File indexing completed on 2024-11-16 09:18:21
0001
0002
0003
0004
0005
0006 #ifndef BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
0007 #define BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
0008 #include <cmath> // for std::abs
0009 #include <cstddef>
0010 #include <limits> // to nan initialize
0011 #include <vector>
0012 #include <string>
0013 #include <cstdint>
0014 #include <stdexcept>
0015 #include <type_traits>
0016 #include <boost/math/tools/assert.hpp>
0017
0018 #include <boost/math/tools/is_standalone.hpp>
0019 #ifndef BOOST_MATH_STANDALONE
0020 #include <boost/config.hpp>
0021 #ifdef BOOST_NO_CXX17_IF_CONSTEXPR
0022 #error "The header <boost/math/norms.hpp> can only be used in C++17 and later."
0023 #endif
0024 #endif
0025
0026 namespace boost::math::differentiation {
0027
0028 namespace detail {
0029 template <typename Real>
0030 class discrete_legendre {
0031 public:
0032 explicit discrete_legendre(std::size_t n, Real x) : m_n{n}, m_r{2}, m_x{x},
0033 m_qrm2{1}, m_qrm1{x},
0034 m_qrm2p{0}, m_qrm1p{1},
0035 m_qrm2pp{0}, m_qrm1pp{0}
0036 {
0037 using std::abs;
0038 BOOST_MATH_ASSERT_MSG(abs(m_x) <= 1, "Three term recurrence is stable only for |x| <=1.");
0039
0040 }
0041
0042 Real norm_sq(int r) const
0043 {
0044 Real prod = Real(2) / Real(2 * r + 1);
0045 for (int k = -r; k <= r; ++k) {
0046 prod *= Real(2 * m_n + 1 + k) / Real(2 * m_n);
0047 }
0048 return prod;
0049 }
0050
0051 Real next()
0052 {
0053 Real N = 2 * m_n + 1;
0054 Real num = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) * m_qrm2;
0055 Real tmp = (2 * m_r - 1) * m_x * m_qrm1 - num / Real(4 * m_n * m_n);
0056 m_qrm2 = m_qrm1;
0057 m_qrm1 = tmp / m_r;
0058 ++m_r;
0059 return m_qrm1;
0060 }
0061
0062 Real next_prime()
0063 {
0064 Real N = 2 * m_n + 1;
0065 Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
0066 Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
0067 Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
0068 m_qrm2 = m_qrm1;
0069 m_qrm1 = tmp1;
0070 m_qrm2p = m_qrm1p;
0071 m_qrm1p = tmp2;
0072 ++m_r;
0073 return m_qrm1p;
0074 }
0075
0076 Real next_dbl_prime()
0077 {
0078 Real N = 2*m_n + 1;
0079 Real trm1 = 2*m_r - 1;
0080 Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
0081 Real rqrpp = 2*trm1*m_qrm1p + trm1*m_x*m_qrm1pp - s*m_qrm2pp;
0082 Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
0083 Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
0084 m_qrm2 = m_qrm1;
0085 m_qrm1 = tmp1;
0086 m_qrm2p = m_qrm1p;
0087 m_qrm1p = tmp2;
0088 m_qrm2pp = m_qrm1pp;
0089 m_qrm1pp = rqrpp/m_r;
0090 ++m_r;
0091 return m_qrm1pp;
0092 }
0093
0094 Real operator()(Real x, std::size_t k)
0095 {
0096 BOOST_MATH_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
0097 if (k == 0)
0098 {
0099 return 1;
0100 }
0101 if (k == 1)
0102 {
0103 return x;
0104 }
0105 Real qrm2 = 1;
0106 Real qrm1 = x;
0107 Real N = 2 * m_n + 1;
0108 for (std::size_t r = 2; r <= k; ++r) {
0109 Real num = (r - 1) * (N * N - (r - 1) * (r - 1)) * qrm2;
0110 Real tmp = (2 * r - 1) * x * qrm1 - num / Real(4 * m_n * m_n);
0111 qrm2 = qrm1;
0112 qrm1 = tmp / r;
0113 }
0114 return qrm1;
0115 }
0116
0117 Real prime(Real x, std::size_t k) {
0118 BOOST_MATH_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
