File indexing completed on 2025-01-18 09:39:31
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #ifndef BOOST_MATH_MPLFR_BINDINGS_HPP
0012 #define BOOST_MATH_MPLFR_BINDINGS_HPP
0013
0014 #include <type_traits>
0015
0016 #ifdef _MSC_VER
0017
0018
0019
0020
0021 #pragma warning(push)
0022 #pragma warning(disable: 4127 4800 4512)
0023 #endif
0024
0025 #include <gmpfrxx.h>
0026
0027 #ifdef _MSC_VER
0028 #pragma warning(pop)
0029 #endif
0030
0031 #include <boost/math/tools/precision.hpp>
0032 #include <boost/math/tools/real_cast.hpp>
0033 #include <boost/math/policies/policy.hpp>
0034 #include <boost/math/distributions/fwd.hpp>
0035 #include <boost/math/special_functions/math_fwd.hpp>
0036 #include <boost/math/bindings/detail/big_digamma.hpp>
0037 #include <boost/math/bindings/detail/big_lanczos.hpp>
0038 #include <boost/math/tools/big_constant.hpp>
0039 #include <boost/math/tools/config.hpp>
0040
0041 inline mpfr_class fabs(const mpfr_class& v)
0042 {
0043 return abs(v);
0044 }
0045 template <class T, class U>
0046 inline mpfr_class fabs(const __gmp_expr<T,U>& v)
0047 {
0048 return abs(static_cast<mpfr_class>(v));
0049 }
0050
0051 inline mpfr_class pow(const mpfr_class& b, const mpfr_class& e)
0052 {
0053 mpfr_class result;
0054 mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN);
0055 return result;
0056 }
0057
0058
0059
0060
0061
0062
0063
0064 inline mpfr_class ldexp(const mpfr_class& v, int e)
0065 {
0066
0067 mpfr_class result(v);
0068 mpfr_set_exp(result.__get_mp(), e);
0069 return result;
0070 }
0071 template <class T, class U>
0072 inline mpfr_class ldexp(const __gmp_expr<T,U>& v, int e)
0073 {
0074 return ldexp(static_cast<mpfr_class>(v), e);
0075 }
0076
0077 inline mpfr_class frexp(const mpfr_class& v, int* expon)
0078 {
0079 int e = mpfr_get_exp(v.__get_mp());
0080 mpfr_class result(v);
0081 mpfr_set_exp(result.__get_mp(), 0);
0082 *expon = e;
0083 return result;
0084 }
0085 template <class T, class U>
0086 inline mpfr_class frexp(const __gmp_expr<T,U>& v, int* expon)
0087 {
0088 return frexp(static_cast<mpfr_class>(v), expon);
0089 }
0090
0091 inline mpfr_class fmod(const mpfr_class& v1, const mpfr_class& v2)
0092 {
0093 mpfr_class n;
0094 if(v1 < 0)
0095 n = ceil(v1 / v2);
0096 else
0097 n = floor(v1 / v2);
0098 return v1 - n * v2;
0099 }
0100 template <class T, class U, class V, class W>
0101 inline mpfr_class fmod(const __gmp_expr<T,U>& v1, const __gmp_expr<V,W>& v2)
0102 {
0103 return fmod(static_cast<mpfr_class>(v1), static_cast<mpfr_class>(v2));
0104 }
0105
0106 template <class Policy>
0107 inline mpfr_class modf(const mpfr_class& v, long long* ipart, const Policy& pol)
0108 {
0109 *ipart = lltrunc(v, pol);
0110 return v - boost::math::tools::real_cast<mpfr_class>(*ipart);
0111 }
0112 template <class T, class U, class Policy>
0113 inline mpfr_class modf(const __gmp_expr<T,U>& v, long long* ipart, const Policy& pol)
0114 {
0115 return modf(static_cast<mpfr_class>(v), ipart, pol);
0116 }
0117
0118 template <class Policy>
0119 inline int iround(mpfr_class const& x, const Policy&)
0120 {
0121 return boost::math::tools::real_cast<int>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
0122 }
0123 template <class T, class U, class Policy>
0124 inline int iround(__gmp_expr<T,U> const& x, const Policy& pol)
0125 {
