Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:38:33

0001 //////////////////////////////////////////////////////////////////////////////
0002 //
0003 // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
0004 // Software License, Version 1.0. (See accompanying file
0005 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
0006 //
0007 // See http://www.boost.org/libs/interprocess for documentation.
0008 //
0009 //////////////////////////////////////////////////////////////////////////////
0010 //
0011 // This interface is inspired by Howard Hinnant's lock proposal.
0012 // http://home.twcny.rr.com/hinnant/cpp_extensions/threads_move.html
0013 //
0014 //////////////////////////////////////////////////////////////////////////////
0015 
0016 #ifndef BOOST_INTERPROCESS_SCOPED_LOCK_HPP
0017 #define BOOST_INTERPROCESS_SCOPED_LOCK_HPP
0018 
0019 #ifndef BOOST_CONFIG_HPP
0020 #  include <boost/config.hpp>
0021 #endif
0022 #
0023 #if defined(BOOST_HAS_PRAGMA_ONCE)
0024 #  pragma once
0025 #endif
0026 
0027 #include <boost/interprocess/detail/config_begin.hpp>
0028 #include <boost/interprocess/detail/workaround.hpp>
0029 #include <boost/interprocess/interprocess_fwd.hpp>
0030 #include <boost/interprocess/sync/lock_options.hpp>
0031 #include <boost/interprocess/exceptions.hpp>
0032 #include <boost/interprocess/detail/mpl.hpp>
0033 #include <boost/interprocess/detail/type_traits.hpp>
0034 #include <boost/move/utility_core.hpp>
0035 #include <boost/interprocess/detail/simple_swap.hpp>
0036 
0037 //!\file
0038 //!Describes the scoped_lock class.
0039 
0040 namespace boost {
0041 namespace interprocess {
0042 
0043 
0044 //!scoped_lock is meant to carry out the tasks for locking, unlocking, try-locking
0045 //!and timed-locking (recursive or not) for the Mutex. The Mutex need not supply all
0046 //!of this functionality. If the client of scoped_lock<Mutex> does not use
0047 //!functionality which the Mutex does not supply, no harm is done. Mutex ownership
0048 //!transfer is supported through the syntax of move semantics. Ownership transfer
0049 //!is allowed both by construction and assignment. The scoped_lock does not support
0050 //!copy semantics. A compile time error results if copy construction or copy
0051 //!assignment is attempted. Mutex ownership can also be moved from an
0052 //!upgradable_lock and sharable_lock via constructor. In this role, scoped_lock
0053 //!shares the same functionality as a write_lock.
0054 template <class Mutex>
0055 class scoped_lock
0056 {
0057    #if !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
0058    private:
0059    typedef scoped_lock<Mutex> this_type;
0060    BOOST_MOVABLE_BUT_NOT_COPYABLE(scoped_lock)
0061    typedef bool this_type::*unspecified_bool_type;
0062    #endif   //#ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
0063    public:
0064 
0065    typedef Mutex mutex_type;
0066 
0067    //!Effects: Default constructs a scoped_lock.
0068    //!Postconditions: owns() == false and mutex() == 0.
0069    scoped_lock() BOOST_NOEXCEPT
0070       : mp_mutex(0), m_locked(false)
0071    {}
0072 
0073    //!Effects: m.lock().
0074    //!Postconditions: owns() == true and mutex() == &m.
0075    //!Notes: The constructor will take ownership of the mutex. If another thread
0076    //!   already owns the mutex, this thread will block until the mutex is released.
0077    //!   Whether or not this constructor handles recursive locking depends upon the mutex.
0078    explicit scoped_lock(mutex_type& m)
0079       : mp_mutex(&m), m_locked(false)
0080    {  mp_mutex->lock();   m_locked = true;  }
0081 
0082    //!Postconditions: owns() == false, and mutex() == &m.
0083    //!Notes: The constructor will not take ownership of the mutex. There is no effect
0084    //!   required on the referenced mutex.
0085    scoped_lock(mutex_type& m, defer_lock_type)
0086       : mp_mutex(&m), m_locked(false)
0087    {}
0088 
0089    //!Postconditions: owns() == true, and mutex() == &m.