0119 if (k == 0) {
0120 return 0;
0121 }
0122 if (k == 1) {
0123 return 1;
0124 }
0125 Real qrm2 = 1;
0126 Real qrm1 = x;
0127 Real qrm2p = 0;
0128 Real qrm1p = 1;
0129 Real N = 2 * m_n + 1;
0130 for (std::size_t r = 2; r <= k; ++r) {
0131 Real s =
0132 (r - 1) * (N * N - (r - 1) * (r - 1)) / Real(4 * m_n * m_n);
0133 Real tmp1 = ((2 * r - 1) * x * qrm1 - s * qrm2) / r;
0134 Real tmp2 = ((2 * r - 1) * (qrm1 + x * qrm1p) - s * qrm2p) / r;
0135 qrm2 = qrm1;
0136 qrm1 = tmp1;
0137 qrm2p = qrm1p;
0138 qrm1p = tmp2;
0139 }
0140 return qrm1p;
0141 }
0142
0143 private:
0144 std::size_t m_n;
0145 std::size_t m_r;
0146 Real m_x;
0147 Real m_qrm2;
0148 Real m_qrm1;
0149 Real m_qrm2p;
0150 Real m_qrm1p;
0151 Real m_qrm2pp;
0152 Real m_qrm1pp;
0153 };
0154
0155 template <class Real>
0156 std::vector<Real> interior_velocity_filter(std::size_t n, std::size_t p) {
0157 auto dlp = discrete_legendre<Real>(n, 0);
0158 std::vector<Real> coeffs(p+1);
0159 coeffs[1] = 1/dlp.norm_sq(1);
0160 for (std::size_t l = 3; l < p + 1; l += 2)
0161 {
0162 dlp.next_prime();
0163 coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
0164 }
0165
0166
0167
0168 std::vector<Real> f(n + 1);
0169
0170
0171 f[0] = 0;
0172 for (std::size_t j = 1; j < f.size(); ++j)
0173 {
0174 Real arg = Real(j) / Real(n);
0175 dlp = discrete_legendre<Real>(n, arg);
0176 f[j] = coeffs[1]*arg;
0177 for (std::size_t l = 3; l <= p; l += 2)
0178 {
0179 dlp.next();
0180 f[j] += coeffs[l]*dlp.next();
0181 }
0182 f[j] /= (n * n);
0183 }
0184 return f;
0185 }
0186
0187 template <class Real>
0188 std::vector<Real> boundary_velocity_filter(std::size_t n, std::size_t p, int64_t s)
0189 {
0190 std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
0191 Real sn = Real(s) / Real(n);
0192 auto dlp = discrete_legendre<Real>(n, sn);
0193 coeffs[0] = 0;
0194 coeffs[1] = 1/dlp.norm_sq(1);
0195 for (std::size_t l = 2; l < p + 1; ++l)
0196 {
0197
0198
0199
0200
0201
0202 coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
0203 }
0204
0205 std::vector<Real> f(2*n + 1);
0206 for (std::size_t k = 0; k < f.size(); ++k)
0207 {
0208 Real j = Real(k) - Real(n);
0209 Real arg = j/Real(n);
0210 dlp = discrete_legendre<Real>(n, arg);
0211 f[k] = coeffs[1]*arg;
0212 for (std::size_t l = 2; l <= p; ++l)
0213 {
0214 f[k] += coeffs[l]*dlp.next();
0215 }
0216 f[k] /= (n * n);
0217 }
0218 return f;
0219 }
0220
0221 template <class Real>
0222 std::vector<Real> acceleration_filter(std::size_t n, std::size_t p, int64_t s)
0223 {
0224 BOOST_MATH_ASSERT_MSG(p <= 2*n, "Approximation order must be <= 2*n");
0225 BOOST_MATH_ASSERT_MSG(p > 2, "Approximation order must be > 2");
0226
0227 std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
0228 Real sn = Real(s) / Real(n);
0229 auto dlp = discrete_legendre<Real>(n, sn);
0230 coeffs[0] = 0;
0231 coeffs[1] = 0;
0232 for (std::size_t l = 2; l < p + 1; ++l)
0233 {
0234 coeffs[l] = dlp.next_dbl_prime()/ dlp.norm_sq(l);
0235 }
0236
0237 std::vector<Real> f(2*n + 1, 0);
0238 for (std::size_t k = 0; k < f.size(); ++k)
0239 {
0240 Real j = Real(k) - Real(n);
0241 Real arg = j/Real(n);
0242 dlp = discrete_legendre<Real>(n, arg);
0243 for (std::size_t l = 2; l <= p; ++l)
0244 {
0245 f[k] += coeffs[l]*dlp.next();
0246 }
