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.40116391931116431686557163556034777896e-12),
1073 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.43891156389092896219387988411277617045e-15),
1074 };
1075 BOOST_MATH_STATIC const RealType Q[17] = {
1076 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1077 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30840297297890638941129884491157396207e0),
1078 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16059271948787750556465175239345182035e0),
1079 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.32333703228724830516425197803770832978e-1),
1080 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.74722711058640395885914966387546141874e-1),
1081 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.57544653090705553268164186689966671940e-1),
1082 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.65943099435809995745673109708218670077e-2),
1083 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74158626875895095042054345316232575354e-2),
1084 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.65978318533667031874695821156329945501e-3),
1085 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07907034178758316909655424935083792468e-3),
1086 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.16769901831316460137104511711073411646e-4),
1087 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.72764558714782436683712413015421717627e-5),
1088 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.42494185105694341746192094740530489313e-6),
1089 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.47668761140694808076322373887857100882e-7),
1090 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.06395948884595166425357861427667353718e-8),
1091 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.04398743651684916010743222115099630062e-9),
1092 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.47852251142917253705233519146081069006e-10),
1093 };
1094
1095 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1096 }
1097 else if (x < 8) {
1098 RealType t = x - 4;
1099
1100
1101
1102
1103 BOOST_MATH_STATIC const RealType P[20] = {
1104 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.05754562114095147060025732340404111260e-2),
1105 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.29082907781747007723015304584383528212e-2),
1106 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.15736486393536930535038719804968063752e-2),
1107 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.47619683293773846642359668429058772885e-2),
1108 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.78777185267549567154655052281449528836e-2),
1109 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.32280474402180284471490985942690221861e-3),
1110 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.45430564625797085273267452885960070105e-3),
1111 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.81643129239005795245093568930666448817e-4),
1112 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.57851748656417804512189330871167578685e-4),
1113 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.04264676511381380381909064283066657450e-5),
1114 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.84536783037391183433322642273799250079e-6),
1115 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.27169201994160924743393109705813711010e-7),
1116 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.42623512076200527099335832138825884729e-8),
1117 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.98298083389459839517970895839114237996e-9),
1118 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.71357920034737751299594537655948527288e-10),
1119 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.98563999354325930973228648080876368296e-12),
1120 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.36248172644168880316722905969876969074e-13),
1121 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.61071663749398045880261823483568866904e-16),
1122 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.95933262363502031836408613043245164787e-19),
1123 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.23007623135952181561484264810647517912e-21),
1124 };
1125 BOOST_MATH_STATIC const RealType Q[19] = {
1126 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1127 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.17760389606658547971193065026711073898e0),
1128 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.49565543987559264712057768584303008339e0),
1129 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.94822569926563661124528478579051628722e0),
1130 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.14676844425183314970062115422221981422e0),
1131 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.35960757354198367535169328826167556715e-1),
1132 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.04865288305482048252211468989095938024e-1),
1133 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.51599632816346741950206107526304703067e-2),
1134 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74065824586512487126287762563576185455e-2),
1135 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.91819078437689679732215988465616022328e-3),
1136 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.41675362609023565846569121735444698127e-4),
1137 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.17176431752708802291177040031150143262e-4),
1138 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.52367587943529121285938327286926798550e-5),
1139 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.59405168077254169099025950029539316125e-6),
1140 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.29448420654438993509041228047289503943e-7),
1141 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.70091773726833073512661846603385666642e-9),
1142 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.03909417984236210307694235586859612592e-10),
1143 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.59098698207309055890188845050700901852e-12),
1144 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.28146456709550379493162440280752828165e-14),
1145 };
1146
1147 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1148 }
1149 else if (x < 16) {
1150 RealType t = x - 8;
1151
1152
1153
1154
1155 BOOST_MATH_STATIC const RealType P[17] = {
1156 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.47408470248235665279366712356669210597e-3),
1157 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.32149712567170349164953101675315481096e-2),
1158 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.39806230477579028722350422669222849223e-3),
1159 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.19665271447867857827798702851111114658e-3),
1160 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.06773237553503696884546088197977608676e-4),
1161 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.41294370314265386485116359052296796357e-4),
1162 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74848600628353761723457890991084017928e-5),
1163 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.52963427970210468265870547940464851481e-6),
1164 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.33389244528769791436454176079341120973e-8),
1165 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.86702000100897346192018772319301428852e-9),
1166 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04192907586200235211623448416582655030e-10),
1167 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.70804269459077260463819507381406529187e-12),
1168 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.52665761996923502719902050367236108720e-14),
1169 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.01866635015788942430563628065687465455e-17),
1170 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.46658865059509532456423012727042498365e-20),
1171 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.05806999626031246519161395419216393127e-23),
1172 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.37645700309533972676063947195650607935e-26),
1173 };
1174 BOOST_MATH_STATIC const RealType Q[16] = {
1175 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1176 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.59608758824065179587008165265773042260e0),
1177 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.17347162462484266250945490058846704988e0),
1178 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.24511137251392519285309985668265122633e-1),
1179 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.58497164094526279145784765183039854604e-1),
1180 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.40787701096334660711443654292041286786e-2),
1181 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.34615029717812271556414485397095293077e-3),
1182 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.17712219229282308306346195001801048971e-4),
1183 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.24578142893420308057222282020407949529e-5),
1184 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.23429691331344898578916434987129070432e-6),
1185 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.41486460551571344910835151948209788541e-7),
1186 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.23569151219279213399210115101532416912e-9),
1187 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.21438860148387356361258237451828377118e-11),
1188 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.46770060692933726695086996017149976796e-13),
1189 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.58079984178724940266882149462170567147e-15),
1190 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19997796316046571607659704855966005180e-17),
1191 };
1192
1193 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1194 }
1195 else if (x < 32) {
1196 RealType t = x - 16;
1197
1198
1199
1200
1201 BOOST_MATH_STATIC const RealType P[16] = {
1202 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.19610991747326725339429696634365932643e-3),
1203 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74646611039453235739153286141429338461e-3),
1204 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.13331430865337412098234177873337036811e-4),
1205 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.58947311195482646360642638791970923726e-5),
1206 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.79226752074485124923797575635082779509e-6),
1207 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.73081326043094090549807549513512116319e-7),
1208 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.05408849431691450650464797109033182773e-8),
1209 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.75716486666270246158606737499459843698e-10),