0126 return iround(static_cast<mpfr_class>(x), pol);
0127 }
0128
0129 template <class Policy>
0130 inline long lround(mpfr_class const& x, const Policy&)
0131 {
0132 return boost::math::tools::real_cast<long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
0133 }
0134 template <class T, class U, class Policy>
0135 inline long lround(__gmp_expr<T,U> const& x, const Policy& pol)
0136 {
0137 return lround(static_cast<mpfr_class>(x), pol);
0138 }
0139
0140 template <class Policy>
0141 inline long long llround(mpfr_class const& x, const Policy&)
0142 {
0143 return boost::math::tools::real_cast<long long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
0144 }
0145 template <class T, class U, class Policy>
0146 inline long long llround(__gmp_expr<T,U> const& x, const Policy& pol)
0147 {
0148 return llround(static_cast<mpfr_class>(x), pol);
0149 }
0150
0151 template <class Policy>
0152 inline int itrunc(mpfr_class const& x, const Policy&)
0153 {
0154 return boost::math::tools::real_cast<int>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
0155 }
0156 template <class T, class U, class Policy>
0157 inline int itrunc(__gmp_expr<T,U> const& x, const Policy& pol)
0158 {
0159 return itrunc(static_cast<mpfr_class>(x), pol);
0160 }
0161
0162 template <class Policy>
0163 inline long ltrunc(mpfr_class const& x, const Policy&)
0164 {
0165 return boost::math::tools::real_cast<long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
0166 }
0167 template <class T, class U, class Policy>
0168 inline long ltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
0169 {
0170 return ltrunc(static_cast<mpfr_class>(x), pol);
0171 }
0172
0173 template <class Policy>
0174 inline long long lltrunc(mpfr_class const& x, const Policy&)
0175 {
0176 return boost::math::tools::real_cast<long long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
0177 }
0178 template <class T, class U, class Policy>
0179 inline long long lltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
0180 {
0181 return lltrunc(static_cast<mpfr_class>(x), pol);
0182 }
0183
0184 namespace boost{
0185
0186 #ifdef BOOST_MATH_USE_FLOAT128
0187 template<> struct std::is_convertible<BOOST_MATH_FLOAT128_TYPE, mpfr_class> : public std::integral_constant<bool, false>{};
0188 #endif
0189 template<> struct std::is_convertible<long long, mpfr_class> : public std::integral_constant<bool, false>{};
0190
0191 namespace math{
0192
0193 #if defined(__GNUC__) && (__GNUC__ < 4)
0194 using ::iround;
0195 using ::lround;
0196 using ::llround;
0197 using ::itrunc;
0198 using ::ltrunc;
0199 using ::lltrunc;
0200 using ::modf;
0201 #endif
0202
0203 namespace lanczos{
0204
0205 struct mpfr_lanczos
0206 {
0207 static mpfr_class lanczos_sum(const mpfr_class& z)
0208 {
0209 unsigned long p = z.get_dprec();
0210 if(p <= 72)
0211 return lanczos13UDT::lanczos_sum(z);
0212 else if(p <= 120)
0213 return lanczos22UDT::lanczos_sum(z);
0214 else if(p <= 170)
0215 return lanczos31UDT::lanczos_sum(z);
0216 else
0217 return lanczos61UDT::lanczos_sum(z);
0218 }
0219 static mpfr_class lanczos_sum_expG_scaled(const mpfr_class& z)
0220 {
0221 unsigned long p = z.get_dprec();
0222 if(p <= 72)
0223 return lanczos13UDT::lanczos_sum_expG_scaled(z);
0224 else if(p <= 120)
0225 return lanczos22UDT::lanczos_sum_expG_scaled(z);
0226 else if(p <= 170)
