File indexing completed on 2025-01-18 09:39:40
0001
0002
0003
0004
0005
0006
0007
0008 #ifndef BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
0009 #define BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
0010
0011 #include <boost/math/distributions/fwd.hpp>
0012 #include <boost/math/special_functions/beta.hpp> // for incomplete beta.
0013 #include <boost/math/distributions/complement.hpp> // complements
0014 #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
0015 #include <boost/math/special_functions/fpclassify.hpp>
0016
0017 #include <utility>
0018
0019 namespace boost{ namespace math{
0020
0021 template <class RealType = double, class Policy = policies::policy<> >
0022 class fisher_f_distribution
0023 {
0024 public:
0025 typedef RealType value_type;
0026 typedef Policy policy_type;
0027
0028 fisher_f_distribution(const RealType& i, const RealType& j) : m_df1(i), m_df2(j)
0029 {
0030 static const char* function = "fisher_f_distribution<%1%>::fisher_f_distribution";
0031 RealType result;
0032 detail::check_df(
0033 function, m_df1, &result, Policy());
0034 detail::check_df(
0035 function, m_df2, &result, Policy());
0036 }
0037
0038 RealType degrees_of_freedom1()const
0039 {
0040 return m_df1;
0041 }
0042 RealType degrees_of_freedom2()const
0043 {
0044 return m_df2;
0045 }
0046
0047 private:
0048
0049
0050
0051 RealType m_df1;
0052 RealType m_df2;
0053 };
0054
0055 typedef fisher_f_distribution<double> fisher_f;
0056
0057 #ifdef __cpp_deduction_guides
0058 template <class RealType>
0059 fisher_f_distribution(RealType,RealType)->fisher_f_distribution<typename boost::math::tools::promote_args<RealType>::type>;
0060 #endif
0061
0062 template <class RealType, class Policy>
0063 inline const std::pair<RealType, RealType> range(const fisher_f_distribution<RealType, Policy>& )
0064 {
0065 using boost::math::tools::max_value;
0066 return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
0067 }
0068
0069 template <class RealType, class Policy>
0070 inline const std::pair<RealType, RealType> support(const fisher_f_distribution<RealType, Policy>& )
0071 {
0072
0073 using boost::math::tools::max_value;
0074 return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
0075 }
0076
0077 template <class RealType, class Policy>
0078 RealType pdf(const fisher_f_distribution<RealType, Policy>& dist, const RealType& x)
0079 {
0080 BOOST_MATH_STD_USING
0081 RealType df1 = dist.degrees_of_freedom1();
0082 RealType df2 = dist.degrees_of_freedom2();
0083
0084 RealType error_result = 0;
0085 static const char* function = "boost::math::pdf(fisher_f_distribution<%1%> const&, %1%)";
0086 if(false == (detail::check_df(
0087 function, df1, &error_result, Policy())
0088 && detail::check_df(
0089 function, df2, &error_result, Policy())))
0090 return error_result;
0091
0092 if((x < 0) || !(boost::math::isfinite)(x))
0093 {
0094 return policies::raise_domain_error<RealType>(
0095 function, "Random variable parameter was %1%, but must be > 0 !", x, Policy());
0096 }
0097
0098 if(x == 0)
0099 {
0100
0101 if(df1 < 2)
0102 return policies::raise_overflow_error<RealType>(
0103 function, 0, Policy());
0104 else if(df1 == 2)
0105 return 1;
0106 else
0107 return 0;
0108 }
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118 RealType v1x = df1 * x;
0119 RealType result;
0120 if(v1x > df2)
0121 {
0122 result = (df2 * df1) / ((df2 + v1x) * (df2 + v1x));
0123 result *= ibeta_derivative(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy());
0124 }
0125 else
0126 {
0127 result = df2 + df1 * x;
0128 result = (result * df1 - x * df1 * df1) / (result * result);
0129 result *= ibeta_derivative(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
0130 }
0131 return result;
0132 }
0133
0134 template <class RealType, class Policy>
0135 inline RealType cdf(const fisher_f_distribution<RealType, Policy>& dist, const RealType& x)
0136 {
0137 static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)";
0138 RealType df1 = dist.degrees_of_freedom1();
0139 RealType df2 = dist.degrees_of_freedom2();
0140
0141 RealType error_result = 0;
