File indexing completed on 2025-01-18 09:29:54
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_RADIX_SORT_HPP
0012 #define BOOST_COMPUTE_ALGORITHM_DETAIL_RADIX_SORT_HPP
0013
0014 #include <iterator>
0015
0016 #include <boost/assert.hpp>
0017 #include <boost/type_traits/is_signed.hpp>
0018 #include <boost/type_traits/is_floating_point.hpp>
0019
0020 #include <boost/mpl/and.hpp>
0021 #include <boost/mpl/not.hpp>
0022
0023 #include <boost/compute/kernel.hpp>
0024 #include <boost/compute/program.hpp>
0025 #include <boost/compute/command_queue.hpp>
0026 #include <boost/compute/algorithm/exclusive_scan.hpp>
0027 #include <boost/compute/container/vector.hpp>
0028 #include <boost/compute/detail/iterator_range_size.hpp>
0029 #include <boost/compute/detail/parameter_cache.hpp>
0030 #include <boost/compute/type_traits/type_name.hpp>
0031 #include <boost/compute/type_traits/is_fundamental.hpp>
0032 #include <boost/compute/type_traits/is_vector_type.hpp>
0033 #include <boost/compute/utility/program_cache.hpp>
0034
0035 namespace boost {
0036 namespace compute {
0037 namespace detail {
0038
0039
0040 template<class T>
0041 struct is_radix_sortable :
0042 boost::mpl::and_<
0043 typename ::boost::compute::is_fundamental<T>::type,
0044 typename boost::mpl::not_<typename is_vector_type<T>::type>::type
0045 >
0046 {
0047 };
0048
0049 template<size_t N>
0050 struct radix_sort_value_type
0051 {
0052 };
0053
0054 template<>
0055 struct radix_sort_value_type<1>
0056 {
0057 typedef uchar_ type;
0058 };
0059
0060 template<>
0061 struct radix_sort_value_type<2>
0062 {
0063 typedef ushort_ type;
0064 };
0065
0066 template<>
0067 struct radix_sort_value_type<4>
0068 {
0069 typedef uint_ type;
0070 };
0071
0072 template<>
0073 struct radix_sort_value_type<8>
0074 {
0075 typedef ulong_ type;
0076 };
0077
0078 template<typename T>
0079 inline const char* enable_double()
0080 {
0081 return " -DT2_double=0";
0082 }
0083
0084 template<>
0085 inline const char* enable_double<double>()
0086 {
0087 return " -DT2_double=1";
0088 }
0089
0090 const char radix_sort_source[] =
0091 "#if T2_double\n"
0092 "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
0093 "#endif\n"
0094 "#define K2_BITS (1 << K_BITS)\n"
0095 "#define RADIX_MASK ((((T)(1)) << K_BITS) - 1)\n"
0096 "#define SIGN_BIT ((sizeof(T) * CHAR_BIT) - 1)\n"
0097
0098 "#if defined(ASC)\n"
0099
0100 "inline uint radix(const T x, const uint low_bit)\n"
0101 "{\n"
0102 "#if defined(IS_FLOATING_POINT)\n"
0103 " const T mask = -(x >> SIGN_BIT) | (((T)(1)) << SIGN_BIT);\n"
0104 " return ((x ^ mask) >> low_bit) & RADIX_MASK;\n"
0105 "#elif defined(IS_SIGNED)\n"
0106 " return ((x ^ (((T)(1)) << SIGN_BIT)) >> low_bit) & RADIX_MASK;\n"
0107 "#else\n"
0108 " return (x >> low_bit) & RADIX_MASK;\n"
0109 "#endif\n"
0110 "}\n"
0111
0112 "#else\n"
0113
0114
0115
0116
0117 "inline uint radix(const T x, const uint low_bit)\n"
0118 "{\n"
0119 "#if defined(IS_FLOATING_POINT)\n"
0120 " const T mask = -(x >> SIGN_BIT) | (((T)(1)) << SIGN_BIT);\n"
0121 " return (((-x) ^ mask) >> low_bit) & RADIX_MASK;\n"
0122 "#elif defined(IS_SIGNED)\n"
0123 " return (((-x) ^ (((T)(1)) << SIGN_BIT)) >> low_bit) & RADIX_MASK;\n"
0124 "#else\n"
0125 " return (((T)(-1) - x) >> low_bit) & RADIX_MASK;\n"
0126 "#endif\n"
0127 "}\n"
0128
0129 "#endif\n"
0130
0131 "__kernel void count(__global const T *input,\n"
0132 " const uint input_offset,\n"