0090    //!Notes: The constructor will suppose that the mutex is already locked. There
0091    //!   is no effect required on the referenced mutex.
0092    scoped_lock(mutex_type& m, accept_ownership_type)
0093       : mp_mutex(&m), m_locked(true)
0094    {}
0095 
0096    //!Effects: m.try_lock().
0097    //!Postconditions: mutex() == &m. owns() == the return value of the
0098    //!   m.try_lock() executed within the constructor.
0099    //!Notes: The constructor will take ownership of the mutex if it can do
0100    //!   so without waiting. Whether or not this constructor handles recursive
0101    //!   locking depends upon the mutex. If the mutex_type does not support try_lock,
0102    //!   this constructor will fail at compile time if instantiated, but otherwise
0103    //!   have no effect.
0104    scoped_lock(mutex_type& m, try_to_lock_type)
0105       : mp_mutex(&m), m_locked(mp_mutex->try_lock())
0106    {}
0107 
0108    //!Effects: m.timed_lock(abs_time).
0109    //!Postconditions: mutex() == &m. owns() == the return value of the
0110    //!   m.timed_lock(abs_time) executed within the constructor.
0111    //!Notes: The constructor will take ownership of the mutex if it can do
0112    //!   it until abs_time is reached. Whether or not this constructor
0113    //!   handles recursive locking depends upon the mutex. If the mutex_type
0114    //!   does not support try_lock, this constructor will fail at compile
0115    //!   time if instantiated, but otherwise have no effect.
0116    template<class TimePoint>
0117    scoped_lock(mutex_type& m, const TimePoint& abs_time)
0118       : mp_mutex(&m), m_locked(mp_mutex->timed_lock(abs_time))
0119    {}
0120 
0121    //!Postconditions: mutex() == the value scop.mutex() had before the
0122    //!   constructor executes. s1.mutex() == 0. owns() == the value of
0123    //!   scop.owns() before the constructor executes. scop.owns().
0124    //!Notes: If the scop scoped_lock owns the mutex, ownership is moved
0125    //!   to thisscoped_lock with no blocking. If the scop scoped_lock does not
0126    //!   own the mutex, then neither will this scoped_lock. Only a moved
0127    //!   scoped_lock's will match this signature. An non-moved scoped_lock
0128    //!   can be moved with the expression: "boost::move(lock);". This
0129    //!   constructor does not alter the state of the mutex, only potentially
0130    //!   who owns it.
0131    scoped_lock(BOOST_RV_REF(scoped_lock) scop) BOOST_NOEXCEPT
0132       : mp_mutex(0), m_locked(scop.owns())
0133    {  mp_mutex = scop.release(); }
0134 
0135    //!Effects: If upgr.owns() then calls unlock_upgradable_and_lock() on the
0136    //!   referenced mutex. upgr.release() is called.
0137    //!Postconditions: mutex() == the value upgr.mutex() had before the construction.
0138    //!   upgr.mutex() == 0. owns() == upgr.owns() before the construction.
0139    //!   upgr.owns() == false after the construction.
0140    //!Notes: If upgr is locked, this constructor will lock this scoped_lock while
0141    //!   unlocking upgr. If upgr is unlocked, then this scoped_lock will be
0142    //!   unlocked as well. Only a moved upgradable_lock's will match this
0143    //!   signature. An non-moved upgradable_lock can be moved with
0144    //!   the expression: "boost::move(lock);" This constructor may block if
0145    //!   other threads hold a sharable_lock on this mutex (sharable_lock's can
0146    //!   share ownership with an upgradable_lock).
0147    template<class T>
0148    explicit scoped_lock(BOOST_RV_REF(upgradable_lock<T>) upgr
0149       , typename ipcdetail::enable_if< ipcdetail::is_same<T, Mutex> >::type * = 0)
0150       : mp_mutex(0), m_locked(false)
0151    {
0152       upgradable_lock<mutex_type> &u_lock = upgr;
0153       if(u_lock.owns()){
0154          u_lock.mutex()->unlock_upgradable_and_lock();
0155          m_locked = true;
0156       }
0157       mp_mutex = u_lock.release();
0158    }
0159 
0160    //!Effects: If upgr.owns() then calls try_unlock_upgradable_and_lock() on the
0161    //!referenced mutex:
0162    //!   a)if try_unlock_upgradable_and_lock() returns true then mutex() obtains
0163    //!      the value from upgr.release() and owns() is set to true.