1210 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.81075133718930099703621109350447306080e-12),
1211 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.41318403854345256855350755520072932140e-14),
1212 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.70220987388883118699419526374266655536e-16),
1213 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.38711669183547686107032286389030018396e-18),
1214 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.31300491679098874872172866011372530771e-21),
1215 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.99223939265527640018203019269955457925e-25),
1216 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.18316957049006338447926554380706108087e-28),
1217 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.47298013808154174645356607027685011183e-32),
1218 };
1219 BOOST_MATH_STATIC const RealType Q[15] = {
1220 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1221 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.42561659771176310412113991024326129105e-1),
1222 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.83353398513931409985504410958429204317e-1),
1223 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.07254121026393428163401481487563215753e-2),
1224 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.36667170168890854756291846167398225330e-3),
1225 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.54019749685699795075624204463938596069e-4),
1226 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.35321766966107368759516431698755077175e-5),
1227 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.13350720091296144188972188966204719103e-7),
1228 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.38107118390482863395863404555696613407e-8),
1229 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.59267757423034664579822257229473088511e-10),
1230 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.29549090773392058626428205171445962834e-12),
1231 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.69922128600755513676564327500993739088e-14),
1232 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.31337037977667816904491472174578334375e-16),
1233 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.28088047429043940293455906253037445768e-19),
1234 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.01213369826105495256520034997664473667e-22),
1235 };
1236
1237 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1238 }
1239 else if (x < 64) {
1240 RealType t = x - 32;
1241
1242
1243
1244
1245 BOOST_MATH_STATIC const RealType P[15] = {
1246 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.11172037056341396583040940446061501972e-3),
1247 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.09383362521204903801686281772843962372e-4),
1248 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.71440982391172647693486692131238237524e-5),
1249 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.01685075759372692173396811575536866699e-7),
1250 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.36574894913423830789864836789988898151e-8),
1251 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.59644999935503505576091023207315968623e-10),
1252 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.95573282292603122067959656607163690356e-12),
1253 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.10361486103428098366627536344769789255e-14),
1254 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.80946231978997457068033851007899208222e-16),
1255 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.39341134002270945594553624959145830111e-19),
1256 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.72307967968246649714945553177468010263e-21),
1257 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.41093409238620968003297675770440189200e-24),
1258 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.70464969040825495565297719377221881609e-28),
1259 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.25341184125872354328990441812668510029e-32),
1260 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.54663422572657744572284839697818435372e-36),
1261 };
1262 BOOST_MATH_STATIC const RealType Q[14] = {
1263 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1264 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.35632539169215377884393376342532721825e-1),
1265 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.46975491055790597767445011183622230556e-2),
1266 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.51806800870130779095309105834725930741e-3),
1267 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.07403939022350326847926101278370197017e-5),
1268 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.66046114012817696416892197044749060854e-6),
1269 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.16723371111678357128668916130767948114e-8),
1270 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.22972796529973974439855811125888770710e-10),
1271 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.91073180314665062004869985842402705599e-12),
1272 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.43753004383633382914827301174981384446e-14),
1273 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.77313206526206002175298314351042907499e-17),
1274 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.32850553089285690900825039331456226080e-19),
1275 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.85369976595753971532524294793778805089e-22),
1276 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.28948021485210224442871255909409155592e-25),
1277 };
1278
1279 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t);
1280 }
1281 else {
1282 RealType x_cube = x * x * x;
1283 RealType t = (boost::math::isnormal)(x_cube) ? 1 / sqrt(x_cube) : 1 / pow(sqrt(x), 3);
1284
1285
1286
1287
1288 BOOST_MATH_STATIC const RealType P[7] = {
1289 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.99471140200716338969973029967190934238e-1),
1290 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.48481268366645066801385595379873318648e0),
1291 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.64087860141734943856373451877569284231e1),
1292 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.45555576045996041260191574503331698473e1),
1293 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.43290677381328916734673040799990923091e2),
1294 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.63011127597770211743774689830589568544e1),
1295 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.61127812511057623691896118746981066174e0),
1296 };
1297 BOOST_MATH_STATIC const RealType Q[6] = {
1298 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1299 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.90660291309478542795359451748753358123e1),
1300 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.60631500002415936739518466837931659008e2),
1301 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.88655117367497147850617559832966816275e2),
1302 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.48350179543067311398059386524702440002e3),
1303 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.18873206560757944356169500452181141647e3),
1304 };
1305
1306 result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t) * t;
1307 }
1308
1309 return result;
1310 }
1311
1312 template <class RealType>
1313 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_cdf_imp_prec(const RealType& x, bool complement, const boost::math::integral_constant<int, 53>& tag) {
1314 if (x >= 0) {
1315 return complement ? holtsmark_cdf_plus_imp_prec(x, tag) : 1 - holtsmark_cdf_plus_imp_prec(x, tag);
1316 }
1317 else if (x <= 0) {
1318 return complement ? 1 - holtsmark_cdf_plus_imp_prec(-x, tag) : holtsmark_cdf_plus_imp_prec(-x, tag);
1319 }
1320 else {
1321 return boost::math::numeric_limits<RealType>::quiet_NaN();
1322 }
1323 }
1324
1325 template <class RealType>
1326 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_cdf_imp_prec(const RealType& x, bool complement, const boost::math::integral_constant<int, 113>& tag) {
1327 if (x >= 0) {
1328 return complement ? holtsmark_cdf_plus_imp_prec(x, tag) : 1 - holtsmark_cdf_plus_imp_prec(x, tag);
1329 }
1330 else if (x <= 0) {
1331 return complement ? 1 - holtsmark_cdf_plus_imp_prec(-x, tag) : holtsmark_cdf_plus_imp_prec(-x, tag);
1332 }
1333 else {
1334 return boost::math::numeric_limits<RealType>::quiet_NaN();
1335 }
1336 }
1337
1338 template <class RealType, class Policy>
1339 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_cdf_imp(const holtsmark_distribution<RealType, Policy>& dist, const RealType& x, bool complement) {
1340
1341
1342
1343
1344 BOOST_MATH_STD_USING
1345 constexpr auto function = "boost::math::cdf(holtsmark<%1%>&, %1%)";
1346 RealType result = 0;
1347 RealType location = dist.location();
1348 RealType scale = dist.scale();
1349
1350 if (false == detail::check_location(function, location, &result, Policy()))
1351 {
1352 return result;
1353 }
1354 if (false == detail::check_scale(function, scale, &result, Policy()))
1355 {
1356 return result;
1357 }
1358 if (false == detail::check_x(function, x, &result, Policy()))
1359 {
1360 return result;
1361 }
1362
1363 typedef typename tools::promote_args<RealType>::type result_type;
1364 typedef typename policies::precision<result_type, Policy>::type precision_type;
1365 typedef boost::math::integral_constant<int,
1366 precision_type::value <= 0 ? 0 :
1367 precision_type::value <= 53 ? 53 :
1368 precision_type::value <= 113 ? 113 : 0
1369 > tag_type;
1370
1371 static_assert(tag_type::value, "The Holtsmark distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
1372
1373 RealType u = (x - location) / scale;
1374
1375 result = holtsmark_cdf_imp_prec(u, complement, tag_type());
1376
1377 return result;
1378 }
1379
1380 template <class RealType>
1381 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_quantile_upper_imp_prec(const RealType& p, const boost::math::integral_constant<int, 53>&)
1382 {
1383 BOOST_MATH_STD_USING
1384 RealType result;
1385
1386 if (ilogb(p) >= -2) {
1387 RealType t = -log2(ldexp(p, 1));
1388
1389
1390
1391 BOOST_MATH_STATIC const RealType P[8] = {
1392 static_cast<RealType>(7.59789769759814986929e-1),
1393 static_cast<RealType>(1.27515008642985381862e0),
1394 static_cast<RealType>(4.38619247097275579086e-1),
1395 static_cast<RealType>(-1.25521537863031799276e-1),
1396 static_cast<RealType>(-2.58555599127223857177e-2),
1397 static_cast<RealType>(1.20249932437303932411e-2),
1398 static_cast<RealType>(-1.36753104188136881229e-3),
1399 static_cast<RealType>(6.57491277860092595148e-5),
1400 };
1401 BOOST_MATH_STATIC const RealType Q[9] = {
1402 static_cast<RealType>(1.),