0227 return lanczos31UDT::lanczos_sum_expG_scaled(z);
0228 else
0229 return lanczos61UDT::lanczos_sum_expG_scaled(z);
0230 }
0231 static mpfr_class lanczos_sum_near_1(const mpfr_class& z)
0232 {
0233 unsigned long p = z.get_dprec();
0234 if(p <= 72)
0235 return lanczos13UDT::lanczos_sum_near_1(z);
0236 else if(p <= 120)
0237 return lanczos22UDT::lanczos_sum_near_1(z);
0238 else if(p <= 170)
0239 return lanczos31UDT::lanczos_sum_near_1(z);
0240 else
0241 return lanczos61UDT::lanczos_sum_near_1(z);
0242 }
0243 static mpfr_class lanczos_sum_near_2(const mpfr_class& z)
0244 {
0245 unsigned long p = z.get_dprec();
0246 if(p <= 72)
0247 return lanczos13UDT::lanczos_sum_near_2(z);
0248 else if(p <= 120)
0249 return lanczos22UDT::lanczos_sum_near_2(z);
0250 else if(p <= 170)
0251 return lanczos31UDT::lanczos_sum_near_2(z);
0252 else
0253 return lanczos61UDT::lanczos_sum_near_2(z);
0254 }
0255 static mpfr_class g()
0256 {
0257 unsigned long p = mpfr_class::get_dprec();
0258 if(p <= 72)
0259 return lanczos13UDT::g();
0260 else if(p <= 120)
0261 return lanczos22UDT::g();
0262 else if(p <= 170)
0263 return lanczos31UDT::g();
0264 else
0265 return lanczos61UDT::g();
0266 }
0267 };
0268
0269 template<class Policy>
0270 struct lanczos<mpfr_class, Policy>
0271 {
0272 typedef mpfr_lanczos type;
0273 };
0274
0275 }
0276
0277 namespace constants{
0278
0279 template <class Real, class Policy>
0280 struct construction_traits;
0281
0282 template <class Policy>
0283 struct construction_traits<mpfr_class, Policy>
0284 {
0285 typedef std::integral_constant<int, 0> type;
0286 };
0287
0288 }
0289
0290 namespace tools
0291 {
0292
0293 template <class T, class U>
0294 struct promote_arg<__gmp_expr<T,U> >
0295 {
0296 typedef mpfr_class type;
0297 };
0298
0299 template<>
0300 inline int digits<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) noexcept
0301 {
0302 return mpfr_class::get_dprec();
0303 }
0304
0305 namespace detail{
0306
0307 template<class I>
0308 void convert_to_long_result(mpfr_class const& r, I& result)
0309 {
0310 result = 0;
0311 I last_result(0);
0312 mpfr_class t(r);
0313 double term;
0314 do
0315 {
0316 term = real_cast<double>(t);
0317 last_result = result;
0318 result += static_cast<I>(term);
0319 t -= term;
0320 }while(result != last_result);
0321 }
0322
0323 }
0324
0325 template <>
0326 inline mpfr_class real_cast<mpfr_class, long long>(long long t)
0327 {
0328 mpfr_class result;
0329 int expon = 0;
0330 int sign = 1;
0331 if(t < 0)
0332 {
0333 sign = -1;
0334 t = -t;
0335 }
0336 while(t)
0337 {
0338 result += ldexp(static_cast<double>(t & 0xffffL), expon);
0339 expon += 32;
0340 t >>= 32;
0341 }
0342 return result * sign;
0343 }
0344 template <>
0345 inline unsigned real_cast<unsigned, mpfr_class>(mpfr_class t)
0346 {
0347 return t.get_ui();
0348 }
0349 template <>
0350 inline int real_cast<int, mpfr_class>(mpfr_class t)
0351 {
0352 return t.get_si();
0353 }
0354 template <>
0355 inline double real_cast<double, mpfr_class>(mpfr_class t)
0356 {
0357 return t.get_d();
0358 }
0359 template <>
0360 inline float real_cast<float, mpfr_class>(mpfr_class t)
0361 {
0362 return static_cast<float>(t.get_d());
0363 }
0364 template <>
0365 inline long real_cast<long, mpfr_class>(mpfr_class t)
0366 {
0367 long result;
0368 detail::convert_to_long_result(t, result);
0369 return result;