0133 " const uint input_size,\n"
0134 " __global uint *global_counts,\n"
0135 " __global uint *global_offsets,\n"
0136 " __local uint *local_counts,\n"
0137 " const uint low_bit)\n"
0138 "{\n"
0139
0140 " const uint gid = get_global_id(0);\n"
0141 " const uint lid = get_local_id(0);\n"
0142
0143
0144 " if(lid < K2_BITS){\n"
0145 " local_counts[lid] = 0;\n"
0146 " }\n"
0147 " barrier(CLK_LOCAL_MEM_FENCE);\n"
0148
0149
0150 " if(gid < input_size){\n"
0151 " T value = input[input_offset+gid];\n"
0152 " uint bucket = radix(value, low_bit);\n"
0153 " atomic_inc(local_counts + bucket);\n"
0154 " }\n"
0155 " barrier(CLK_LOCAL_MEM_FENCE);\n"
0156
0157
0158 " if(lid < K2_BITS){\n"
0159 " global_counts[K2_BITS*get_group_id(0) + lid] = local_counts[lid];\n"
0160
0161
0162 " if(get_group_id(0) == (get_num_groups(0) - 1)){\n"
0163 " global_offsets[lid] = local_counts[lid];\n"
0164 " }\n"
0165 " }\n"
0166 "}\n"
0167
0168 "__kernel void scan(__global const uint *block_offsets,\n"
0169 " __global uint *global_offsets,\n"
0170 " const uint block_count)\n"
0171 "{\n"
0172 " __global const uint *last_block_offsets =\n"
0173 " block_offsets + K2_BITS * (block_count - 1);\n"
0174
0175
0176 " uint sum = 0;\n"
0177 " for(uint i = 0; i < K2_BITS; i++){\n"
0178 " uint x = global_offsets[i] + last_block_offsets[i];\n"
0179 " mem_fence(CLK_GLOBAL_MEM_FENCE);\n"
0180 " global_offsets[i] = sum;\n"
0181 " sum += x;\n"
0182 " mem_fence(CLK_GLOBAL_MEM_FENCE);\n"
0183 " }\n"
0184 "}\n"
0185
0186 "__kernel void scatter(__global const T *input,\n"
0187 " const uint input_offset,\n"
0188 " const uint input_size,\n"
0189 " const uint low_bit,\n"
0190 " __global const uint *counts,\n"
0191 " __global const uint *global_offsets,\n"
0192 "#ifndef SORT_BY_KEY\n"
0193 " __global T *output,\n"
0194 " const uint output_offset)\n"
0195 "#else\n"
0196 " __global T *keys_output,\n"
0197 " const uint keys_output_offset,\n"
0198 " __global T2 *values_input,\n"
0199 " const uint values_input_offset,\n"
0200 " __global T2 *values_output,\n"
0201 " const uint values_output_offset)\n"
0202 "#endif\n"
0203 "{\n"
0204
0205 " const uint gid = get_global_id(0);\n"
0206 " const uint lid = get_local_id(0);\n"
0207
0208
0209 " T value;\n"
0210 " uint bucket;\n"
0211 " __local uint local_input[BLOCK_SIZE];\n"
0212 " if(gid < input_size){\n"
0213 " value = input[input_offset+gid];\n"
0214 " bucket = radix(value, low_bit);\n"
0215 " local_input[lid] = bucket;\n"
0216 " }\n"
0217
0218
0219 " __local uint local_counts[(1 << K_BITS)];\n"
0220 " if(lid < K2_BITS){\n"
0221 " local_counts[lid] = counts[get_group_id(0) * K2_BITS + lid];\n"
0222 " }\n"
0223
0224
0225 " barrier(CLK_LOCAL_MEM_FENCE);\n"
0226
0227 " if(gid >= input_size){\n"
0228 " return;\n"
0229 " }\n"
0230
0231
0232 " uint offset = global_offsets[bucket] + local_counts[bucket];\n"
0233
0234
0235 " uint local_offset = 0;\n"
0236 " for(uint i = 0; i < lid; i++){\n"
0237 " if(local_input[i] == bucket)\n"
0238 " local_offset++;\n"
0239 " }\n"
0240
0241 "#ifndef SORT_BY_KEY\n"
0242
0243 " output[output_offset + offset + local_offset] = value;\n"
0244 "#else\n"
0245
0246 " keys_output[keys_output_offset+offset + local_offset] = value;\n"
0247 " values_output[values_output_offset+offset + local_offset] =\n"
0248 " values_input[values_input_offset+gid];\n"
0249 "#endif\n"
0250 "}\n";
0251
0252 template<class T, class T2>