0142 if(false == detail::check_df(
0143 function, df1, &error_result, Policy())
0144 && detail::check_df(
0145 function, df2, &error_result, Policy()))
0146 return error_result;
0147
0148 if((x < 0) || !(boost::math::isfinite)(x))
0149 {
0150 return policies::raise_domain_error<RealType>(
0151 function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy());
0152 }
0153
0154 RealType v1x = df1 * x;
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164 return v1x > df2
0165 ? boost::math::ibetac(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy())
0166 : boost::math::ibeta(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
0167 }
0168
0169 template <class RealType, class Policy>
0170 inline RealType quantile(const fisher_f_distribution<RealType, Policy>& dist, const RealType& p)
0171 {
0172 static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)";
0173 RealType df1 = dist.degrees_of_freedom1();
0174 RealType df2 = dist.degrees_of_freedom2();
0175
0176 RealType error_result = 0;
0177 if(false == (detail::check_df(
0178 function, df1, &error_result, Policy())
0179 && detail::check_df(
0180 function, df2, &error_result, Policy())
0181 && detail::check_probability(
0182 function, p, &error_result, Policy())))
0183 return error_result;
0184
0185
0186
0187 RealType x, y(0);
0188
0189 x = boost::math::ibeta_inv(df1 / 2, df2 / 2, p, &y, Policy());
0190
0191 return df2 * x / (df1 * y);
0192 }
0193
0194 template <class RealType, class Policy>
0195 inline RealType cdf(const complemented2_type<fisher_f_distribution<RealType, Policy>, RealType>& c)
0196 {
0197 static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)";
0198 RealType df1 = c.dist.degrees_of_freedom1();
0199 RealType df2 = c.dist.degrees_of_freedom2();
0200 RealType x = c.param;
0201
0202 RealType error_result = 0;
0203 if(false == detail::check_df(
0204 function, df1, &error_result, Policy())
0205 && detail::check_df(
0206 function, df2, &error_result, Policy()))
0207 return error_result;
0208
0209 if((x < 0) || !(boost::math::isfinite)(x))
0210 {
0211 return policies::raise_domain_error<RealType>(
0212 function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy());
0213 }
0214
0215 RealType v1x = df1 * x;
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225 return v1x > df2
0226 ? boost::math::ibeta(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy())
0227 : boost::math::ibetac(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
0228 }
0229
0230 template <class RealType, class Policy>
0231 inline RealType quantile(const complemented2_type<fisher_f_distribution<RealType, Policy>, RealType>& c)
0232 {
0233 static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)";
0234 RealType df1 = c.dist.degrees_of_freedom1();
0235 RealType df2 = c.dist.degrees_of_freedom2();
0236 RealType p = c.param;
0237
0238 RealType error_result = 0;
0239 if(false == (detail::check_df(
0240 function, df1, &error_result, Policy())
0241 && detail::check_df(
0242 function, df2, &error_result, Policy())
0243 && detail::check_probability(
0244 function, p, &error_result, Policy())))
0245 return error_result;
0246
0247 RealType x, y;
0248
0249 x = boost::math::ibetac_inv(df1 / 2, df2 / 2, p, &y, Policy());
0250
0251 return df2 * x / (df1 * y);
0252 }
0253
0254 template <class RealType, class Policy>
0255 inline RealType mean(const fisher_f_distribution<RealType, Policy>& dist)
0256 {
0257 static const char* function = "boost::math::mean(fisher_f_distribution<%1%> const&)";
0258 RealType df1 = dist.degrees_of_freedom1();
0259 RealType df2 = dist.degrees_of_freedom2();
0260
0261 RealType error_result = 0;
0262 if(false == detail::check_df(
0263 function, df1, &error_result, Policy())
0264 && detail::check_df(
0265 function, df2, &error_result, Policy()))
0266 return error_result;
0267 if(df2 <= 2)
0268 {
0269 return policies::raise_domain_error<RealType>(
0270 function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mean.", df2, Policy());
0271 }
0272 return df2 / (df2 - 2);
0273 }
0274
0275 template <class RealType, class Policy>