0370 }
0371 template <>
0372 inline long long real_cast<long long, mpfr_class>(mpfr_class t)
0373 {
0374 long long result;
0375 detail::convert_to_long_result(t, result);
0376 return result;
0377 }
0378
0379 template <>
0380 inline mpfr_class max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
0381 {
0382 static bool has_init = false;
0383 static mpfr_class val;
0384 if(!has_init)
0385 {
0386 val = 0.5;
0387 mpfr_set_exp(val.__get_mp(), mpfr_get_emax());
0388 has_init = true;
0389 }
0390 return val;
0391 }
0392
0393 template <>
0394 inline mpfr_class min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
0395 {
0396 static bool has_init = false;
0397 static mpfr_class val;
0398 if(!has_init)
0399 {
0400 val = 0.5;
0401 mpfr_set_exp(val.__get_mp(), mpfr_get_emin());
0402 has_init = true;
0403 }
0404 return val;
0405 }
0406
0407 template <>
0408 inline mpfr_class log_max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
0409 {
0410 static bool has_init = false;
0411 static mpfr_class val = max_value<mpfr_class>();
0412 if(!has_init)
0413 {
0414 val = log(val);
0415 has_init = true;
0416 }
0417 return val;
0418 }
0419
0420 template <>
0421 inline mpfr_class log_min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
0422 {
0423 static bool has_init = false;
0424 static mpfr_class val = max_value<mpfr_class>();
0425 if(!has_init)
0426 {
0427 val = log(val);
0428 has_init = true;
0429 }
0430 return val;
0431 }
0432
0433 template <>
0434 inline mpfr_class epsilon<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
0435 {
0436 return ldexp(mpfr_class(1), 1-boost::math::policies::digits<mpfr_class, boost::math::policies::policy<> >());
0437 }
0438
0439 }
0440
0441 namespace policies{
0442
0443 template <class T, class U, class Policy>
0444 struct evaluation<__gmp_expr<T, U>, Policy>
0445 {
0446 typedef mpfr_class type;
0447 };
0448
0449 }
0450
0451 template <class Policy>
0452 inline mpfr_class skewness(const extreme_value_distribution<mpfr_class, Policy>& )
0453 {
0454
0455
0456
0457
0458 #ifdef BOOST_MATH_STANDALONE
0459 static_assert(sizeof(Policy) == 0, "mpfr skewness can not be calculated in standalone mode");
0460 #endif
0461
0462 return static_cast<mpfr_class>("1.1395470994046486574927930193898461120875997958366");
0463 }
0464
0465 template <class Policy>
0466 inline mpfr_class skewness(const rayleigh_distribution<mpfr_class, Policy>& )
0467 {
0468
0469 #ifdef BOOST_MATH_STANDALONE
0470 static_assert(sizeof(Policy) == 0, "mpfr skewness can not be calculated in standalone mode");
0471 #endif
0472
0473 return static_cast<mpfr_class>("0.63111065781893713819189935154422777984404221106391");
0474
0475
0476 }
0477
0478 template <class Policy>
0479 inline mpfr_class kurtosis(const rayleigh_distribution<mpfr_class, Policy>& )
0480 {
0481
0482 #ifdef BOOST_MATH_STANDALONE
0483 static_assert(sizeof(Policy) == 0, "mpfr kurtosis can not be calculated in standalone mode");
0484 #endif
0485
0486 return static_cast<mpfr_class>("3.2450893006876380628486604106197544154170667057995");
0487
0488
0489
0490 }
0491
0492 template <class Policy>
0493 inline mpfr_class kurtosis_excess(const rayleigh_distribution<mpfr_class, Policy>& )
0494 {
0495
0496
0497 #ifdef BOOST_MATH_STANDALONE
0498 static_assert(sizeof(Policy) == 0, "mpfr excess kurtosis can not be calculated in standalone mode");