0253 inline void radix_sort_impl(const buffer_iterator<T> first,
0254 const buffer_iterator<T> last,
0255 const buffer_iterator<T2> values_first,
0256 const bool ascending,
0257 command_queue &queue)
0258 {
0259
0260 typedef T value_type;
0261 typedef typename radix_sort_value_type<sizeof(T)>::type sort_type;
0262
0263 const device &device = queue.get_device();
0264 const context &context = queue.get_context();
0265
0266
0267
0268
0269 bool sort_by_key = (values_first.get_buffer().get() != 0);
0270
0271
0272 std::string cache_key =
0273 std::string("__boost_radix_sort_") + type_name<value_type>();
0274
0275 if(sort_by_key){
0276 cache_key += std::string("_with_") + type_name<T2>();
0277 }
0278
0279 boost::shared_ptr<program_cache> cache =
0280 program_cache::get_global_cache(context);
0281 boost::shared_ptr<parameter_cache> parameters =
0282 detail::parameter_cache::get_global_cache(device);
0283
0284
0285 const uint_ k = parameters->get(cache_key, "k", 4);
0286 const uint_ k2 = 1 << k;
0287 const uint_ block_size = parameters->get(cache_key, "tpb", 128);
0288
0289
0290 std::stringstream options;
0291 options << "-DK_BITS=" << k;
0292 options << " -DT=" << type_name<sort_type>();
0293 options << " -DBLOCK_SIZE=" << block_size;
0294
0295 if(boost::is_floating_point<value_type>::value){
0296 options << " -DIS_FLOATING_POINT";
0297 }
0298
0299 if(boost::is_signed<value_type>::value){
0300 options << " -DIS_SIGNED";
0301 }
0302
0303 if(sort_by_key){
0304 options << " -DSORT_BY_KEY";
0305 options << " -DT2=" << type_name<T2>();
0306 options << enable_double<T2>();
0307 }
0308
0309 if(ascending){
0310 options << " -DASC";
0311 }
0312
0313
0314 std::string custom_type_def = boost::compute::type_definition<T2>() + "\n";
0315
0316
0317 program radix_sort_program = cache->get_or_build(
0318 cache_key, options.str(), custom_type_def + radix_sort_source, context
0319 );
0320
0321 kernel count_kernel(radix_sort_program, "count");
0322 kernel scan_kernel(radix_sort_program, "scan");
0323 kernel scatter_kernel(radix_sort_program, "scatter");
0324
0325 size_t count = detail::iterator_range_size(first, last);
0326
0327 uint_ block_count = static_cast<uint_>(count / block_size);
0328 if(block_count * block_size != count){
0329 block_count++;
0330 }
0331
0332
0333 vector<value_type> output(count, context);
0334 vector<T2> values_output(sort_by_key ? count : 0, context);
0335 vector<uint_> offsets(k2, context);
0336 vector<uint_> counts(block_count * k2, context);
0337
0338 const buffer *input_buffer = &first.get_buffer();
0339 uint_ input_offset = static_cast<uint_>(first.get_index());
0340 const buffer *output_buffer = &output.get_buffer();
0341 uint_ output_offset = 0;
0342 const buffer *values_input_buffer = &values_first.get_buffer();
0343 uint_ values_input_offset = static_cast<uint_>(values_first.get_index());
0344 const buffer *values_output_buffer = &values_output.get_buffer();
0345 uint_ values_output_offset = 0;
0346
0347 for(uint_ i = 0; i < sizeof(sort_type) * CHAR_BIT / k; i++){
0348
0349 count_kernel.set_arg(0, *input_buffer);
0350 count_kernel.set_arg(1, input_offset);
0351 count_kernel.set_arg(2, static_cast<uint_>(count));
0352 count_kernel.set_arg(3, counts);
0353 count_kernel.set_arg(4, offsets);
0354 count_kernel.set_arg(5, block_size * sizeof(uint_), 0);
0355 count_kernel.set_arg(6, i * k);
0356 queue.enqueue_1d_range_kernel(count_kernel,
