File indexing completed on 2025-01-18 09:39:39
0001
0002
0003
0004
0005
0006 #ifndef BOOST_STATS_EXPONENTIAL_HPP
0007 #define BOOST_STATS_EXPONENTIAL_HPP
0008
0009 #include <boost/math/distributions/fwd.hpp>
0010 #include <boost/math/constants/constants.hpp>
0011 #include <boost/math/special_functions/log1p.hpp>
0012 #include <boost/math/special_functions/expm1.hpp>
0013 #include <boost/math/distributions/complement.hpp>
0014 #include <boost/math/distributions/detail/common_error_handling.hpp>
0015
0016 #ifdef _MSC_VER
0017 # pragma warning(push)
0018 # pragma warning(disable: 4127)
0019 # pragma warning(disable: 4702)
0020 #endif
0021
0022 #include <utility>
0023 #include <cmath>
0024
0025 namespace boost{ namespace math{
0026
0027 namespace detail{
0028
0029
0030
0031 template <class RealType, class Policy>
0032 inline bool verify_lambda(const char* function, RealType l, RealType* presult, const Policy& pol)
0033 {
0034 if((l <= 0) || !(boost::math::isfinite)(l))
0035 {
0036 *presult = policies::raise_domain_error<RealType>(
0037 function,
0038 "The scale parameter \"lambda\" must be > 0, but was: %1%.", l, pol);
0039 return false;
0040 }
0041 return true;
0042 }
0043
0044 template <class RealType, class Policy>
0045 inline bool verify_exp_x(const char* function, RealType x, RealType* presult, const Policy& pol)
0046 {
0047 if((x < 0) || (boost::math::isnan)(x))
0048 {
0049 *presult = policies::raise_domain_error<RealType>(
0050 function,
0051 "The random variable must be >= 0, but was: %1%.", x, pol);
0052 return false;
0053 }
0054 return true;
0055 }
0056
0057 }
0058
0059 template <class RealType = double, class Policy = policies::policy<> >
0060 class exponential_distribution
0061 {
0062 public:
0063 using value_type = RealType;
0064 using policy_type = Policy;
0065
0066 explicit exponential_distribution(RealType l_lambda = 1)
0067 : m_lambda(l_lambda)
0068 {
0069 RealType err;
0070 detail::verify_lambda("boost::math::exponential_distribution<%1%>::exponential_distribution", l_lambda, &err, Policy());
0071 }
0072
0073 RealType lambda()const { return m_lambda; }
0074
0075 private:
0076 RealType m_lambda;
0077 };
0078
0079 using exponential = exponential_distribution<double>;
0080
0081 #ifdef __cpp_deduction_guides
0082 template <class RealType>
0083 exponential_distribution(RealType)->exponential_distribution<typename boost::math::tools::promote_args<RealType>::type>;
0084 #endif
0085
0086 template <class RealType, class Policy>
0087 inline std::pair<RealType, RealType> range(const exponential_distribution<RealType, Policy>& )
0088 {
0089 if (std::numeric_limits<RealType>::has_infinity)
0090 {
0091 return std::pair<RealType, RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity());
0092 }
0093 else
0094 {
0095 using boost::math::tools::max_value;
0096 return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
0097 }
0098 }
0099
0100 template <class RealType, class Policy>
0101 inline std::pair<RealType, RealType> support(const exponential_distribution<RealType, Policy>& )
0102 {
0103
0104 using boost::math::tools::max_value;
0105 using boost::math::tools::min_value;
0106 return std::pair<RealType, RealType>(min_value<RealType>(), max_value<RealType>());
0107
0108 }
0109
0110 template <class RealType, class Policy>
0111 inline RealType pdf(const exponential_distribution<RealType, Policy>& dist, const RealType& x)
0112 {
0113 BOOST_MATH_STD_USING
0114
0115 static const char* function = "boost::math::pdf(const exponential_distribution<%1%>&, %1%)";
0116
0117 RealType lambda = dist.lambda();
0118 RealType result = 0;
0119 if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
0120 return result;
0121 if(0 == detail::verify_exp_x(function, x, &result, Policy()))
0122 return result;
0123
0124 if ((boost::math::isinf)(x))
0125 return 0;
0126 result = lambda * exp(-lambda * x);
0127 return result;
0128 }
0129
0130 template <class RealType, class Policy>
0131 inline RealType logpdf(const exponential_distribution<RealType, Policy>& dist, const RealType& x)
0132 {
0133 BOOST_MATH_STD_USING
0134
0135 static const char* function = "boost::math::logpdf(const exponential_distribution<%1%>&, %1%)";
0136
0137 RealType lambda = dist.lambda();
0138 RealType result = -std::numeric_limits<RealType>::infinity();
0139 if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
0140 return result;
0141 if(0 == detail::verify_exp_x(function, x, &result, Policy()))
0142 return result;
0143
0144 result = log(lambda) - lambda * x;
0145 return result;
0146 }
0147
0148 template <class RealType, class Policy>
0149 inline RealType cdf(const exponential_distribution<RealType, Policy>& dist, const RealType& x)
0150 {
0151 BOOST_MATH_STD_USING
0152
0153 static const char* function = "boost::math::cdf(const exponential_distribution<%1%>&, %1%)";
0154
0155 RealType result = 0;
0156 RealType lambda = dist.lambda();
0157 if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
0158 return result;
0159 if(0 == detail::verify_exp_x(function, x, &result, Policy()))
0160 return result;
0161 result = -boost::math::expm1(-x * lambda, Policy());
0162
0163 return result;
0164 }
0165
0166 template <class RealType, class Policy>
0167 inline RealType logcdf(const exponential_distribution<RealType, Policy>& dist, const RealType& x)
0168 {
0169 BOOST_MATH_STD_USING
0170