0499 #endif
0500
0501 return static_cast<mpfr_class>("0.2450893006876380628486604106197544154170667057995");
0502
0503
0504 }
0505
0506 namespace detail{
0507
0508
0509
0510
0511 template <class Policy>
0512 mpfr_class digamma_imp(mpfr_class x, const std::integral_constant<int, 0>* , const Policy& pol)
0513 {
0514
0515
0516
0517
0518 BOOST_MATH_STD_USING
0519
0520 mpfr_class result = 0;
0521
0522
0523
0524 if(x < 0)
0525 {
0526
0527 x = 1 - x;
0528
0529 mpfr_class remainder = x - floor(x);
0530
0531 if(remainder > 0.5)
0532 {
0533 remainder -= 1;
0534 }
0535
0536
0537
0538 if(remainder == 0)
0539 {
0540 return policies::raise_pole_error<mpfr_class>("boost::math::digamma<%1%>(%1%)", nullptr, (1-x), pol);
0541 }
0542 result = constants::pi<mpfr_class>() / tan(constants::pi<mpfr_class>() * remainder);
0543 }
0544 result += big_digamma(x);
0545 return result;
0546 }
0547
0548
0549
0550
0551 template <class Policy>
0552 inline mpfr_class erf_inv_imp(const mpfr_class& p, const mpfr_class& q, const Policy&, const std::integral_constant<int, 64>*)
0553 {
0554 BOOST_MATH_STD_USING
0555
0556 mpfr_class result = 0;
0557
0558 if(p <= 0.5)
0559 {
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572 static const float Y = 0.0891314744949340820313f;
0573 static const mpfr_class P[] = {
0574 -0.000508781949658280665617,
0575 -0.00836874819741736770379,
0576 0.0334806625409744615033,
0577 -0.0126926147662974029034,
0578 -0.0365637971411762664006,
0579 0.0219878681111168899165,
0580 0.00822687874676915743155,
0581 -0.00538772965071242932965
0582 };
0583 static const mpfr_class Q[] = {
0584 1,
0585 -0.970005043303290640362,
0586 -1.56574558234175846809,
0587 1.56221558398423026363,
0588 0.662328840472002992063,
0589 -0.71228902341542847553,
0590 -0.0527396382340099713954,
0591 0.0795283687341571680018,
0592 -0.00233393759374190016776,
0593 0.000886216390456424707504
0594 };
0595 mpfr_class g = p * (p + 10);
0596 mpfr_class r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
0597 result = g * Y + g * r;
0598 }
0599 else if(q >= 0.25)
0600 {
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613 static const float Y = 2.249481201171875f;
0614 static const mpfr_class P[] = {
0615 -0.202433508355938759655,
0616 0.105264680699391713268,
0617 8.37050328343119927838,
0618 17.6447298408374015486,
0619 -18.8510648058714251895,
0620 -44.6382324441786960818,
0621 17.445385985570866523,
0622 21.1294655448340526258,
0623 -3.67192254707729348546
0624 };
0625 static const mpfr_class Q[] = {
0626 1,
0627 6.24264124854247537712,
0628 3.9713437953343869095,
0629 -28.6608180499800029974,
0630 -20.1432634680485188801,
0631 48.5609213108739935468,
0632 10.8268667355460159008,
0633 -22.6436933413139721736,
0634 1.72114765761200282724
0635 };
0636 mpfr_class g = sqrt(-2 * log(q));
0637 mpfr_class xs = q - 0.25;
0638 mpfr_class r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0639 result = g / (Y + r);
0640 }
0641 else
0642 {
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662 mpfr_class x = sqrt(-log(q));
0663 if(x < 3)
0664 {
0665
0666 static const float Y = 0.807220458984375f;
0667 static const mpfr_class P[] = {
0668 -0.131102781679951906451,
0669 -0.163794047193317060787,
0670 0.117030156341995252019,
0671 0.387079738972604337464,