0247 f[k] /= (n * n * n);
0248 }
0249 return f;
0250 }
0251
0252
0253 }
0254
0255 template <typename Real, std::size_t order = 1>
0256 class discrete_lanczos_derivative {
0257 public:
0258 discrete_lanczos_derivative(Real const & spacing,
0259 std::size_t n = 18,
0260 std::size_t approximation_order = 3)
0261 : m_dt{spacing}
0262 {
0263 static_assert(!std::is_integral_v<Real>,
0264 "Spacing must be a floating point type.");
0265 BOOST_MATH_ASSERT_MSG(spacing > 0,
0266 "Spacing between samples must be > 0.");
0267
0268 if constexpr (order == 1)
0269 {
0270 BOOST_MATH_ASSERT_MSG(approximation_order <= 2 * n,
0271 "The approximation order must be <= 2n");
0272 BOOST_MATH_ASSERT_MSG(approximation_order >= 2,
0273 "The approximation order must be >= 2");
0274
0275 if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
0276 {
0277 auto interior = detail::interior_velocity_filter<long double>(n, approximation_order);
0278 m_f.resize(interior.size());
0279 for (std::size_t j = 0; j < interior.size(); ++j)
0280 {
0281 m_f[j] = static_cast<Real>(interior[j])/m_dt;
0282 }
0283 }
0284 else
0285 {
0286 m_f = detail::interior_velocity_filter<Real>(n, approximation_order);
0287 for (auto & x : m_f)
0288 {
0289 x /= m_dt;
0290 }
0291 }
0292
0293 m_boundary_filters.resize(n);
0294
0295
0296 for (std::size_t i = 0; i < n; ++i)
0297 {
0298 if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
0299 {
0300 int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
0301 auto bf = detail::boundary_velocity_filter<long double>(n, approximation_order, s);
0302 m_boundary_filters[i].resize(bf.size());
0303 for (std::size_t j = 0; j < bf.size(); ++j)
0304 {
0305 m_boundary_filters[i][j] = static_cast<Real>(bf[j])/m_dt;
0306 }
0307 }
0308 else
0309 {
0310 int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
0311 m_boundary_filters[i] = detail::boundary_velocity_filter<Real>(n, approximation_order, s);
0312 for (auto & bf : m_boundary_filters[i])
0313 {
0314 bf /= m_dt;
0315 }
0316 }
0317 }
0318 }
0319 else if constexpr (order == 2)
0320 {
0321
0322
0323
0324
0325
0326 if constexpr (std::is_same_v<Real, double> || std::is_same_v<Real, float>)
0327 {
0328 auto f = detail::acceleration_filter<long double>(n, approximation_order, 0);
0329 m_f.resize(n+1);
0330 for (std::size_t i = 0; i < m_f.size(); ++i)
0331 {
0332 m_f[i] = static_cast<Real>(f[i+n])/(m_dt*m_dt);
0333 }
0334 m_boundary_filters.resize(n);
0335 for (std::size_t i = 0; i < n; ++i)
0336 {
0337 int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
0338 auto bf = detail::acceleration_filter<long double>(n, approximation_order, s);
0339 m_boundary_filters[i].resize(bf.size());
0340 for (std::size_t j = 0; j < bf.size(); ++j)
0341 {
0342 m_boundary_filters[i][j] = static_cast<Real>(bf[j])/(m_dt*m_dt);
0343 }
0344 }
0345 }
0346 else
0347 {
0348
0349
0350 auto f = detail::acceleration_filter<Real>(n, approximation_order, 0);
0351 m_f.resize(n+1);
0352 for (std::size_t i = 0; i < m_f.size(); ++i)
0353 {
0354 m_f[i] = f[i+n]/(m_dt*m_dt);
0355 }
0356 m_boundary_filters.resize(n);
0357 for (std::size_t i = 0; i < n; ++i)
0358 {
0359 int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
0360 m_boundary_filters[i] = detail::acceleration_filter<Real>(n, approximation_order, s);