0164    //!   b)if try_unlock_upgradable_and_lock() returns false then upgr is
0165    //!      unaffected and this scoped_lock construction as the same effects as
0166    //!      a default construction.
0167    //!   c)Else upgr.owns() is false. mutex() obtains the value from upgr.release()
0168    //!      and owns() is set to false
0169    //!Notes: This construction will not block. It will try to obtain mutex
0170    //!   ownership from upgr immediately, while changing the lock type from a
0171    //!   "read lock" to a "write lock". If the "read lock" isn't held in the
0172    //!   first place, the mutex merely changes type to an unlocked "write lock".
0173    //!   If the "read lock" is held, then mutex transfer occurs only if it can
0174    //!   do so in a non-blocking manner.
0175    template<class T>
0176    scoped_lock(BOOST_RV_REF(upgradable_lock<T>) upgr, try_to_lock_type
0177          , typename ipcdetail::enable_if< ipcdetail::is_same<T, Mutex> >::type * = 0)
0178       : mp_mutex(0), m_locked(false)
0179    {
0180       upgradable_lock<mutex_type> &u_lock = upgr;
0181       if(u_lock.owns()){
0182          if((m_locked = u_lock.mutex()->try_unlock_upgradable_and_lock()) == true){
0183             mp_mutex = u_lock.release();
0184          }
0185       }
0186       else{
0187          u_lock.release();
0188       }
0189    }
0190 
0191    //!Effects: If upgr.owns() then calls timed_unlock_upgradable_and_lock(abs_time)
0192    //!   on the referenced mutex:
0193    //!   a)if timed_unlock_upgradable_and_lock(abs_time) returns true then mutex()
0194    //!      obtains the value from upgr.release() and owns() is set to true.
0195    //!   b)if timed_unlock_upgradable_and_lock(abs_time) returns false then upgr
0196    //!      is unaffected and this scoped_lock construction as the same effects
0197    //!      as a default construction.
0198    //!   c)Else upgr.owns() is false. mutex() obtains the value from upgr.release()
0199    //!      and owns() is set to false
0200    //!Notes: This construction will not block. It will try to obtain mutex ownership
0201    //!   from upgr immediately, while changing the lock type from a "read lock" to a
0202    //!   "write lock". If the "read lock" isn't held in the first place, the mutex
0203    //!   merely changes type to an unlocked "write lock". If the "read lock" is held,
0204    //!   then mutex transfer occurs only if it can do so in a non-blocking manner.
0205    template<class T, class TimePoint>
0206    scoped_lock(BOOST_RV_REF(upgradable_lock<T>) upgr, const TimePoint &abs_time
0207                , typename ipcdetail::enable_if< ipcdetail::is_same<T, Mutex> >::type * = 0)
0208       : mp_mutex(0), m_locked(false)
0209    {
0210       upgradable_lock<mutex_type> &u_lock = upgr;
0211       if(u_lock.owns()){
0212          if((m_locked = u_lock.mutex()->timed_unlock_upgradable_and_lock(abs_time)) == true){
0213             mp_mutex = u_lock.release();
0214          }
0215       }
0216       else{
0217          u_lock.release();
0218       }
0219    }
0220 
0221    //!Effects: If shar.owns() then calls try_unlock_sharable_and_lock() on the
0222    //!referenced mutex.
0223    //!   a)if try_unlock_sharable_and_lock() returns true then mutex() obtains
0224    //!      the value from shar.release() and owns() is set to true.
0225    //!   b)if try_unlock_sharable_and_lock() returns false then shar is
0226    //!      unaffected and this scoped_lock construction has the same
0227    //!      effects as a default construction.
0228    //!   c)Else shar.owns() is false. mutex() obtains the value from
0229    //!      shar.release() and owns() is set to false
0230    //!Notes: This construction will not block. It will try to obtain mutex
0231    //!   ownership from shar immediately, while changing the lock type from a
0232    //!   "read lock" to a "write lock". If the "read lock" isn't held in the
0233    //!   first place, the mutex merely changes type to an unlocked "write lock".
0234    //!   If the "read lock" is held, then mutex transfer occurs only if it can
0235    //!   do so in a non-blocking manner.
0236    template<class T>
0237    scoped_lock(BOOST_RV_REF(sharable_lock<T>) shar, try_to_lock_type
0238       , typename ipcdetail::enable_if< ipcdetail::is_same<T, Mutex> >::type * = 0)
0239       : mp_mutex(0), m_locked(false)
0240    {
0241       sharable_lock<mutex_type> &s_lock = shar;
0242       if(s_lock.owns()){
0243          if((m_locked = s_lock.mutex()->try_unlock_sharable_and_lock()) == true){
0244             mp_mutex = s_lock.release();
0245          }
0246       }
0247       else{
0248          s_lock.release();
0249       }
0250    }
0251 
0252    //!Effects: if (owns()) mp_mutex->unlock().
0253    //!Notes: The destructor behavior ensures that the mutex lock is not leaked.*/
0254    ~scoped_lock()
0255    {
0256       BOOST_TRY{  if(m_locked && mp_mutex)   mp_mutex->unlock();  }
0257       BOOST_CATCH(...){} BOOST_CATCH_END
0258    }
0259 
0260    //!Effects: If owns() before the call, then unlock() is called on mutex().
0261    //!   *this gets the state of scop and scop gets set to a default constructed state.
0262    //!Notes: With a recursive mutex it is possible that both this and scop own
0263    //!   the same mutex before the assignment. In this case, this will own the
0264    //!   mutex after the assignment (and scop will not), but the mutex's lock
0265    //!   count will be decremented by one.
0266    scoped_lock &operator=(BOOST_RV_REF(scoped_lock) scop)
0267    {
0268       if(this->owns())
0269          this->unlock();
0270       m_locked = scop.owns();
0271       mp_mutex = scop.release();
0272       return *this;
0273    }
0274 
0275    //!Effects: If mutex() == 0 or if already locked, throws a lock_exception()
0276    //!   exception. Calls lock() on the referenced mutex.
0277    //!Postconditions: owns() == true.
0278    //!Notes: The scoped_lock changes from a state of not owning the mutex, to
0279    //!   owning the mutex, blocking if necessary.
0280    void lock()
0281    {
0282       if(!mp_mutex || m_locked)
0283          throw lock_exception();
0284       mp_mutex->lock();
0285       m_locked = true;
0286    }
0287 
0288    //!Effects: If mutex() == 0 or if already locked, throws a lock_exception()
0289    //!   exception. Calls try_lock() on the referenced mutex.
0290    //!Postconditions: owns() == the value returned from mutex()->try_lock().
0291    //!Notes: The scoped_lock changes from a state of not owning the mutex, to
0292    //!   owning the mutex, but only if blocking was not required. If the
0293    //!   mutex_type does not support try_lock(), this function will fail at
0294    //!   compile time if instantiated, but otherwise have no effect.*/
0295    bool try_lock()
0296    {
0297       if(!mp_mutex || m_locked)
0298          throw lock_exception();
0299       m_locked = mp_mutex->try_lock();
0300       return m_locked;
0301    }
0302 
0303    //!Effects: If mutex() == 0 or if already locked, throws a lock_exception()
0304    //!   exception. Calls timed_lock(abs_time) on the referenced mutex.
0305    //!Postconditions: owns() == the value returned from mutex()-> timed_lock(abs_time).
0306    //!Notes: The scoped_lock changes from a state of not owning the mutex, to
0307    //!   owning the mutex, but only if it can obtain ownership by the specified
0308    //!   time. If the mutex_type does not support timed_lock (), this function
0309    //!   will fail at compile time if instantiated, but otherwise have no effect.*/
0310    template<class TimePoint>
0311    bool timed_lock(const TimePoint& abs_time)
0312    {
0313       if(!mp_mutex || m_locked)
0314          throw lock_exception();
0315       m_locked = mp_mutex->timed_lock(abs_time);
0316       return m_locked;
0317    }
0318 
0319    //!Effects: If mutex() == 0 or if already locked, throws a lock_exception()
0320    //!   exception. Calls try_lock_until(abs_time) on the referenced mutex.