0672 0.337785538912035898924,
0673 0.142869534408157156766,
0674 0.0290157910005329060432,
0675 0.00214558995388805277169,
0676 -0.679465575181126350155e-6,
0677 0.285225331782217055858e-7,
0678 -0.681149956853776992068e-9
0679 };
0680 static const mpfr_class Q[] = {
0681 1,
0682 3.46625407242567245975,
0683 5.38168345707006855425,
0684 4.77846592945843778382,
0685 2.59301921623620271374,
0686 0.848854343457902036425,
0687 0.152264338295331783612,
0688 0.01105924229346489121
0689 };
0690 mpfr_class xs = x - 1.125;
0691 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0692 result = Y * x + R * x;
0693 }
0694 else if(x < 6)
0695 {
0696
0697 static const float Y = 0.93995571136474609375f;
0698 static const mpfr_class P[] = {
0699 -0.0350353787183177984712,
0700 -0.00222426529213447927281,
0701 0.0185573306514231072324,
0702 0.00950804701325919603619,
0703 0.00187123492819559223345,
0704 0.000157544617424960554631,
0705 0.460469890584317994083e-5,
0706 -0.230404776911882601748e-9,
0707 0.266339227425782031962e-11
0708 };
0709 static const mpfr_class Q[] = {
0710 1,
0711 1.3653349817554063097,
0712 0.762059164553623404043,
0713 0.220091105764131249824,
0714 0.0341589143670947727934,
0715 0.00263861676657015992959,
0716 0.764675292302794483503e-4
0717 };
0718 mpfr_class xs = x - 3;
0719 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0720 result = Y * x + R * x;
0721 }
0722 else if(x < 18)
0723 {
0724
0725 static const float Y = 0.98362827301025390625f;
0726 static const mpfr_class P[] = {
0727 -0.0167431005076633737133,
0728 -0.00112951438745580278863,
0729 0.00105628862152492910091,
0730 0.000209386317487588078668,
0731 0.149624783758342370182e-4,
0732 0.449696789927706453732e-6,
0733 0.462596163522878599135e-8,
0734 -0.281128735628831791805e-13,
0735 0.99055709973310326855e-16
0736 };
0737 static const mpfr_class Q[] = {
0738 1,
0739 0.591429344886417493481,
0740 0.138151865749083321638,
0741 0.0160746087093676504695,
0742 0.000964011807005165528527,
0743 0.275335474764726041141e-4,
0744 0.282243172016108031869e-6
0745 };
0746 mpfr_class xs = x - 6;
0747 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0748 result = Y * x + R * x;
0749 }
0750 else if(x < 44)
0751 {
0752
0753 static const float Y = 0.99714565277099609375f;
0754 static const mpfr_class P[] = {
0755 -0.0024978212791898131227,
0756 -0.779190719229053954292e-5,
0757 0.254723037413027451751e-4,
0758 0.162397777342510920873e-5,
0759 0.396341011304801168516e-7,
0760 0.411632831190944208473e-9,
0761 0.145596286718675035587e-11,
0762 -0.116765012397184275695e-17
0763 };
0764 static const mpfr_class Q[] = {
0765 1,
0766 0.207123112214422517181,
0767 0.0169410838120975906478,
0768 0.000690538265622684595676,
0769 0.145007359818232637924e-4,
0770 0.144437756628144157666e-6,
0771 0.509761276599778486139e-9
0772 };
0773 mpfr_class xs = x - 18;
0774 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0775 result = Y * x + R * x;
0776 }
0777 else
0778 {
0779
0780 static const float Y = 0.99941349029541015625f;
0781 static const mpfr_class P[] = {
0782 -0.000539042911019078575891,
0783 -0.28398759004727721098e-6,
0784 0.899465114892291446442e-6,
0785 0.229345859265920864296e-7,
0786 0.225561444863500149219e-9,
0787 0.947846627503022684216e-12,
0788 0.135880130108924861008e-14,
0789 -0.348890393399948882918e-21