0276 inline RealType variance(const fisher_f_distribution<RealType, Policy>& dist)
0277 {
0278 static const char* function = "boost::math::variance(fisher_f_distribution<%1%> const&)";
0279 RealType df1 = dist.degrees_of_freedom1();
0280 RealType df2 = dist.degrees_of_freedom2();
0281
0282 RealType error_result = 0;
0283 if(false == detail::check_df(
0284 function, df1, &error_result, Policy())
0285 && detail::check_df(
0286 function, df2, &error_result, Policy()))
0287 return error_result;
0288 if(df2 <= 4)
0289 {
0290 return policies::raise_domain_error<RealType>(
0291 function, "Second degree of freedom was %1% but must be > 4 in order for the distribution to have a valid variance.", df2, Policy());
0292 }
0293 return 2 * df2 * df2 * (df1 + df2 - 2) / (df1 * (df2 - 2) * (df2 - 2) * (df2 - 4));
0294 }
0295
0296 template <class RealType, class Policy>
0297 inline RealType mode(const fisher_f_distribution<RealType, Policy>& dist)
0298 {
0299 static const char* function = "boost::math::mode(fisher_f_distribution<%1%> const&)";
0300 RealType df1 = dist.degrees_of_freedom1();
0301 RealType df2 = dist.degrees_of_freedom2();
0302
0303 RealType error_result = 0;
0304 if(false == detail::check_df(
0305 function, df1, &error_result, Policy())
0306 && detail::check_df(
0307 function, df2, &error_result, Policy()))
0308 return error_result;
0309 if(df1 <= 2)
0310 {
0311 return policies::raise_domain_error<RealType>(
0312 function, "First degree of freedom was %1% but must be > 2 in order for the distribution to have a mode.", df1, Policy());
0313 }
0314 return df2 * (df1 - 2) / (df1 * (df2 + 2));
0315 }
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325 template <class RealType, class Policy>
0326 inline RealType skewness(const fisher_f_distribution<RealType, Policy>& dist)
0327 {
0328 static const char* function = "boost::math::skewness(fisher_f_distribution<%1%> const&)";
0329 BOOST_MATH_STD_USING
0330
0331 RealType df1 = dist.degrees_of_freedom1();
0332 RealType df2 = dist.degrees_of_freedom2();
0333
0334 RealType error_result = 0;
0335 if(false == detail::check_df(
0336 function, df1, &error_result, Policy())
0337 && detail::check_df(
0338 function, df2, &error_result, Policy()))
0339 return error_result;
0340 if(df2 <= 6)
0341 {
0342 return policies::raise_domain_error<RealType>(
0343 function, "Second degree of freedom was %1% but must be > 6 in order for the distribution to have a skewness.", df2, Policy());
0344 }
0345 return 2 * (df2 + 2 * df1 - 2) * sqrt((2 * df2 - 8) / (df1 * (df2 + df1 - 2))) / (df2 - 6);
0346 }
0347
0348 template <class RealType, class Policy>
0349 RealType kurtosis_excess(const fisher_f_distribution<RealType, Policy>& dist);
0350
0351 template <class RealType, class Policy>
0352 inline RealType kurtosis(const fisher_f_distribution<RealType, Policy>& dist)
0353 {
0354 return 3 + kurtosis_excess(dist);
0355 }
0356
0357 template <class RealType, class Policy>
0358 inline RealType kurtosis_excess(const fisher_f_distribution<RealType, Policy>& dist)
0359 {
0360 static const char* function = "boost::math::kurtosis_excess(fisher_f_distribution<%1%> const&)";
0361
0362 RealType df1 = dist.degrees_of_freedom1();
0363 RealType df2 = dist.degrees_of_freedom2();
0364
0365 RealType error_result = 0;
0366 if(false == detail::check_df(
0367 function, df1, &error_result, Policy())
0368 && detail::check_df(
0369 function, df2, &error_result, Policy()))
0370 return error_result;
0371 if(df2 <= 8)
0372 {
0373 return policies::raise_domain_error<RealType>(
0374 function, "Second degree of freedom was %1% but must be > 8 in order for the distribution to have a kurtosis.", df2, Policy());
0375 }
0376 RealType df2_2 = df2 * df2;
0377 RealType df1_2 = df1 * df1;
0378 RealType n = -16 + 20 * df2 - 8 * df2_2 + df2_2 * df2 + 44 * df1 - 32 * df2 * df1 + 5 * df2_2 * df1 - 22 * df1_2 + 5 * df2 * df1_2;
0379 n *= 12;
0380 RealType d = df1 * (df2 - 6) * (df2 - 8) * (df1 + df2 - 2);
0381 return n / d;
0382 }
0383
0384 }
0385 }
0386
0387
0388
0389
0390 #include <boost/math/distributions/detail/derived_accessors.hpp>
0391
0392 #endif