Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:27:22

0001 // Copyright 2017 The Abseil Authors.
0002 //
0003 // Licensed under the Apache License, Version 2.0 (the "License");
0004 // you may not use this file except in compliance with the License.
0005 // You may obtain a copy of the License at
0006 //
0007 //      https://www.apache.org/licenses/LICENSE-2.0
0008 //
0009 // Unless required by applicable law or agreed to in writing, software
0010 // distributed under the License is distributed on an "AS IS" BASIS,
0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
0012 // See the License for the specific language governing permissions and
0013 // limitations under the License.
0014 
0015 #ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
0016 #define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
0017 
0018 #include <cassert>
0019 #include <cmath>
0020 #include <istream>
0021 #include <limits>
0022 #include <type_traits>
0023 
0024 #include "absl/meta/type_traits.h"
0025 #include "absl/random/internal/fast_uniform_bits.h"
0026 #include "absl/random/internal/generate_real.h"
0027 #include "absl/random/internal/iostream_state_saver.h"
0028 
0029 namespace absl {
0030 ABSL_NAMESPACE_BEGIN
0031 
0032 // absl::exponential_distribution:
0033 // Generates a number conforming to an exponential distribution and is
0034 // equivalent to the standard [rand.dist.pois.exp] distribution.
0035 template <typename RealType = double>
0036 class exponential_distribution {
0037  public:
0038   using result_type = RealType;
0039 
0040   class param_type {
0041    public:
0042     using distribution_type = exponential_distribution;
0043 
0044     explicit param_type(result_type lambda = 1) : lambda_(lambda) {
0045       assert(lambda > 0);
0046       neg_inv_lambda_ = -result_type(1) / lambda_;
0047     }
0048 
0049     result_type lambda() const { return lambda_; }
0050 
0051     friend bool operator==(const param_type& a, const param_type& b) {
0052       return a.lambda_ == b.lambda_;
0053     }
0054 
0055     friend bool operator!=(const param_type& a, const param_type& b) {
0056       return !(a == b);
0057     }
0058 
0059    private:
0060     friend class exponential_distribution;
0061 
0062     result_type lambda_;
0063     result_type neg_inv_lambda_;
0064 
0065     static_assert(
0066         std::is_floating_point<RealType>::value,
0067         "Class-template absl::exponential_distribution<> must be parameterized "
0068         "using a floating-point type.");
0069   };
0070 
0071   exponential_distribution() : exponential_distribution(1) {}
0072 
0073   explicit exponential_distribution(result_type lambda) : param_(lambda) {}
0074 
0075   explicit exponential_distribution(const param_type& p) : param_(p) {}
0076 
0077   void reset() {}
0078 
0079   // Generating functions
0080   template <typename URBG>
0081   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
0082     return (*this)(g, param_);
0083   }
0084 
0085   template <typename URBG>
0086   result_type operator()(URBG& g,  // NOLINT(runtime/references)
0087                          const param_type& p);
0088 
0089   param_type param() const { return param_; }
0090   void param(const param_type& p) { param_ = p; }
0091 
0092   result_type(min)() const { return 0; }
0093   result_type(max)() const {
0094     return std::numeric_limits<result_type>::infinity();
0095   }
0096 
0097   result_type lambda() const { return param_.lambda(); }
0098 
0099   friend bool operator==(const exponential_distribution& a,
0100                          const exponential_distribution& b) {
0101     return a.param_ == b.param_;
0102   }
0103   friend bool operator!=(const exponential_distribution& a,
0104                          const exponential_distribution& b) {
0105     return a.param_ != b.param_;
0106   }
0107 
0108  private:
0109   param_type param_;
0110   random_internal::FastUniformBits<uint64_t> fast_u64_;
0111 };
0112 
0113 // --------------------------------------------------------------------------
0114 // Implementation details follow
0115 // --------------------------------------------------------------------------
0116 
0117 template <typename RealType>
0118 template <typename URBG>
0119 typename exponential_distribution<RealType>::result_type
0120 exponential_distribution<RealType>::operator()(
0121     URBG& g,  // NOLINT(runtime/references)
0122     const param_type& p) {
0123   using random_internal::GenerateNegativeTag;
0124   using random_internal::GenerateRealFromBits;
0125   using real_type =
0126       absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
0127 
0128   const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag,
0129                                              false>(fast_u64_(g));  // U(-1, 0)
0130 
0131   // log1p(-x) is mathematically equivalent to log(1 - x) but has more
0132   // accuracy for x near zero.
0133   return p.neg_inv_lambda_ * std::log1p(u);
0134 }
0135 
0136 template <typename CharT, typename Traits, typename RealType>
0137 std::basic_ostream<CharT, Traits>& operator<<(
0138     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
0139     const exponential_distribution<RealType>& x) {
0140   auto saver = random_internal::make_ostream_state_saver(os);
0141   os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
0142   os << x.lambda();
0143   return os;
0144 }
0145 
0146 template <typename CharT, typename Traits, typename RealType>
0147 std::basic_istream<CharT, Traits>& operator>>(
0148     std::basic_istream<CharT, Traits>& is,    // NOLINT(runtime/references)
0149     exponential_distribution<RealType>& x) {  // NOLINT(runtime/references)
0150   using result_type = typename exponential_distribution<RealType>::result_type;
0151   using param_type = typename exponential_distribution<RealType>::param_type;
0152   result_type lambda;
0153 
0154   auto saver = random_internal::make_istream_state_saver(is);
0155   lambda = random_internal::read_floating_point<result_type>(is);
0156   if (!is.fail()) {
0157     x.param(param_type(lambda));
0158   }
0159   return is;
0160 }
0161 
0162 ABSL_NAMESPACE_END
0163 }  // namespace absl
0164 
0165 #endif  // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_