1403 static_cast<RealType>(2.48696501912062288766e0),
1404 static_cast<RealType>(2.06239370128871696850e0),
1405 static_cast<RealType>(5.67577904795053902651e-1),
1406 static_cast<RealType>(-2.89022828087034733385e-2),
1407 static_cast<RealType>(-2.17207943286085236479e-2),
1408 static_cast<RealType>(3.14098307020814954876e-4),
1409 static_cast<RealType>(3.51448381406676891012e-4),
1410 static_cast<RealType>(5.71995514606568751522e-5),
1411 };
1412
1413 result = t * tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1414 }
1415 else if (ilogb(p) >= -3) {
1416 RealType t = -log2(ldexp(p, 2));
1417
1418
1419
1420 BOOST_MATH_STATIC const RealType P[8] = {
1421 static_cast<RealType>(3.84521387984759064238e-1),
1422 static_cast<RealType>(4.15763727809667641126e-1),
1423 static_cast<RealType>(-1.73610240124046440578e-2),
1424 static_cast<RealType>(-3.89915764128788049837e-2),
1425 static_cast<RealType>(1.07252911248451890192e-2),
1426 static_cast<RealType>(7.62613727089795367882e-4),
1427 static_cast<RealType>(-3.11382403581073580481e-4),
1428 static_cast<RealType>(3.93093062843177374871e-5),
1429 };
1430 BOOST_MATH_STATIC const RealType Q[7] = {
1431 static_cast<RealType>(1.),
1432 static_cast<RealType>(6.76193897442484823754e-1),
1433 static_cast<RealType>(3.70953499602257825764e-2),
1434 static_cast<RealType>(-2.84211795745477605398e-2),
1435 static_cast<RealType>(2.66146101014551209760e-3),
1436 static_cast<RealType>(1.85436727973937413751e-3),
1437 static_cast<RealType>(2.00318687649825430725e-4),
1438 };
1439
1440 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1441 }
1442 else if (ilogb(p) >= -4) {
1443 RealType t = -log2(ldexp(p, 3));
1444
1445
1446
1447 BOOST_MATH_STATIC const RealType P[8] = {
1448 static_cast<RealType>(4.46943301497773314460e-1),
1449 static_cast<RealType>(-1.07267614417424412546e-2),
1450 static_cast<RealType>(-7.21097021064631831756e-2),
1451 static_cast<RealType>(2.93948745441334193469e-2),
1452 static_cast<RealType>(-7.33259305010485915480e-4),
1453 static_cast<RealType>(-1.38660725579083612045e-3),
1454 static_cast<RealType>(2.95410432808739478857e-4),
1455 static_cast<RealType>(-2.88688017391292485867e-5),
1456 };
1457 BOOST_MATH_STATIC const RealType Q[7] = {
1458 static_cast<RealType>(1.),
1459 static_cast<RealType>(-2.72809429017073648893e-2),
1460 static_cast<RealType>(-7.85526213469762960803e-2),
1461 static_cast<RealType>(2.41360900478283465241e-2),
1462 static_cast<RealType>(3.44597797125179611095e-3),
1463 static_cast<RealType>(-8.65046428689780375806e-4),
1464 static_cast<RealType>(-1.04147382037315517658e-4),
1465 };
1466
1467 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1468 }
1469 else if (ilogb(p) >= -6) {
1470 RealType t = -log2(ldexp(p, 4));
1471
1472
1473
1474 BOOST_MATH_STATIC const RealType P[10] = {
1475 static_cast<RealType>(4.25344469980677332786e-1),
1476 static_cast<RealType>(3.42055470008289997369e-2),
1477 static_cast<RealType>(9.33607217644370441642e-2),
1478 static_cast<RealType>(4.57057092587794346086e-2),
1479 static_cast<RealType>(1.16149976708336017542e-2),
1480 static_cast<RealType>(6.40479797962035786337e-3),
1481 static_cast<RealType>(1.58526153828271386329e-3),
1482 static_cast<RealType>(3.84032908993313260466e-4),
1483 static_cast<RealType>(6.98960839033991110525e-5),
1484 static_cast<RealType>(9.66690587477825432174e-6),
1485 };
1486 BOOST_MATH_STATIC const RealType Q[10] = {
1487 static_cast<RealType>(1.),
1488 static_cast<RealType>(1.60044610004497775009e-1),
1489 static_cast<RealType>(2.41675490962065446592e-1),
1490 static_cast<RealType>(1.13752642382290596388e-1),
1491 static_cast<RealType>(4.05058759031434785584e-2),
1492 static_cast<RealType>(1.59432816225295660111e-2),
1493 static_cast<RealType>(4.79286678946992027479e-3),
1494 static_cast<RealType>(1.16048151070154814260e-3),
1495 static_cast<RealType>(2.01755520912887201472e-4),
1496 static_cast<RealType>(2.82884561026909054732e-5),
1497 };
1498
1499 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1500 }
1501 else if (ilogb(p) >= -8) {
1502 RealType t = -log2(ldexp(p, 6));
1503
1504
1505
1506 BOOST_MATH_STATIC const RealType P[9] = {
1507 static_cast<RealType>(3.68520435599726877886e-1),
1508 static_cast<RealType>(8.26682725061327242371e-1),
1509 static_cast<RealType>(6.85235826889543887309e-1),
1510 static_cast<RealType>(3.28640408399661746210e-1),
1511 static_cast<RealType>(9.04801242897407528807e-2),
1512 static_cast<RealType>(1.57470088502958130451e-2),
1513 static_cast<RealType>(1.61541023176880542598e-3),
1514 static_cast<RealType>(9.78919203915954346945e-5),
1515 static_cast<RealType>(9.71371309261213597491e-8),
1516 };
1517 BOOST_MATH_STATIC const RealType Q[8] = {
1518 static_cast<RealType>(1.),
1519 static_cast<RealType>(2.29132755303753682133e0),
1520 static_cast<RealType>(1.95530118226232968288e0),
1521 static_cast<RealType>(9.55029685883545321419e-1),
1522 static_cast<RealType>(2.68254036588585643328e-1),
1523 static_cast<RealType>(4.61398419640231283164e-2),
1524 static_cast<RealType>(4.66131710581568432246e-3),
1525 static_cast<RealType>(2.94491397241310968725e-4),
1526 };
1527
1528 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1529 }
1530 else if (ilogb(p) >= -16) {
1531 RealType t = -log2(ldexp(p, 8));
1532
1533
1534
1535 BOOST_MATH_STATIC const RealType P[10] = {
1536 static_cast<RealType>(3.48432718168951419458e-1),
1537 static_cast<RealType>(2.99680703419193973028e-1),
1538 static_cast<RealType>(1.09531896991852433149e-1),
1539 static_cast<RealType>(2.28766133215975559897e-2),
1540 static_cast<RealType>(3.09836969941710802698e-3),
1541 static_cast<RealType>(2.89346186674853481383e-4),
1542 static_cast<RealType>(1.96344583080243707169e-5),
1543 static_cast<RealType>(9.48415601271652569275e-7),
1544 static_cast<RealType>(3.08821091232356755783e-8),
1545 static_cast<RealType>(5.58003465656339818416e-10),
1546 };
1547 BOOST_MATH_STATIC const RealType Q[10] = {
1548 static_cast<RealType>(1.),
1549 static_cast<RealType>(8.73938978582311007855e-1),
1550 static_cast<RealType>(3.21771888210250878162e-1),
1551 static_cast<RealType>(6.70432401844821772827e-2),
1552 static_cast<RealType>(9.05369648218831664411e-3),
1553 static_cast<RealType>(8.50098390828726795296e-4),
1554 static_cast<RealType>(5.73568804840571459050e-5),
1555 static_cast<RealType>(2.78374120155590875053e-6),
1556 static_cast<RealType>(9.03427646135263412003e-8),
1557 static_cast<RealType>(1.63556457120944847882e-9),
1558 };
1559
1560 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1561 }
1562 else if (ilogb(p) >= -32) {
1563 RealType t = -log2(ldexp(p, 16));
1564
1565
1566
1567 BOOST_MATH_STATIC const RealType P[10] = {
1568 static_cast<RealType>(3.41419813138786920868e-1),
1569 static_cast<RealType>(1.30219412019722274099e-1),
1570 static_cast<RealType>(2.36047671342109636195e-2),
1571 static_cast<RealType>(2.67913051721210953893e-3),
1572 static_cast<RealType>(2.10896260337301129968e-4),
1573 static_cast<RealType>(1.19804595761611765179e-5),
1574 static_cast<RealType>(4.91470756460287578143e-7),
1575 static_cast<RealType>(1.38299844947707591018e-8),
1576 static_cast<RealType>(2.25766283556816829070e-10),
1577 static_cast<RealType>(-8.46510608386806647654e-18),
1578 };
1579 BOOST_MATH_STATIC const RealType Q[9] = {
1580 static_cast<RealType>(1.),
1581 static_cast<RealType>(3.81461950831351846380e-1),
1582 static_cast<RealType>(6.91390438866520696447e-2),
1583 static_cast<RealType>(7.84798596829449138229e-3),
1584 static_cast<RealType>(6.17735117400536913546e-4),
1585 static_cast<RealType>(3.50937328177439258136e-5),
1586 static_cast<RealType>(1.43958654321452532854e-6),
1587 static_cast<RealType>(4.05109749922716264456e-8),
1588 static_cast<RealType>(6.61306247924109415113e-10),
1589 };
1590
1591 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1592 }
1593 else if (ilogb(p) >= -64) {
1594 RealType t = -log2(ldexp(p, 32));
1595
1596
1597
1598 BOOST_MATH_STATIC const RealType P[9] = {
1599 static_cast<RealType>(3.41392032051575965049e-1),
1600 static_cast<RealType>(1.53372256183388434238e-1),
1601 static_cast<RealType>(3.33822240038718319714e-2),
1602 static_cast<RealType>(4.66328786929735228532e-3),
1603 static_cast<RealType>(4.67981207864367711082e-4),
1604 static_cast<RealType>(3.48119463063280710691e-5),
1605 static_cast<RealType>(2.17755850282052679342e-6),
1606 static_cast<RealType>(7.40424342670289242177e-8),
1607 static_cast<RealType>(4.61294046336533026640e-9),
1608 };
1609 BOOST_MATH_STATIC const RealType Q[9] = {
1610 static_cast<RealType>(1.),
1611 static_cast<RealType>(4.49255524669251621744e-1),
1612 static_cast<RealType>(9.77826688966262423974e-2),
1613 static_cast<RealType>(1.36596271675764346980e-2),
1614 static_cast<RealType>(1.37080296105355418281e-3),
1615 static_cast<RealType>(1.01970588303201339768e-4),
1616 static_cast<RealType>(6.37846903580539445994e-6),
1617 static_cast<RealType>(2.16883897125962281968e-7),
1618 static_cast<RealType>(1.35121503608967367232e-8),
1619 };
1620
1621 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1622 }
1623 else {
1624 const BOOST_MATH_STATIC_LOCAL_VARIABLE RealType c = ldexp(cbrt(constants::pi<RealType>()), 1);
1625
1626 RealType p_square = p * p;
1627
1628 if ((boost::math::isnormal)(p_square)) {
1629 result = 1 / (cbrt(p_square) * c);
1630 }
1631 else if (p > 0) {
1632 result = 1 / (cbrt(p) * cbrt(p) * c);
1633 }
1634 else {
1635 result = boost::math::numeric_limits<RealType>::infinity();
1636 }
1637 }
1638
1639 return result;
1640 }
1641
1642
1643 template <class RealType>
1644 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_quantile_upper_imp_prec(const RealType& p, const boost::math::integral_constant<int, 113>&)
1645 {
1646 BOOST_MATH_STD_USING
1647 RealType result;
1648
1649 if (ilogb(p) >= -2) {
1650 RealType u = -log2(ldexp(p, 1));
1651
1652 if (u < 0.5) {
1653
1654
1655
1656 BOOST_MATH_STATIC const RealType P[14] = {
1657 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.59789769759815031687162026655576575384e-1),
1658 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.23247138049619855169890925442523844619e0),
1659 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.35351935489348780511227763760731136136e0),
1660 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.17321534695821967609074567968260505604e0),
1661 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30930523792327030433989902919481147250e0),
1662 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.47676800034255152477549544991291837378e-2),
1663 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.09952071024064609787697026812259269093e-1),
1664 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.65479872964217159571026674930672527880e-3),