0357 0,
0358 block_count * block_size,
0359 block_size);
0360
0361
0362 if(k == 1){
0363 typedef uint2_ counter_type;
0364 ::boost::compute::exclusive_scan(
0365 make_buffer_iterator<counter_type>(counts.get_buffer(), 0),
0366 make_buffer_iterator<counter_type>(counts.get_buffer(), counts.size() / 2),
0367 make_buffer_iterator<counter_type>(counts.get_buffer()),
0368 queue
0369 );
0370 }
0371 else if(k == 2){
0372 typedef uint4_ counter_type;
0373 ::boost::compute::exclusive_scan(
0374 make_buffer_iterator<counter_type>(counts.get_buffer(), 0),
0375 make_buffer_iterator<counter_type>(counts.get_buffer(), counts.size() / 4),
0376 make_buffer_iterator<counter_type>(counts.get_buffer()),
0377 queue
0378 );
0379 }
0380 else if(k == 4){
0381 typedef uint16_ counter_type;
0382 ::boost::compute::exclusive_scan(
0383 make_buffer_iterator<counter_type>(counts.get_buffer(), 0),
0384 make_buffer_iterator<counter_type>(counts.get_buffer(), counts.size() / 16),
0385 make_buffer_iterator<counter_type>(counts.get_buffer()),
0386 queue
0387 );
0388 }
0389 else {
0390 BOOST_ASSERT(false && "unknown k");
0391 break;
0392 }
0393
0394
0395 scan_kernel.set_arg(0, counts);
0396 scan_kernel.set_arg(1, offsets);
0397 scan_kernel.set_arg(2, block_count);
0398 queue.enqueue_task(scan_kernel);
0399
0400
0401 scatter_kernel.set_arg(0, *input_buffer);
0402 scatter_kernel.set_arg(1, input_offset);
0403 scatter_kernel.set_arg(2, static_cast<uint_>(count));
0404 scatter_kernel.set_arg(3, i * k);
0405 scatter_kernel.set_arg(4, counts);
0406 scatter_kernel.set_arg(5, offsets);
0407 scatter_kernel.set_arg(6, *output_buffer);
0408 scatter_kernel.set_arg(7, output_offset);
0409 if(sort_by_key){
0410 scatter_kernel.set_arg(8, *values_input_buffer);
0411 scatter_kernel.set_arg(9, values_input_offset);
0412 scatter_kernel.set_arg(10, *values_output_buffer);
0413 scatter_kernel.set_arg(11, values_output_offset);
0414 }
0415 queue.enqueue_1d_range_kernel(scatter_kernel,
0416 0,
0417 block_count * block_size,
0418 block_size);
0419
0420
0421 std::swap(input_buffer, output_buffer);
0422 std::swap(values_input_buffer, values_output_buffer);
0423 std::swap(input_offset, output_offset);
0424 std::swap(values_input_offset, values_output_offset);
0425 }
0426 }
0427
0428 template<class Iterator>
0429 inline void radix_sort(Iterator first,
0430 Iterator last,
0431 command_queue &queue)
0432 {
0433 radix_sort_impl(first, last, buffer_iterator<int>(), true, queue);
0434 }
0435
0436 template<class KeyIterator, class ValueIterator>
0437 inline void radix_sort_by_key(KeyIterator keys_first,
0438 KeyIterator keys_last,
0439 ValueIterator values_first,
0440 command_queue &queue)
0441 {
0442 radix_sort_impl(keys_first, keys_last, values_first, true, queue);
0443 }
0444
0445 template<class Iterator>
0446 inline void radix_sort(Iterator first,
0447 Iterator last,
0448 const bool ascending,
0449 command_queue &queue)
0450 {
0451 radix_sort_impl(first, last, buffer_iterator<int>(), ascending, queue);
0452 }
0453
0454 template<class KeyIterator, class ValueIterator>
0455 inline void radix_sort_by_key(KeyIterator keys_first,
0456 KeyIterator keys_last,
0457 ValueIterator values_first,
0458 const bool ascending,
0459 command_queue &queue)
0460 {
0461 radix_sort_impl(keys_first, keys_last, values_first, ascending, queue);
0462 }
0463
0464
0465 }
0466 }
0467 }
0468
0469 #endif