0361 for (auto & bf : m_boundary_filters[i])
0362 {
0363 bf /= (m_dt*m_dt);
0364 }
0365 }
0366 }
0367 }
0368 else
0369 {
0370 BOOST_MATH_ASSERT_MSG(false, "Derivatives of order 3 and higher are not implemented.");
0371 }
0372 }
0373
0374 Real get_spacing() const
0375 {
0376 return m_dt;
0377 }
0378
0379 template<class RandomAccessContainer>
0380 Real operator()(RandomAccessContainer const & v, std::size_t i) const
0381 {
0382 static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
0383 "The type of the values in the vector provided does not match the type in the filters.");
0384
0385 BOOST_MATH_ASSERT_MSG(std::size(v) >= m_boundary_filters[0].size(),
0386 "Vector must be at least as long as the filter length");
0387
0388 if constexpr (order==1)
0389 {
0390 if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
0391 {
0392
0393 Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
0394 for (std::size_t j = 2; j < m_f.size(); ++j)
0395 {
0396 dvdt += m_f[j] * (v[i + j] - v[i - j]);
0397 }
0398 return dvdt;
0399 }
0400
0401
0402 if (i < m_f.size() - 1)
0403 {
0404 auto &bf = m_boundary_filters[i];
0405 Real dvdt = bf[0]*v[0];
0406 for (std::size_t j = 1; j < bf.size(); ++j)
0407 {
0408 dvdt += bf[j] * v[j];
0409 }
0410 return dvdt;
0411 }
0412
0413 if (i > std::size(v) - m_f.size() && i < std::size(v))
0414 {
0415 int k = std::size(v) - 1 - i;
0416 auto &bf = m_boundary_filters[k];
0417 Real dvdt = bf[0]*v[std::size(v)-1];
0418 for (std::size_t j = 1; j < bf.size(); ++j)
0419 {
0420 dvdt += bf[j] * v[std::size(v) - 1 - j];
0421 }
0422 return -dvdt;
0423 }
0424 }
0425 else if constexpr (order==2)
0426 {
0427 if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
0428 {
0429 Real d2vdt2 = m_f[0]*v[i];
0430 for (std::size_t j = 1; j < m_f.size(); ++j)
0431 {
0432 d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
0433 }
0434 return d2vdt2;
0435 }
0436
0437
0438 if (i < m_f.size() - 1)
0439 {
0440 auto &bf = m_boundary_filters[i];
0441 Real d2vdt2 = bf[0]*v[0];
0442 for (std::size_t j = 1; j < bf.size(); ++j)
0443 {
0444 d2vdt2 += bf[j] * v[j];
0445 }
0446 return d2vdt2;
0447 }
0448
0449 if (i > std::size(v) - m_f.size() && i < std::size(v))
0450 {
0451 int k = std::size(v) - 1 - i;
0452 auto &bf = m_boundary_filters[k];
0453 Real d2vdt2 = bf[0] * v[std::size(v) - 1];
0454 for (std::size_t j = 1; j < bf.size(); ++j)
0455 {
0456 d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
0457 }
0458 return d2vdt2;
0459 }
0460 }
0461
0462
0463 std::string msg = "Out of bounds access in Lanczos derivative.";
0464 msg += "Input vector has length " + std::to_string(std::size(v)) + ", but user requested access at index " + std::to_string(i) + ".";
0465 throw std::out_of_range(msg);
0466 return std::numeric_limits<Real>::quiet_NaN();
0467 }
0468
0469 template<class RandomAccessContainer>
0470 void operator()(RandomAccessContainer const & v, RandomAccessContainer & w) const
0471 {
0472 static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
0473 "The type of the values in the vector provided does not match the type in the filters.");
0474 if (&w[0] == &v[0])
0475 {
0476 throw std::logic_error("This transform cannot be performed in-place.");
0477 }
0478