1665 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.30204907832301876030269224513949605725e-3),
1666 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.61038349134944320766567917361933431224e-4),
1667 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.17242905696479357297850061918336600969e-5),
1668 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.43640101589433162893041733511239841220e-5),
1669 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.39406616773257816628641556843884616119e-6),
1670 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.54871597065387376666252643921309051097e-7),
1671 };
1672 BOOST_MATH_STATIC const RealType Q[13] = {
1673 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1674 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.06310038178166385607814371094968073940e0),
1675 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06144046990424238286303107360481469219e1),
1676 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.17860081295611631017119482265353540470e1),
1677 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.26319639748358310901277622665331115333e0),
1678 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.25962127567362715217159291513550804588e0),
1679 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.65543974081934423010588955830131357921e-1),
1680 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.80331848633772107482330422252085368575e-2),
1681 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.97426948050874772305317056836660558275e-3),
1682 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.10722999873793200671617106731723252507e-3),
1683 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.68871255379198546500699434161302033826e-4),
1684 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.70190278641952708999014435335172772138e-5),
1685 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.11562497711461468804693130702653542297e-7),
1686 };
1687
1688 result = u * tools::evaluate_polynomial(P, u) / (tools::evaluate_polynomial(Q, u) * cbrt(p * p));
1689 }
1690 else {
1691 RealType t = u - static_cast <RealType>(0.5);
1692
1693
1694
1695
1696 BOOST_MATH_STATIC const RealType P[13] = {
1697 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.63490994331899195346399558699533994243e-1),
1698 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.68682839419340144322747963938810505658e-1),
1699 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.63089084712442063245295709191126453412e-1),
1700 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.24910510426787025593146475670961782647e-1),
1701 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.14005632199839351091767181535761567981e-2),
1702 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.88144015238275997284082820907124267240e-4),
1703 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.12015895125039876623372795832970536355e-3),
1704 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.96386756665254981286292821446749025989e-4),
1705 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.82855208595003635135641502084317667629e-4),
1706 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.18007513930934295792217002090233670917e-5),
1707 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.82563310387467580262182864644541746616e-6),
1708 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.52830681121195099547078704713089681353e-7),
1709 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.91383571211375811878311159248551586411e-8),
1710 };
1711 BOOST_MATH_STATIC const RealType Q[12] = {
1712 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1713 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.96820655322136936855997114940653763917e0),
1714 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30209571878469737819039455443404070107e0),
1715 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.61235660141139249931521613001554108034e-1),
1716 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.31683133997030095798635713869616211197e-2),
1717 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.20681979279848555447978496580849290723e-3),
1718 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.08958899028812330281115719259773001136e-3),
1719 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.02478613175545210977059079339657545008e-4),
1720 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.68653479132148912896487809682760117627e-5),
1721 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.35166554499214836086438565154832646441e-5),
1722 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.95409975934011596023165394669416595582e-6),
1723 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.84312112139729518216217161835365265801e-7),
1724 };
1725
1726 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1727 }
1728 }
1729 else if (ilogb(p) >= -3) {
1730 RealType u = -log2(ldexp(p, 2));
1731
1732 if (u < 0.5) {
1733
1734
1735
1736 BOOST_MATH_STATIC const RealType P[12] = {
1737 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.84521387984759060262188972210005114936e-1),
1738 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.70837834325236202821328032137877091515e-1),
1739 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.53856963029219911450181095566096563059e-1),
1740 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.97659091653089105048621336944687224192e-2),
1741 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.77726241585387617566937892474685179582e-2),
1742 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21657224955483589784473724186837316423e-2),
1743 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.76357400631206366078287330192525531850e-3),
1744 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.45967265853745968166172649261385754061e-4),
1745 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.08367654892620484522749804048317330020e-5),
1746 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.41224530727710207304898458924763411052e-5),
1747 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.02908228738160003274584644834000176496e-6),
1748 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.05702214080592377840761032481067834813e-7),
1749 };
1750 BOOST_MATH_STATIC const RealType Q[12] = {
1751 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1752 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33954869248363301881659953529609341564e0),
1753 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.73738626674455393272550888585363920917e-1),
1754 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.90708494363306682523722238824373341707e-2),
1755 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.49559648492983033200126224112060119905e-2),
1756 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.07561158260652000950392950266037061167e-3),
1757 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.30349651195547682860585068738648645100e-3),
1758 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.21766408404123861757376277367204136764e-4),
1759 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.22181499366766592894880124261171657846e-5),
1760 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.74488053046587079829684775540618210211e-6),
1761 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.90504597668186854963746384968119788469e-6),
1762 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.45195198322028676384075318222338781298e-7),
1763 };
1764
1765 result = tools::evaluate_polynomial(P, u) / (tools::evaluate_polynomial(Q, u) * cbrt(p * p));
1766 }
1767 else {
1768 RealType t = u - static_cast <RealType>(0.5);
1769
1770
1771
1772
1773 BOOST_MATH_STATIC const RealType P[12] = {
1774 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.34418795581931891732555950599385666106e-1),
1775 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.13006013029934051875748102515422669897e-1),
1776 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.27990072710518465265454549585803147529e-2),
1777 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.82530244963278920355650323928131927272e-2),
1778 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.05335741422175616606162502617378682462e-2),
1779 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.71242678756797136217651369710748524650e-3),
1780 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.65147398836785709305701073315614307906e-3),
1781 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.23912765853731378067295654886575185240e-4),
1782 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.77861910171412622761254991979036167882e-5),
1783 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.11971510714149983297022108523700437739e-5),
1784 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.23649928279010039670034778778065846828e-6),
1785 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.99636080473697209793683863161785312159e-8),
1786 };
1787 BOOST_MATH_STATIC const RealType Q[12] = {
1788 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1789 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.95056572065373808001002483348789719155e-1),
1790 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.55702988004729812458415992666809422570e-2),
1791 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.07586989542594910084052301521098115194e-2),
1792 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.96831670560124470215505714403486118412e-2),
1793 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.86445076378084412691927796983792892534e-3),
1794 BOOST_MATH_BIG_CONSTANT(RealType, 113, -8.75566285003039738258189045863064261980e-4),
1795 BOOST_MATH_BIG_CONSTANT(RealType, 113, -7.18557444175572723760508226182075127685e-5),
1796 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.66667716357950609103712975111660496416e-5),
1797 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.70999480357934082364999779023268059131e-6),
1798 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.14604868719110256415222454908306045416e-8),
1799 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.32724040071094913191419223901752642417e-8),
1800 };
1801
1802 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1803 }
1804 }
1805 else if (ilogb(p) >= -4) {
1806 RealType t = -log2(ldexp(p, 3));
1807
1808
1809
1810
1811 BOOST_MATH_STATIC const RealType P[15] = {
1812 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.46943301497773318715008398224877079279e-1),
1813 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.85403413700924949902626248891615772650e-2),
1814 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.02791895890363892816315784780533893399e-1),