0171 static const char* function = "boost::math::logcdf(const exponential_distribution<%1%>&, %1%)";
0172
0173 RealType result = 0;
0174 RealType lambda = dist.lambda();
0175 if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
0176 return result;
0177 if(0 == detail::verify_exp_x(function, x, &result, Policy()))
0178 return result;
0179 result = boost::math::log1p(-exp(-x * lambda), Policy());
0180
0181 return result;
0182 }
0183
0184 template <class RealType, class Policy>
0185 inline RealType quantile(const exponential_distribution<RealType, Policy>& dist, const RealType& p)
0186 {
0187 BOOST_MATH_STD_USING
0188
0189 static const char* function = "boost::math::quantile(const exponential_distribution<%1%>&, %1%)";
0190
0191 RealType result = 0;
0192 RealType lambda = dist.lambda();
0193 if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
0194 return result;
0195 if(0 == detail::check_probability(function, p, &result, Policy()))
0196 return result;
0197
0198 if(p == 0)
0199 return 0;
0200 if(p == 1)
0201 return policies::raise_overflow_error<RealType>(function, 0, Policy());
0202
0203 result = -boost::math::log1p(-p, Policy()) / lambda;
0204 return result;
0205 }
0206
0207 template <class RealType, class Policy>
0208 inline RealType cdf(const complemented2_type<exponential_distribution<RealType, Policy>, RealType>& c)
0209 {
0210 BOOST_MATH_STD_USING
0211
0212 static const char* function = "boost::math::cdf(const exponential_distribution<%1%>&, %1%)";
0213
0214 RealType result = 0;
0215 RealType lambda = c.dist.lambda();
0216 if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
0217 return result;
0218 if(0 == detail::verify_exp_x(function, c.param, &result, Policy()))
0219 return result;
0220
0221 if (c.param >= tools::max_value<RealType>())
0222 return 0;
0223 result = exp(-c.param * lambda);
0224
0225 return result;
0226 }
0227
0228 template <class RealType, class Policy>
0229 inline RealType logcdf(const complemented2_type<exponential_distribution<RealType, Policy>, RealType>& c)
0230 {
0231 BOOST_MATH_STD_USING
0232
0233 static const char* function = "boost::math::logcdf(const exponential_distribution<%1%>&, %1%)";
0234
0235 RealType result = 0;
0236 RealType lambda = c.dist.lambda();
0237 if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
0238 return result;
0239 if(0 == detail::verify_exp_x(function, c.param, &result, Policy()))
0240 return result;
0241
0242 if (c.param >= tools::max_value<RealType>())
0243 return 0;
0244 result = -c.param * lambda;
0245
0246 return result;
0247 }
0248
0249 template <class RealType, class Policy>
0250 inline RealType quantile(const complemented2_type<exponential_distribution<RealType, Policy>, RealType>& c)
0251 {
0252 BOOST_MATH_STD_USING
0253
0254 static const char* function = "boost::math::quantile(const exponential_distribution<%1%>&, %1%)";
0255
0256 RealType result = 0;
0257 RealType lambda = c.dist.lambda();
0258 if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
0259 return result;
0260
0261 RealType q = c.param;
0262 if(0 == detail::check_probability(function, q, &result, Policy()))
0263 return result;
0264
0265 if(q == 1)
0266 return 0;
0267 if(q == 0)
0268 return policies::raise_overflow_error<RealType>(function, 0, Policy());
0269
0270 result = -log(q) / lambda;
0271 return result;
0272 }
0273
0274 template <class RealType, class Policy>
0275 inline RealType mean(const exponential_distribution<RealType, Policy>& dist)
0276 {
0277 RealType result = 0;
0278 RealType lambda = dist.lambda();
0279 if(0 == detail::verify_lambda("boost::math::mean(const exponential_distribution<%1%>&)", lambda, &result, Policy()))
0280 return result;
0281 return 1 / lambda;
0282 }
0283
0284 template <class RealType, class Policy>
0285 inline RealType standard_deviation(const exponential_distribution<RealType, Policy>& dist)
0286 {
0287 RealType result = 0;
0288 RealType lambda = dist.lambda();
0289 if(0 == detail::verify_lambda("boost::math::standard_deviation(const exponential_distribution<%1%>&)", lambda, &result, Policy()))
0290 return result;
0291 return 1 / lambda;
0292 }
0293
0294 template <class RealType, class Policy>
0295 inline RealType mode(const exponential_distribution<RealType, Policy>& )
0296 {
0297 return 0;
0298 }
0299
0300 template <class RealType, class Policy>
0301 inline RealType median(const exponential_distribution<RealType, Policy>& dist)
0302 {
0303 using boost::math::constants::ln_two;
0304 return ln_two<RealType>() / dist.lambda();
0305 }
0306
0307 template <class RealType, class Policy>
0308 inline RealType skewness(const exponential_distribution<RealType, Policy>& )
0309 {
0310 return 2;
0311 }
0312
0313 template <class RealType, class Policy>
0314 inline RealType kurtosis(const exponential_distribution<RealType, Policy>& )
0315 {
0316 return 9;
0317 }
0318
0319 template <class RealType, class Policy>
0320 inline RealType kurtosis_excess(const exponential_distribution<RealType, Policy>& )
0321 {
0322 return 6;
0323 }
0324
0325 template <class RealType, class Policy>
0326 inline RealType entropy(const exponential_distribution<RealType, Policy>& dist)
0327 {
0328 using std::log;
0329 return 1 - log(dist.lambda());
0330 }
0331
0332 }
0333 }
0334
0335 #ifdef _MSC_VER
0336 # pragma warning(pop)
0337 #endif
0338
0339
0340
0341
0342 #include <boost/math/distributions/detail/derived_accessors.hpp>
0343
0344 #endif