|
||||
File indexing completed on 2025-01-18 09:39:09
0001 /*============================================================================= 0002 Adaptable closures 0003 0004 Phoenix V0.9 0005 Copyright (c) 2001-2002 Joel de Guzman 0006 0007 Distributed under the Boost Software License, Version 1.0. (See 0008 accompanying file LICENSE_1_0.txt or copy at 0009 http://www.boost.org/LICENSE_1_0.txt) 0010 0011 URL: http://spirit.sourceforge.net/ 0012 0013 ==============================================================================*/ 0014 #ifndef BOOST_LAMBDA_CLOSURES_HPP 0015 #define BOOST_LAMBDA_CLOSURES_HPP 0016 0017 /////////////////////////////////////////////////////////////////////////////// 0018 #include "boost/lambda/core.hpp" 0019 /////////////////////////////////////////////////////////////////////////////// 0020 namespace boost { 0021 namespace lambda { 0022 0023 /////////////////////////////////////////////////////////////////////////////// 0024 // 0025 // Adaptable closures 0026 // 0027 // The framework will not be complete without some form of closures 0028 // support. Closures encapsulate a stack frame where local 0029 // variables are created upon entering a function and destructed 0030 // upon exiting. Closures provide an environment for local 0031 // variables to reside. Closures can hold heterogeneous types. 0032 // 0033 // Phoenix closures are true hardware stack based closures. At the 0034 // very least, closures enable true reentrancy in lambda functions. 0035 // A closure provides access to a function stack frame where local 0036 // variables reside. Modeled after Pascal nested stack frames, 0037 // closures can be nested just like nested functions where code in 0038 // inner closures may access local variables from in-scope outer 0039 // closures (accessing inner scopes from outer scopes is an error 0040 // and will cause a run-time assertion failure). 0041 // 0042 // There are three (3) interacting classes: 0043 // 0044 // 1) closure: 0045 // 0046 // At the point of declaration, a closure does not yet create a 0047 // stack frame nor instantiate any variables. A closure declaration 0048 // declares the types and names[note] of the local variables. The 0049 // closure class is meant to be subclassed. It is the 0050 // responsibility of a closure subclass to supply the names for 0051 // each of the local variable in the closure. Example: 0052 // 0053 // struct my_closure : closure<int, string, double> { 0054 // 0055 // member1 num; // names the 1st (int) local variable 0056 // member2 message; // names the 2nd (string) local variable 0057 // member3 real; // names the 3rd (double) local variable 0058 // }; 0059 // 0060 // my_closure clos; 0061 // 0062 // Now that we have a closure 'clos', its local variables can be 0063 // accessed lazily using the dot notation. Each qualified local 0064 // variable can be used just like any primitive actor (see 0065 // primitives.hpp). Examples: 0066 // 0067 // clos.num = 30 0068 // clos.message = arg1 0069 // clos.real = clos.num * 1e6 0070 // 0071 // The examples above are lazily evaluated. As usual, these 0072 // expressions return composite actors that will be evaluated 0073 // through a second function call invocation (see operators.hpp). 0074 // Each of the members (clos.xxx) is an actor. As such, applying 0075 // the operator() will reveal its identity: 0076 // 0077 // clos.num() // will return the current value of clos.num 0078 // 0079 // *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB) 0080 // introduced and initilally implemented the closure member names 0081 // that uses the dot notation. 0082 // 0083 // 2) closure_member 0084 // 0085 // The named local variables of closure 'clos' above are actually 0086 // closure members. The closure_member class is an actor and 0087 // conforms to its conceptual interface. member1..memberN are 0088 // predefined typedefs that correspond to each of the listed types 0089 // in the closure template parameters. 0090 // 0091 // 3) closure_frame 0092 // 0093 // When a closure member is finally evaluated, it should refer to 0094 // an actual instance of the variable in the hardware stack. 0095 // Without doing so, the process is not complete and the evaluated 0096 // member will result to an assertion failure. Remember that the 0097 // closure is just a declaration. The local variables that a 0098 // closure refers to must still be instantiated. 0099 // 0100 // The closure_frame class does the actual instantiation of the 0101 // local variables and links these variables with the closure and 0102 // all its members. There can be multiple instances of 0103 // closure_frames typically situated in the stack inside a 0104 // function. Each closure_frame instance initiates a stack frame 0105 // with a new set of closure local variables. Example: 0106 // 0107 // void foo() 0108 // { 0109 // closure_frame<my_closure> frame(clos); 0110 // /* do something */ 0111 // } 0112 // 0113 // where 'clos' is an instance of our closure 'my_closure' above. 