1815 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.89147412486638444082129846251261616763e-2),
1816 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.93382251168424191872267997181870008850e-3),
1817 BOOST_MATH_BIG_CONSTANT(RealType, 113, -9.68332196426082871660060467570049113632e-3),
1818 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.88720436260994811649162949644253306037e-3),
1819 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.34099304204778307050211441936900839075e-4),
1820 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.42970601149275611131932131801993030928e-4),
1821 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.19329425598839605828710629592687495198e-5),
1822 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.48826007216547106568423189194739111033e-6),
1823 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.47132934846160946190230821709692067279e-6),
1824 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.34123780321108493820637601375183345528e-7),
1825 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.64549285026064221742294542922996905241e-8),
1826 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.72723306533295983872420985773212608299e-9),
1827 };
1828 BOOST_MATH_STATIC const RealType Q[15] = {
1829 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1830 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.23756826160440280076231428938184359865e-1),
1831 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.46557011055563840763437682311082689407e-1),
1832 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.18907861669025579159409035585375166964e-1),
1833 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.09998981512549500250715800529896557509e-3),
1834 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.09496663758959409482213456915225652712e-2),
1835 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.37086325651334206453116588474211557676e-3),
1836 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.65325780110454655811120026458133145750e-4),
1837 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.93435549562125602056160657604473721758e-4),
1838 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.34967558308250784125219085040752451132e-5),
1839 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.73883529653464036447550624641291181317e-6),
1840 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.88600727347267778330635397957540267359e-7),
1841 BOOST_MATH_BIG_CONSTANT(RealType, 113, -6.26681383000234695948685993798733295748e-9),
1842 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.19871610873353691152255428262732390602e-8),
1843 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.42468017918888155246438948321084323623e-9),
1844 };
1845
1846 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1847 }
1848 else if (ilogb(p) >= -5) {
1849 RealType u = -log2(ldexp(p, 4));
1850
1851 if (u < 0.5) {
1852
1853
1854
1855 BOOST_MATH_STATIC const RealType P[12] = {
1856 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.25344469980677353573160570139298422046e-1),
1857 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.41915371584999983192100443156935649063e-1),
1858 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.02829239548689190780023994008688591230e-1),
1859 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.29283473326959885625548350158197923999e-2),
1860 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.01078477165670046284950196047161898687e-3),
1861 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.02714892887893367912743194877742997622e-3),
1862 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.43133417775367444366548711083157149060e-4),
1863 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.34782994090554432391320506638030058071e-4),
1864 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.06742736859237185836735105245477248882e-5),
1865 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.55982601406660341132288721616681417444e-6),
1866 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.57770758189194396236862269776507019313e-7),
1867 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.29311341249565125992213260043135188072e-8),
1868 };
1869 BOOST_MATH_STATIC const RealType Q[12] = {
1870 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1871 BOOST_MATH_BIG_CONSTANT(RealType, 113, -2.54021943144355190773797361537886598583e-1),
1872 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.30965787836836308380896385568728211303e-1),
1873 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.19314242976592846926644622802257778872e-2),
1874 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.84123785238634690769817401191138848504e-3),
1875 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.75779029464908805680899310810660326192e-3),
1876 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15078294915445673781718097749944059134e-3),
1877 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.84667183003626452412083824490324913477e-4),
1878 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.59521438712225874821007396323337016693e-5),
1879 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.90446539427779905568600432145715126083e-6),
1880 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.21425779911599424040614866482614099753e-7),
1881 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.00972806247654369646317764344373036462e-8),
1882 };
1883
1884 result = tools::evaluate_polynomial(P, u) / (tools::evaluate_polynomial(Q, u) * cbrt(p * p));
1885 }
1886 else {
1887 RealType t = u - static_cast <RealType>(0.5);
1888
1889
1890
1891
1892 BOOST_MATH_STATIC const RealType P[13] = {
1893 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.08071367192424306005939751362206079160e-1),
1894 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.94625900993512461462097316785202943274e-1),
1895 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.55970241156822104458842450713854737857e-1),
1896 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.07663066299810473476390199553510422731e-2),
1897 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.89859986209620592557993828310690990189e-3),
1898 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.04002735956724252558290154433164340078e-3),
1899 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.28754717941144647796091692241880059406e-3),
1900 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.19307116062867039608045413276099792797e-4),
1901 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.02377178609994923303160815309590928289e-5),
1902 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.71739619655097982325716241977619135216e-6),
1903 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.70229045058419872036870274360537396648e-7),
1904 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.90495731447121207951661931979310025968e-7),
1905 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.23210708203609461650368387780135568863e-8),
1906 };
1907 BOOST_MATH_STATIC const RealType Q[11] = {
1908 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1909 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.93402256203255215539822867473993726421e-1),
1910 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.42452702043886045884356307934634512995e-1),
1911 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.16981055684612802160174937997247813645e-2),
1912 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.39560623514414816165791968511612762553e-2),
1913 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.26014275897567952035148355055139912545e-3),
1914 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.42163967753843746501638925686714935099e-3),
1915 BOOST_MATH_BIG_CONSTANT(RealType, 113, -3.63605648300801696460942201096159808446e-5),
1916 BOOST_MATH_BIG_CONSTANT(RealType, 113, -4.55933967787268788177266789383155699064e-5),
1917 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.41526208021076709058374666903111908743e-5),
1918 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.08505866202670144225100385141263360218e-6),
1919 };
1920
1921 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1922 }
1923 }
1924 else if (ilogb(p) >= -6) {
1925 RealType t = -log2(ldexp(p, 5));
1926
1927
1928
1929
1930 BOOST_MATH_STATIC const RealType P[16] = {
1931 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.92042979500197776619414802317216082414e-1),
1932 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.94742044285563829335663810275331541585e-2),
1933 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.14525306632578654372860377652983462776e-1),
1934 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.88893010132758460781753381176593178775e-2),
1935 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.08491462791290535107958214106528611951e-1),
1936 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.61374431854187722720094162894017991926e-2),
1937 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.11641062509116613779440753514902522337e-2),
1938 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.12474548036763970495563846370119556004e-3),
1939 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.48140831258790372410036499310440980121e-3),
1940 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.26913338169355215445128368312197650848e-4),
1941 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.63109797282729701768942543985418804075e-4),
1942 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.55296802973076575732233624155433324402e-5),
1943 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.72108609713971908723724065216410393928e-6),
1944 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.93328436272999507339897246655916666269e-7),
1945 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.72119240610740992234979508242967886200e-8),
1946 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.17836139198065889244530078295061548097e-10),
1947 };
1948 BOOST_MATH_STATIC const RealType Q[15] = {
1949 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1950 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.78065342260594920160228973261455037923e-1),
1951 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.08575070304822733863613657779515344137e-1),
1952 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.81185785915044621118680763035984134530e-1),
1953 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.87597191269586886460326897968559867853e-1),
1954 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.07903258768761230286548634868645339678e-1),
1955 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.88395769450457864233486684232536503140e-2),
1956 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.05678227243099671420442217017131559055e-2),
1957 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.24803207742284923122212652186826674987e-3),
1958 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.06094715338829793088081672723947647238e-3),
1959 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.96454433858093590192363331553516923090e-4),
1960 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.94509901530299070041475386866323617753e-5),
1961 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.49001710126540196485963921184736711193e-5),
1962 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.58899179756014192338509671769986887613e-6),
1963 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.06916561094749601736592488829778059190e-8),
1964 };
1965
1966 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
1967 }
1968 else if (ilogb(p) >= -8) {
1969 RealType t = -log2(ldexp(p, 6));
1970
1971
1972
1973
1974 BOOST_MATH_STATIC const RealType P[18] = {
1975 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.68520435599726860132888599110871216319e-1),
1976 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.01076105507184082206031922185510102322e-1),
1977 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.39912455237662038937400667644545834191e0),
1978 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.51088991221663244634723139723207272560e0),
1979 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.26465949648856746869050310379379898086e0),
1980 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.37079746226805258449355819952819997723e-1),
1981 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.49372033421420312720741838903118544951e-1),
1982 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.95729572745049276972587492142384353131e-1),
1983 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.92794840197452838799536047152725573779e-2),
1984 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.96897979363475104635129765703613472468e-2),
1985 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.44138843334474914059035559588791041371e-3),
1986 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.78076328055619970057667292651627051391e-4),
1987 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04182093251998194244585085400876144351e-4),
1988 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04392999917657413659748817212746660436e-5),
1989 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.76006125565969084470924344826977844710e-7),
1990 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.21045181507045010640119572995692565368e-8),
1991 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.61400097324698003962179537436043636306e-9),
1992 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.88084230973635340409728710734906398080e-11),
1993 };
1994 BOOST_MATH_STATIC const RealType Q[18] = {
1995 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
1996 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.49319798750825059930589954921919984293e0),
1997 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.90218243410186000622818205955425584848e0),
1998 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.25384789213915993855434876209137054104e0),
1999 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.58563858782064482133038568901836564329e0),
2000 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.39112608961600614189971858070197609546e0),
2001 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.29192895265168981204927382938872469754e0),
2002 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.66418375973954918346810939649929797237e-1),
2003 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.01606040038159207768769492693779323748e-1),
2004 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.75837675697421536953171865636865644576e-2),
2005 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30258315910281295093103384193132807400e-2),
2006 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.28333635097670841003561009290200071343e-3),
2007 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.04871369296490431325621140782944603554e-4),
2008 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.05077352164673794093561693258318905067e-5),
2009 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.28508157403208548483052311164947568580e-6),
2010 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.22527248376737724147359908626095469985e-7),
2011 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.75479484339716254784610505187249810386e-9),
2012 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.39990051830081888581639577552526319577e-11),
2013 };
2014
2015 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
2016 }
2017 else if (ilogb(p) >= -16) {
2018 RealType t = -log2(ldexp(p, 8));
2019
2020
2021
2022
2023 BOOST_MATH_STATIC const RealType P[22] = {
2024 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.48432718168951398420402661878962745094e-1),
2025 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.55946442453078865766668586202885528338e-1),
2026 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.54912640113904816247923987542554486059e-1),
2027 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.60852745978561293262851287627328856197e-1),
2028 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.93256608166097432329211369307994852513e-1),
2029 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.94707001299612588571704157159595918562e-2),
2030 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.40368387009950846525432054396214443833e-2),
2031 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.62326983889228773089492130483459202197e-3),
2032 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.97166112600628615762158757484340724056e-4),
2033 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.95053681446806610424931810174198926457e-5),
2034 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.13613767164027076487881255767029235747e-6),
2035 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.46627172639536503825606138995804926378e-7),
2036 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.26813757095977946534946955553296696736e-8),
2037 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.01393212063713249666862633388902006492e-9),
2038 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.04428602119155661411061942866480445477e-10),
2039 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.52977051350929618206095556763031195967e-12),
2040 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.63092013964238065197415324341392517794e-13),
2041 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.77457116423818347179318334884304764609e-15),
2042 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.10372468210274291890669895933038762772e-16),
2043 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.85517152798650696598776156882211719502e-18),
2044 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.01916800572423194619358228507804954863e-20),
2045 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.72241483171311778625855302356391965266e-26),
2046 };
2047 BOOST_MATH_STATIC const RealType Q[21] = {
2048 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2049 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.18341916009800042837726003154518652168e0),
2050 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.19215655980509256344434487727207541208e0),
2051 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.34380326549827252189214516628038733750e0),
2052 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.65069135930665131327262366757787760402e-1),
2053 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.74132905027750048531814627726862962404e-1),
2054 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.11184893124573373947875834716323223477e-2),
2055 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.68456853089572312034718359282699132364e-3),
2056 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.16340806625223749486884390838046244494e-3),
2057 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.45007766006724826837429360471785418874e-4),
2058 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.50443251593190111677537955057976277305e-5),
2059 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30829464745241179175728900376502542995e-6),
2060 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.57256894336319418553622695416919409120e-8),
2061 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.89973763917908403951538315949652981312e-9),
2062 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.05834675579622824896206540981508286215e-10),
2063 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.32721343511724613011656816221169980981e-11),
2064 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.77569292346900432492044041866264215291e-13),
2065 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.39903737668944675386972393000746368518e-14),
2066 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.23200083621376582032771041306045737695e-16),
2067 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.43557805626692790539354751731913075096e-18),
2068 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.91326410956582998375100191562832969140e-20),
2069 };
2070
2071 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
2072 }
2073 else if (ilogb(p) >= -32) {
2074 RealType t = -log2(ldexp(p, 16));
2075
2076
2077
2078
2079 BOOST_MATH_STATIC const RealType P[19] = {
2080 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.41419813138786928653984591611599949126e-1),
2081 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.94225020281693988785012368481961427155e-1),
2082 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.28967134188573605597955859185818311256e-2),
2083 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.16617725083935565014535265818666424029e-3),
2084 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.13379610773944032381149443514208866162e-3),
2085 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06508483032198116332154635763926628153e-4),
2086 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.89315471210589177037346413966039863126e-6),
2087 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.72993906450633221200844495419180873066e-7),
2088 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.32883391567312244751716481903540505335e-8),
2089 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.50998889887280885500990101116973130081e-10),
2090 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.23247766687180294767338042555173653249e-11),