0790 };
0791 static const mpfr_class Q[] = {
0792 1,
0793 0.0845746234001899436914,
0794 0.00282092984726264681981,
0795 0.468292921940894236786e-4,
0796 0.399968812193862100054e-6,
0797 0.161809290887904476097e-8,
0798 0.231558608310259605225e-11
0799 };
0800 mpfr_class xs = x - 44;
0801 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
0802 result = Y * x + R * x;
0803 }
0804 }
0805 return result;
0806 }
0807
0808 inline mpfr_class bessel_i0(mpfr_class x)
0809 {
0810 #ifdef BOOST_MATH_STANDALONE
0811 static_assert(sizeof(x) == 0, "mpfr bessel_i0 can not be calculated in standalone mode");
0812 #endif
0813
0814 static const mpfr_class P1[] = {
0815 static_cast<mpfr_class>("-2.2335582639474375249e+15"),
0816 static_cast<mpfr_class>("-5.5050369673018427753e+14"),
0817 static_cast<mpfr_class>("-3.2940087627407749166e+13"),
0818 static_cast<mpfr_class>("-8.4925101247114157499e+11"),
0819 static_cast<mpfr_class>("-1.1912746104985237192e+10"),
0820 static_cast<mpfr_class>("-1.0313066708737980747e+08"),
0821 static_cast<mpfr_class>("-5.9545626019847898221e+05"),
0822 static_cast<mpfr_class>("-2.4125195876041896775e+03"),
0823 static_cast<mpfr_class>("-7.0935347449210549190e+00"),
0824 static_cast<mpfr_class>("-1.5453977791786851041e-02"),
0825 static_cast<mpfr_class>("-2.5172644670688975051e-05"),
0826 static_cast<mpfr_class>("-3.0517226450451067446e-08"),
0827 static_cast<mpfr_class>("-2.6843448573468483278e-11"),
0828 static_cast<mpfr_class>("-1.5982226675653184646e-14"),
0829 static_cast<mpfr_class>("-5.2487866627945699800e-18"),
0830 };
0831 static const mpfr_class Q1[] = {
0832 static_cast<mpfr_class>("-2.2335582639474375245e+15"),
0833 static_cast<mpfr_class>("7.8858692566751002988e+12"),
0834 static_cast<mpfr_class>("-1.2207067397808979846e+10"),
0835 static_cast<mpfr_class>("1.0377081058062166144e+07"),
0836 static_cast<mpfr_class>("-4.8527560179962773045e+03"),
0837 static_cast<mpfr_class>("1.0"),
0838 };
0839 static const mpfr_class P2[] = {
0840 static_cast<mpfr_class>("-2.2210262233306573296e-04"),
0841 static_cast<mpfr_class>("1.3067392038106924055e-02"),
0842 static_cast<mpfr_class>("-4.4700805721174453923e-01"),
0843 static_cast<mpfr_class>("5.5674518371240761397e+00"),
0844 static_cast<mpfr_class>("-2.3517945679239481621e+01"),
0845 static_cast<mpfr_class>("3.1611322818701131207e+01"),
0846 static_cast<mpfr_class>("-9.6090021968656180000e+00"),
0847 };
0848 static const mpfr_class Q2[] = {
0849 static_cast<mpfr_class>("-5.5194330231005480228e-04"),
0850 static_cast<mpfr_class>("3.2547697594819615062e-02"),
0851 static_cast<mpfr_class>("-1.1151759188741312645e+00"),
0852 static_cast<mpfr_class>("1.3982595353892851542e+01"),
0853 static_cast<mpfr_class>("-6.0228002066743340583e+01"),
0854 static_cast<mpfr_class>("8.5539563258012929600e+01"),
0855 static_cast<mpfr_class>("-3.1446690275135491500e+01"),
0856 static_cast<mpfr_class>("1.0"),
0857 };
0858 mpfr_class value, factor, r;
0859
0860 BOOST_MATH_STD_USING
0861 using namespace boost::math::tools;
0862
0863 if (x < 0)
0864 {
0865 x = -x;
0866 }
0867 if (x == 0)
0868 {
0869 return static_cast<mpfr_class>(1);
0870 }
0871 if (x <= 15)
0872 {
0873 mpfr_class y = x * x;
0874 value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
0875 }
0876 else
0877 {
0878 mpfr_class y = 1 / x - mpfr_class(1) / 15;