0321    //!Postconditions: owns() == the value returned from mutex()-> timed_lock(abs_time).
0322    //!Notes: The scoped_lock changes from a state of not owning the mutex, to
0323    //!   owning the mutex, but only if it can obtain ownership by the specified
0324    //!   time. If the mutex_type does not support timed_lock (), this function
0325    //!   will fail at compile time if instantiated, but otherwise have no effect.*/
0326    template<class TimePoint>
0327    bool try_lock_until(const TimePoint& abs_time)
0328    {
0329       if(!mp_mutex || m_locked)
0330          throw lock_exception();
0331       m_locked = mp_mutex->try_lock_until(abs_time);
0332       return m_locked;
0333    }
0334 
0335    //!Effects: If mutex() == 0 or if already locked, throws a lock_exception()
0336    //!   exception. Calls try_lock_until(abs_time) on the referenced mutex.
0337    //!Postconditions: owns() == the value returned from mutex()-> timed_lock(abs_time).
0338    //!Notes: The scoped_lock changes from a state of not owning the mutex, to
0339    //!   owning the mutex, but only if it can obtain ownership by the specified
0340    //!   time. If the mutex_type does not support timed_lock (), this function
0341    //!   will fail at compile time if instantiated, but otherwise have no effect.*/
0342    template<class Duration>
0343    bool try_lock_for(const Duration& dur)
0344    {
0345       if(!mp_mutex || m_locked)
0346          throw lock_exception();
0347       m_locked = mp_mutex->try_lock_for(dur);
0348       return m_locked;
0349    }
0350 
0351    //!Effects: If mutex() == 0 or if not locked, throws a lock_exception()
0352    //!   exception. Calls unlock() on the referenced mutex.
0353    //!Postconditions: owns() == false.
0354    //!Notes: The scoped_lock changes from a state of owning the mutex, to not
0355    //!   owning the mutex.*/
0356    void unlock()
0357    {
0358       if(!mp_mutex || !m_locked)
0359          throw lock_exception();
0360       mp_mutex->unlock();
0361       m_locked = false;
0362    }
0363 
0364    //!Effects: Returns true if this scoped_lock has acquired
0365    //!the referenced mutex.
0366    bool owns() const BOOST_NOEXCEPT
0367    {  return m_locked && mp_mutex;  }
0368 
0369    //!Conversion to bool.
0370    //!Returns owns().
0371    operator unspecified_bool_type() const BOOST_NOEXCEPT
0372    {  return m_locked? &this_type::m_locked : 0;   }
0373 
0374    //!Effects: Returns a pointer to the referenced mutex, or 0 if
0375    //!there is no mutex to reference.
0376    mutex_type* mutex() const BOOST_NOEXCEPT
0377    {  return  mp_mutex;  }
0378 
0379    //!Effects: Returns a pointer to the referenced mutex, or 0 if there is no
0380    //!   mutex to reference.
0381    //!Postconditions: mutex() == 0 and owns() == false.
0382    mutex_type* release() BOOST_NOEXCEPT
0383    {
0384       mutex_type *mut = mp_mutex;
0385       mp_mutex = 0;
0386       m_locked = false;
0387       return mut;
0388    }
0389 
0390    //!Effects: Swaps state with moved lock.
0391    //!Throws: Nothing.
0392    void swap( scoped_lock<mutex_type> &other) BOOST_NOEXCEPT
0393    {
0394       (simple_swap)(mp_mutex, other.mp_mutex);
0395       (simple_swap)(m_locked, other.m_locked);
0396    }
0397 
0398    #if !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
0399    private:
0400    mutex_type *mp_mutex;
0401    bool        m_locked;
0402    #endif   //#ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
0403 };
0404 
0405 } // namespace interprocess
0406 } // namespace boost
0407 
0408 #include <boost/interprocess/detail/config_end.hpp>
0409 
0410 #endif // BOOST_INTERPROCESS_SCOPED_LOCK_HPP