2091 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.12326475887709255500757383109178584638e-13),
2092 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.11688319088825228685832870139320733695e-14),
2093 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.95381542569360703428852622701723193645e-16),
2094 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.70730387484749668293167350494151199659e-18),
2095 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.84243405919322052861165273432136993833e-20),
2096 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.40860917180131228318146854666419586211e-22),
2097 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.85122374200561402546731933480737679849e-30),
2098 BOOST_MATH_BIG_CONSTANT(RealType, 113, -1.79744248200459077556218062241428072826e-32),
2099 };
2100 BOOST_MATH_STATIC const RealType Q[17] = {
2101 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2102 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.68930884381361438749954611436694811868e-1),
2103 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.54944129151720429074748655153760118465e-1),
2104 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.68493670923968273171437877298940102712e-2),
2105 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.32109946297461941811102221103314572340e-3),
2106 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.11983030120265263999033828442555862122e-4),
2107 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.31204888358097171713697195034681853057e-5),
2108 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.38548604936907265274059071726622071821e-6),
2109 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.82158855359673890472124017801768455208e-8),
2110 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.78564556026252472894386810079914912632e-9),
2111 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.46854501887011863360558947087254908412e-11),
2112 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.67236380279070121978196383998000020645e-12),
2113 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.20076045812548485396837897240357026254e-14),
2114 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.15814123143437217877762088763846289858e-15),
2115 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.67177999717442465582949551415385496304e-17),
2116 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.71135001552136641449927514544850663366e-19),
2117 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.98449056954034104266783180068258117013e-22),
2118 };
2119
2120 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
2121 }
2122 else if (ilogb(p) >= -64) {
2123 RealType t = -log2(ldexp(p, 32));
2124
2125
2126
2127
2128 BOOST_MATH_STATIC const RealType P[19] = {
2129 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.41392032051575981622151194498090952488e-1),
2130 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.32651097995974052731414709779952524875e-1),
2131 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.51927763729719814565225981452897995722e-2),
2132 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.11148082477882981299945196621348531180e-3),
2133 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.80457559655975695558885644380771202301e-4),
2134 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.96223001525552834934139567532649816367e-5),
2135 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.10625449265784963560596299595289620029e-6),
2136 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.14785887121654524328854820350425279893e-8),
2137 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.00832358736396150660417651391240544392e-9),
2138 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.63128732906298604011217701767305935851e-11),
2139 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.86148432181465165445355560568442172406e-12),
2140 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.44088921565424320298916604159745842835e-14),
2141 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.95220124898384051195673049864765987092e-16),
2142 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.50531060529388128674128631193212903032e-17),
2143 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.06119051130826148039530805693452156757e-19),
2144 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.19849873960405145967462029876325494393e-21),
2145 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.66833600176986734600260382043861669021e-23),
2146 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.07829060832934383885234817363480653925e-26),
2147 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.21485411177823993142696645934560017341e-40),
2148 };
2149 BOOST_MATH_STATIC const RealType Q[18] = {
2150 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2151 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.88559444380290379529260819350179144435e-1),
2152 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.37942717465159991856146428659881557553e-2),
2153 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.11409915376157429952160202733757574026e-3),
2154 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.21511733003564236929107862750700281202e-4),
2155 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.74773232555012468159223116269289241483e-5),
2156 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.24042271031862389840796415749527818562e-6),
2157 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.50790246845873571117791557191071320982e-7),
2158 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.88274886666078071130557536971927872847e-9),
2159 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.94242592538917360235050248151146832636e-10),
2160 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.45262967284548223426004177385213311949e-12),
2161 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30081806380053435857465845326686775489e-13),
2162 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.62226426496757450797456131921060042081e-15),
2163 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.40933140159573381494354127717542598424e-17),
2164 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.03760580312376891985077265621432029857e-19),
2165 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.43980683769941233230954109646012150124e-21),
2166 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.88686274782816858372719510890126716148e-23),
2167 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.07336140055510452905474533727353308321e-25),
2168 };
2169
2170 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
2171 }
2172 else if (ilogb(p) >= -128) {
2173 RealType t = -log2(ldexp(p, 64));
2174
2175
2176
2177
2178 BOOST_MATH_STATIC const RealType P[18] = {
2179 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.41392031627647840832213878541731833340e-1),
2180 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.48256908849985263191468999842405689327e-1),
2181 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.16515822909144946601084169745484248278e-2),
2182 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.42246334265547596187501472291026180697e-3),
2183 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.54145961608971551335283437288203286104e-4),
2184 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.64840354062369555376354747633807898689e-5),
2185 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.38246669464526050793398379055335943951e-6),
2186 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.29684566081664150074215568847731661446e-7),
2187 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.98456331768093420851844051941851740455e-9),
2188 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.36738267296531031235518935656891979319e-10),
2189 BOOST_MATH_BIG_CONSTANT(RealType, 113, 8.08128287278026286279504717089979753319e-12),
2190 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.38334581618709868951669630969696873534e-13),
2191 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.08478537820365448038773095902465198679e-15),
2192 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.30768169494950935152733510713679558562e-16),
2193 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.49254243621461466892836128222648688091e-18),
2194 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.17026357413798368802986708112771803774e-20),
2195 BOOST_MATH_BIG_CONSTANT(RealType, 113, 5.05630817682870951728748696694117980745e-22),
2196 BOOST_MATH_BIG_CONSTANT(RealType, 113, -5.13881361534205323565985756195674181203e-50),
2197 };
2198 BOOST_MATH_STATIC const RealType Q[17] = {
2199 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.),
2200 BOOST_MATH_BIG_CONSTANT(RealType, 113, 4.34271731953273239599863811873205236246e-1),
2201 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.27133013035186849060586077266046297964e-2),
2202 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.29542078693828543540010668640353491847e-2),
2203 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.33027698228265344545932885863767276804e-3),
2204 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.06868444562964057780556916100143215394e-4),
2205 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.97868278672593071061800234869603536243e-6),
2206 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.79869926850283188735312536038469293739e-7),
2207 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.75298857713475428365153491580710497759e-8),
2208 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.93449891515741631851202042430818496480e-10),
2209 BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.36715626731277089013724968542144140938e-11),
2210 BOOST_MATH_BIG_CONSTANT(RealType, 113, 6.98125789528264426869121548546848968670e-13),
2211 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.78234546049400950521459021508632294206e-14),
2212 BOOST_MATH_BIG_CONSTANT(RealType, 113, 3.83044000387150792643468853129175805308e-16),
2213 BOOST_MATH_BIG_CONSTANT(RealType, 113, 7.30111486296552039388613073915170671881e-18),
2214 BOOST_MATH_BIG_CONSTANT(RealType, 113, 9.28628462422858134962149154420358876352e-20),
2215 BOOST_MATH_BIG_CONSTANT(RealType, 113, 1.48108558735886480279744474396456699335e-21),
2216 };
2217
2218 result = tools::evaluate_polynomial(P, t) / (tools::evaluate_polynomial(Q, t) * cbrt(p * p));
2219 }
2220 else {
2221 const BOOST_MATH_STATIC_LOCAL_VARIABLE RealType c = ldexp(cbrt(constants::pi<RealType>()), 1);
2222
2223 RealType p_square = p * p;
2224
2225 if ((boost::math::isnormal)(p_square)) {
2226 result = 1 / (cbrt(p_square) * c);
2227 }
2228 else if (p > 0) {
2229 result = 1 / (cbrt(p) * cbrt(p) * c);