0479 if (std::size(v) < m_boundary_filters[0].size())
0480 {
0481 std::string msg = "The input vector must be at least as long as the filter length. ";
0482 msg += "The input vector has length = " + std::to_string(std::size(v)) + ", the filter has length " + std::to_string(m_boundary_filters[0].size());
0483 throw std::length_error(msg);
0484 }
0485
0486 if (std::size(w) < std::size(v))
0487 {
0488 std::string msg = "The output vector (containing the derivative) must be at least as long as the input vector.";
0489 msg += "The output vector has length = " + std::to_string(std::size(w)) + ", the input vector has length " + std::to_string(std::size(v));
0490 throw std::length_error(msg);
0491 }
0492
0493 if constexpr (order==1)
0494 {
0495 for (std::size_t i = 0; i < m_f.size() - 1; ++i)
0496 {
0497 auto &bf = m_boundary_filters[i];
0498 Real dvdt = bf[0] * v[0];
0499 for (std::size_t j = 1; j < bf.size(); ++j)
0500 {
0501 dvdt += bf[j] * v[j];
0502 }
0503 w[i] = dvdt;
0504 }
0505
0506 for(std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
0507 {
0508 Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
0509 for (std::size_t j = 2; j < m_f.size(); ++j)
0510 {
0511 dvdt += m_f[j] *(v[i + j] - v[i - j]);
0512 }
0513 w[i] = dvdt;
0514 }
0515
0516
0517 for(std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
0518 {
0519 int k = std::size(v) - 1 - i;
0520 auto &f = m_boundary_filters[k];
0521 Real dvdt = f[0] * v[std::size(v) - 1];;
0522 for (std::size_t j = 1; j < f.size(); ++j)
0523 {
0524 dvdt += f[j] * v[std::size(v) - 1 - j];
0525 }
0526 w[i] = -dvdt;
0527 }
0528 }
0529 else if constexpr (order==2)
0530 {
0531
0532 for (std::size_t i = 0; i < m_f.size() - 1; ++i)
0533 {
0534 auto &bf = m_boundary_filters[i];
0535 Real d2vdt2 = 0;
0536 for (std::size_t j = 0; j < bf.size(); ++j)
0537 {
0538 d2vdt2 += bf[j] * v[j];
0539 }
0540 w[i] = d2vdt2;
0541 }
0542
0543 for (std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
0544 {
0545 Real d2vdt2 = m_f[0]*v[i];
0546 for (std::size_t j = 1; j < m_f.size(); ++j)
0547 {
0548 d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
0549 }
0550 w[i] = d2vdt2;
0551 }
0552
0553 for (std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
0554 {
0555 int k = std::size(v) - 1 - i;
0556 auto &bf = m_boundary_filters[k];
0557 Real d2vdt2 = bf[0] * v[std::size(v) - 1];
0558 for (std::size_t j = 1; j < bf.size(); ++j)
0559 {
0560 d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
0561 }
0562 w[i] = d2vdt2;
0563 }
0564 }
0565 }
0566
0567 template<class RandomAccessContainer>
0568 RandomAccessContainer operator()(RandomAccessContainer const & v) const
0569 {
0570 RandomAccessContainer w(std::size(v));
0571 this->operator()(v, w);
0572 return w;
0573 }
0574
0575
0576
0577 discrete_lanczos_derivative( const discrete_lanczos_derivative & ) = delete;
0578 discrete_lanczos_derivative& operator=(const discrete_lanczos_derivative&) = delete;
0579
0580
0581 discrete_lanczos_derivative(discrete_lanczos_derivative&&) noexcept = default;
0582 discrete_lanczos_derivative& operator=(discrete_lanczos_derivative&&) noexcept = default;
0583
0584 private:
0585 std::vector<Real> m_f;
0586 std::vector<std::vector<Real>> m_boundary_filters;
0587 Real m_dt;
0588 };
0589
0590 }
0591 #endif