0879 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
0880 factor = exp(x) / sqrt(x);
0881 value = factor * r;
0882 }
0883
0884 return value;
0885 }
0886
0887 inline mpfr_class bessel_i1(mpfr_class x)
0888 {
0889 static const mpfr_class P1[] = {
0890 static_cast<mpfr_class>("-1.4577180278143463643e+15"),
0891 static_cast<mpfr_class>("-1.7732037840791591320e+14"),
0892 static_cast<mpfr_class>("-6.9876779648010090070e+12"),
0893 static_cast<mpfr_class>("-1.3357437682275493024e+11"),
0894 static_cast<mpfr_class>("-1.4828267606612366099e+09"),
0895 static_cast<mpfr_class>("-1.0588550724769347106e+07"),
0896 static_cast<mpfr_class>("-5.1894091982308017540e+04"),
0897 static_cast<mpfr_class>("-1.8225946631657315931e+02"),
0898 static_cast<mpfr_class>("-4.7207090827310162436e-01"),
0899 static_cast<mpfr_class>("-9.1746443287817501309e-04"),
0900 static_cast<mpfr_class>("-1.3466829827635152875e-06"),
0901 static_cast<mpfr_class>("-1.4831904935994647675e-09"),
0902 static_cast<mpfr_class>("-1.1928788903603238754e-12"),
0903 static_cast<mpfr_class>("-6.5245515583151902910e-16"),
0904 static_cast<mpfr_class>("-1.9705291802535139930e-19"),
0905 };
0906 static const mpfr_class Q1[] = {
0907 static_cast<mpfr_class>("-2.9154360556286927285e+15"),
0908 static_cast<mpfr_class>("9.7887501377547640438e+12"),
0909 static_cast<mpfr_class>("-1.4386907088588283434e+10"),
0910 static_cast<mpfr_class>("1.1594225856856884006e+07"),
0911 static_cast<mpfr_class>("-5.1326864679904189920e+03"),
0912 static_cast<mpfr_class>("1.0"),
0913 };
0914 static const mpfr_class P2[] = {
0915 static_cast<mpfr_class>("1.4582087408985668208e-05"),
0916 static_cast<mpfr_class>("-8.9359825138577646443e-04"),
0917 static_cast<mpfr_class>("2.9204895411257790122e-02"),
0918 static_cast<mpfr_class>("-3.4198728018058047439e-01"),
0919 static_cast<mpfr_class>("1.3960118277609544334e+00"),
0920 static_cast<mpfr_class>("-1.9746376087200685843e+00"),
0921 static_cast<mpfr_class>("8.5591872901933459000e-01"),
0922 static_cast<mpfr_class>("-6.0437159056137599999e-02"),
0923 };
0924 static const mpfr_class Q2[] = {
0925 static_cast<mpfr_class>("3.7510433111922824643e-05"),
0926 static_cast<mpfr_class>("-2.2835624489492512649e-03"),
0927 static_cast<mpfr_class>("7.4212010813186530069e-02"),
0928 static_cast<mpfr_class>("-8.5017476463217924408e-01"),
0929 static_cast<mpfr_class>("3.2593714889036996297e+00"),
0930 static_cast<mpfr_class>("-3.8806586721556593450e+00"),
0931 static_cast<mpfr_class>("1.0"),
0932 };
0933 mpfr_class value, factor, r, w;
0934
0935 BOOST_MATH_STD_USING
0936 using namespace boost::math::tools;
0937
0938 w = abs(x);
0939 if (x == 0)
0940 {
0941 return static_cast<mpfr_class>(0);
0942 }
0943 if (w <= 15)
0944 {
0945 mpfr_class y = x * x;
0946 r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
0947 factor = w;
0948 value = factor * r;
0949 }
0950 else
0951 {
0952 mpfr_class y = 1 / w - mpfr_class(1) / 15;
0953 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
0954 factor = exp(w) / sqrt(w);
0955 value = factor * r;
0956 }
0957
0958 if (x < 0)
0959 {
0960 value *= -value;
0961 }
0962 return value;
0963 }
0964
0965 }
0966
0967 }
0968
0969 template<> struct std::is_convertible<long double, mpfr_class> : public std::false_type{};
0970
0971 }
0972
0973 #endif
0974