2230 }
2231 else {
2232 result = boost::math::numeric_limits<RealType>::infinity();
2233 }
2234 }
2235
2236 return result;
2237 }
2238
2239 template <class RealType>
2240 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_quantile_imp_prec(const RealType& p, bool complement, const boost::math::integral_constant<int, 53>& tag)
2241 {
2242 if (p > 0.5) {
2243 return !complement ? holtsmark_quantile_upper_imp_prec(1 - p, tag) : -holtsmark_quantile_upper_imp_prec(1 - p, tag);
2244 }
2245
2246 return complement ? holtsmark_quantile_upper_imp_prec(p, tag) : -holtsmark_quantile_upper_imp_prec(p, tag);
2247 }
2248
2249 template <class RealType>
2250 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_quantile_imp_prec(const RealType& p, bool complement, const boost::math::integral_constant<int, 113>& tag)
2251 {
2252 if (p > 0.5) {
2253 return !complement ? holtsmark_quantile_upper_imp_prec(1 - p, tag) : -holtsmark_quantile_upper_imp_prec(1 - p, tag);
2254 }
2255
2256 return complement ? holtsmark_quantile_upper_imp_prec(p, tag) : -holtsmark_quantile_upper_imp_prec(p, tag);
2257 }
2258
2259 template <class RealType, class Policy>
2260 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_quantile_imp(const holtsmark_distribution<RealType, Policy>& dist, const RealType& p, bool complement)
2261 {
2262
2263
2264
2265 constexpr auto function = "boost::math::quantile(holtsmark<%1%>&, %1%)";
2266 BOOST_MATH_STD_USING
2267
2268 RealType result = 0;
2269 RealType scale = dist.scale();
2270 RealType location = dist.location();
2271
2272 if (false == detail::check_location(function, location, &result, Policy()))
2273 {
2274 return result;
2275 }
2276 if (false == detail::check_scale(function, scale, &result, Policy()))
2277 {
2278 return result;
2279 }
2280 if (false == detail::check_probability(function, p, &result, Policy()))
2281 {
2282 return result;
2283 }
2284
2285 typedef typename tools::promote_args<RealType>::type result_type;
2286 typedef typename policies::precision<result_type, Policy>::type precision_type;
2287 typedef boost::math::integral_constant<int,
2288 precision_type::value <= 0 ? 0 :
2289 precision_type::value <= 53 ? 53 :
2290 precision_type::value <= 113 ? 113 : 0
2291 > tag_type;
2292
2293 static_assert(tag_type::value, "The Holtsmark distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
2294
2295 result = location + scale * holtsmark_quantile_imp_prec(p, complement, tag_type());
2296
2297 return result;
2298 }
2299
2300 template <class RealType>
2301 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_entropy_imp_prec(const boost::math::integral_constant<int, 53>&)
2302 {
2303 return static_cast<RealType>(2.06944850513462440032);
2304 }
2305
2306 template <class RealType>
2307 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_entropy_imp_prec(const boost::math::integral_constant<int, 113>&)
2308 {
2309 return BOOST_MATH_BIG_CONSTANT(RealType, 113, 2.0694485051346244003155800384542166381);
2310 }
2311
2312 template <class RealType, class Policy>
2313 BOOST_MATH_GPU_ENABLED inline RealType holtsmark_entropy_imp(const holtsmark_distribution<RealType, Policy>& dist)
2314 {
2315
2316
2317 constexpr auto function = "boost::math::entropy(holtsmark<%1%>&, %1%)";
2318 BOOST_MATH_STD_USING
2319
2320 RealType result = 0;
2321 RealType scale = dist.scale();
2322
2323 if (false == detail::check_scale(function, scale, &result, Policy()))
2324 {
2325 return result;
2326 }
2327
2328 typedef typename tools::promote_args<RealType>::type result_type;
2329 typedef typename policies::precision<result_type, Policy>::type precision_type;
2330 typedef boost::math::integral_constant<int,
2331 precision_type::value <= 0 ? 0 :
2332 precision_type::value <= 53 ? 53 :
2333 precision_type::value <= 113 ? 113 : 0
2334 > tag_type;
2335
2336 static_assert(tag_type::value, "The Holtsmark distribution is only implemented for types with known precision, and 113 bits or fewer in the mantissa (ie 128 bit quad-floats");
2337
2338 result = holtsmark_entropy_imp_prec<RealType>(tag_type()) + log(scale);
2339
2340 return result;
2341 }
2342
2343 }
2344
2345 template <class RealType = double, class Policy = policies::policy<> >
2346 class holtsmark_distribution
2347 {
2348 public:
2349 typedef RealType value_type;
2350 typedef Policy policy_type;
2351
2352 BOOST_MATH_GPU_ENABLED holtsmark_distribution(RealType l_location = 0, RealType l_scale = 1)
2353 : mu(l_location), c(l_scale)
2354 {
2355 constexpr auto function = "boost::math::holtsmark_distribution<%1%>::holtsmark_distribution";
2356 RealType result = 0;
2357 detail::check_location(function, l_location, &result, Policy());
2358 detail::check_scale(function, l_scale, &result, Policy());
2359 }
2360
2361 BOOST_MATH_GPU_ENABLED RealType location()const
2362 {
2363 return mu;
2364 }
2365 BOOST_MATH_GPU_ENABLED RealType scale()const
2366 {
2367 return c;
2368 }
2369
2370 private:
2371 RealType mu;
2372 RealType c;
2373 };
2374
2375 typedef holtsmark_distribution<double> holtsmark;
2376
2377 #ifdef __cpp_deduction_guides
2378 template <class RealType>
2379 holtsmark_distribution(RealType) -> holtsmark_distribution<typename boost::math::tools::promote_args<RealType>::type>;
2380 template <class RealType>
2381 holtsmark_distribution(RealType, RealType) -> holtsmark_distribution<typename boost::math::tools::promote_args<RealType>::type>;
2382 #endif
2383
2384 template <class RealType, class Policy>
2385 BOOST_MATH_GPU_ENABLED inline const boost::math::pair<RealType, RealType> range(const holtsmark_distribution<RealType, Policy>&)
2386 {
2387 BOOST_MATH_IF_CONSTEXPR (boost::math::numeric_limits<RealType>::has_infinity)
2388 {
2389 return boost::math::pair<RealType, RealType>(-boost::math::numeric_limits<RealType>::infinity(), boost::math::numeric_limits<RealType>::infinity());
2390 }
2391 else
2392 {
2393 using boost::math::tools::max_value;
2394 return boost::math::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
2395 }
2396 }
2397
2398 template <class RealType, class Policy>
2399 BOOST_MATH_GPU_ENABLED inline const boost::math::pair<RealType, RealType> support(const holtsmark_distribution<RealType, Policy>&)
2400 {
2401
2402 BOOST_MATH_IF_CONSTEXPR (boost::math::numeric_limits<RealType>::has_infinity)
2403 {
2404 return boost::math::pair<RealType, RealType>(-boost::math::numeric_limits<RealType>::infinity(), boost::math::numeric_limits<RealType>::infinity());
2405 }
2406 else
2407 {
2408 using boost::math::tools::max_value;
2409 return boost::math::pair<RealType, RealType>(-tools::max_value<RealType>(), max_value<RealType>());
2410 }
2411 }
2412
2413 template <class RealType, class Policy>
2414 BOOST_MATH_GPU_ENABLED inline RealType pdf(const holtsmark_distribution<RealType, Policy>& dist, const RealType& x)
2415 {
2416 return detail::holtsmark_pdf_imp(dist, x);
2417 }
2418
2419 template <class RealType, class Policy>
2420 BOOST_MATH_GPU_ENABLED inline RealType cdf(const holtsmark_distribution<RealType, Policy>& dist, const RealType& x)
2421 {
2422 return detail::holtsmark_cdf_imp(dist, x, false);
2423 }
2424
2425 template <class RealType, class Policy>
2426 BOOST_MATH_GPU_ENABLED inline RealType quantile(const holtsmark_distribution<RealType, Policy>& dist, const RealType& p)
2427 {
2428 return detail::holtsmark_quantile_imp(dist, p, false);
2429 }
2430
2431 template <class RealType, class Policy>
2432 BOOST_MATH_GPU_ENABLED inline RealType cdf(const complemented2_type<holtsmark_distribution<RealType, Policy>, RealType>& c)
2433 {
2434 return detail::holtsmark_cdf_imp(c.dist, c.param, true);
2435 }
2436
2437 template <class RealType, class Policy>
2438 BOOST_MATH_GPU_ENABLED inline RealType quantile(const complemented2_type<holtsmark_distribution<RealType, Policy>, RealType>& c)
2439 {
2440 return detail::holtsmark_quantile_imp(c.dist, c.param, true);
2441 }
2442
2443 template <class RealType, class Policy>
2444 BOOST_MATH_GPU_ENABLED inline RealType mean(const holtsmark_distribution<RealType, Policy> &dist)
2445 {
2446 return dist.location();
2447 }
2448
2449 template <class RealType, class Policy>
2450 BOOST_MATH_GPU_ENABLED inline RealType variance(const holtsmark_distribution<RealType, Policy>& )
2451 {
2452 return boost::math::numeric_limits<RealType>::infinity();
2453 }
2454
2455 template <class RealType, class Policy>
2456 BOOST_MATH_GPU_ENABLED inline RealType mode(const holtsmark_distribution<RealType, Policy>& dist)
2457 {
2458 return dist.location();
2459 }
2460
2461 template <class RealType, class Policy>
2462 BOOST_MATH_GPU_ENABLED inline RealType median(const holtsmark_distribution<RealType, Policy>& dist)
2463 {
2464 return dist.location();
2465 }
2466
2467 template <class RealType, class Policy>
2468 BOOST_MATH_GPU_ENABLED inline RealType skewness(const holtsmark_distribution<RealType, Policy>& )
2469 {
2470
2471 typedef typename Policy::assert_undefined_type assert_type;
2472 static_assert(assert_type::value == 0, "The Holtsmark Distribution has no skewness");
2473
2474 return policies::raise_domain_error<RealType>(
2475 "boost::math::skewness(holtsmark<%1%>&)",
2476 "The Holtsmark distribution does not have a skewness: "
2477 "the only possible return value is %1%.",
2478 boost::math::numeric_limits<RealType>::quiet_NaN(), Policy());
2479 }
2480
2481 template <class RealType, class Policy>
2482 BOOST_MATH_GPU_ENABLED inline RealType kurtosis(const holtsmark_distribution<RealType, Policy>& )
2483 {
2484
2485 typedef typename Policy::assert_undefined_type assert_type;
2486 static_assert(assert_type::value == 0, "The Holtsmark Distribution has no kurtosis");
2487
2488 return policies::raise_domain_error<RealType>(
2489 "boost::math::kurtosis(holtsmark<%1%>&)",
2490 "The Holtsmark distribution does not have a kurtosis: "
2491 "the only possible return value is %1%.",
2492 boost::math::numeric_limits<RealType>::quiet_NaN(), Policy());
2493 }
2494
2495 template <class RealType, class Policy>
2496 BOOST_MATH_GPU_ENABLED inline RealType kurtosis_excess(const holtsmark_distribution<RealType, Policy>& )
2497 {
2498
2499 typedef typename Policy::assert_undefined_type assert_type;
2500 static_assert(assert_type::value == 0, "The Holtsmark Distribution has no kurtosis excess");
2501
2502 return policies::raise_domain_error<RealType>(
2503 "boost::math::kurtosis_excess(holtsmark<%1%>&)",
2504 "The Holtsmark distribution does not have a kurtosis: "
2505 "the only possible return value is %1%.",
2506 boost::math::numeric_limits<RealType>::quiet_NaN(), Policy());
2507 }
2508
2509 template <class RealType, class Policy>
2510 BOOST_MATH_GPU_ENABLED inline RealType entropy(const holtsmark_distribution<RealType, Policy>& dist)
2511 {
2512 return detail::holtsmark_entropy_imp(dist);
2513 }
2514
2515 }}
2516
2517
2518 #endif