0114 // Take note that the usage above precludes locally declared 0115 // classes. If my_closure is a locally declared type, we can still 0116 // use its self_type as a paramater to closure_frame: 0117 // 0118 // closure_frame<my_closure::self_type> frame(clos); 0119 // 0120 // Upon instantiation, the closure_frame links the local variables 0121 // to the closure. The previous link to another closure_frame 0122 // instance created before is saved. Upon destruction, the 0123 // closure_frame unlinks itself from the closure and relinks the 0124 // preceding closure_frame prior to this instance. 0125 // 0126 // The local variables in the closure 'clos' above is default 0127 // constructed in the stack inside function 'foo'. Once 'foo' is 0128 // exited, all of these local variables are destructed. In some 0129 // cases, default construction is not desirable and we need to 0130 // initialize the local closure variables with some values. This 0131 // can be done by passing in the initializers in a compatible 0132 // tuple. A compatible tuple is one with the same number of 0133 // elements as the destination and where each element from the 0134 // destination can be constructed from each corresponding element 0135 // in the source. Example: 0136 // 0137 // tuple<int, char const*, int> init(123, "Hello", 1000); 0138 // closure_frame<my_closure> frame(clos, init); 0139 // 0140 // Here now, our closure_frame's variables are initialized with 0141 // int: 123, char const*: "Hello" and int: 1000. 0142 // 0143 /////////////////////////////////////////////////////////////////////////////// 0144 0145 0146 0147 /////////////////////////////////////////////////////////////////////////////// 0148 // 0149 // closure_frame class 0150 // 0151 /////////////////////////////////////////////////////////////////////////////// 0152 template <typename ClosureT> 0153 class closure_frame : public ClosureT::tuple_t { 0154 0155 public: 0156 0157 closure_frame(ClosureT& clos) 0158 : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame) 0159 { clos.frame = this; } 0160 0161 template <typename TupleT> 0162 closure_frame(ClosureT& clos, TupleT const& init) 0163 : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame) 0164 { clos.frame = this; } 0165 0166 ~closure_frame() 0167 { frame = save; } 0168 0169 private: 0170 0171 closure_frame(closure_frame const&); // no copy 0172 closure_frame& operator=(closure_frame const&); // no assign 0173 0174 closure_frame* save; 0175 closure_frame*& frame; 0176 }; 0177 0178 /////////////////////////////////////////////////////////////////////////////// 0179 // 0180 // closure_member class 0181 // 0182 /////////////////////////////////////////////////////////////////////////////// 0183 template <int N, typename ClosureT> 0184 class closure_member { 0185 0186 public: 0187 0188 typedef typename ClosureT::tuple_t tuple_t; 0189 0190 closure_member() 0191 : frame(ClosureT::closure_frame_ref()) {} 0192 0193 template <typename TupleT> 0194 struct sig { 0195 0196 typedef typename detail::tuple_element_as_reference< 0197 N, typename ClosureT::tuple_t 0198 >::type type; 0199 }; 0200 0201 template <class Ret, class A, class B, class C> 0202 // typename detail::tuple_element_as_reference 0203 // <N, typename ClosureT::tuple_t>::type 0204 Ret 0205 call(A&, B&, C&) const 0206 { 0207 assert(frame); 0208 return boost::tuples::get<N>(*frame); 0209 } 0210 0211 0212 private: 0213 0214 typename ClosureT::closure_frame_t*& frame; 0215 }; 0216 0217 /////////////////////////////////////////////////////////////////////////////// 0218 // 0219 // closure class 0220 // 0221 /////////////////////////////////////////////////////////////////////////////// 0222 template < 0223 typename T0 = null_type, 0224 typename T1 = null_type, 0225 typename T2 = null_type, 0226 typename T3 = null_type, 0227 typename T4 = null_type 0228 > 0229 class closure { 0230 0231 public: 0232 0233 typedef tuple<T0, T1, T2, T3, T4> tuple_t; 0234 typedef closure<T0, T1, T2, T3, T4> self_t; 0235 typedef closure_frame<self_t> closure_frame_t; 0236 0237 closure() 0238 : frame(0) { closure_frame_ref(&frame); } 0239 closure_frame_t& context() { assert(frame); return frame; } 0240 closure_frame_t const& context() const { assert(frame); return frame; } 0241 0242 typedef lambda_functor<closure_member<0, self_t> > member1; 0243 typedef lambda_functor<closure_member<1, self_t> > member2; 0244 typedef lambda_functor<closure_member<2, self_t> > member3; 0245 typedef lambda_functor<closure_member<3, self_t> > member4; 0246 typedef lambda_functor<closure_member<4, self_t> > member5; 0247 0248 private: 0249 0250 closure(closure const&); // no copy 0251 closure& operator=(closure const&); // no assign 0252 0253 template <int N, typename ClosureT> 0254 friend class closure_member; 0255 0256 template <typename ClosureT> 0257 friend class closure_frame; 0258 0259 static closure_frame_t*& 0260 closure_frame_ref(closure_frame_t** frame_ = 0) 0261 { 0262 static closure_frame_t** frame = 0; 0263 if (frame_ != 0) 0264 frame = frame_; 0265 return *frame; 0266 } 0267 0268 closure_frame_t* frame; 0269 }; 0270 0271 }} 0272 // namespace 0273 0274 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |