Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:27:22

0001 // Copyright 2017 The Abseil Authors.
0002 //
0003 // Licensed under the Apache License, Version 2.0 (the "License");
0004 // you may not use this file except in compliance with the License.
0005 // You may obtain a copy of the License at
0006 //
0007 //      https://www.apache.org/licenses/LICENSE-2.0
0008 //
0009 // Unless required by applicable law or agreed to in writing, software
0010 // distributed under the License is distributed on an "AS IS" BASIS,
0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
0012 // See the License for the specific language governing permissions and
0013 // limitations under the License.
0014 
0015 #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
0016 #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
0017 
0018 #include <cassert>
0019 #include <cmath>
0020 #include <istream>
0021 #include <limits>
0022 #include <numeric>
0023 #include <type_traits>
0024 #include <utility>
0025 #include <vector>
0026 
0027 #include "absl/random/bernoulli_distribution.h"
0028 #include "absl/random/internal/iostream_state_saver.h"
0029 #include "absl/random/uniform_int_distribution.h"
0030 
0031 namespace absl {
0032 ABSL_NAMESPACE_BEGIN
0033 
0034 // absl::discrete_distribution
0035 //
0036 // A discrete distribution produces random integers i, where 0 <= i < n
0037 // distributed according to the discrete probability function:
0038 //
0039 //     P(i|p0,...,pn−1)=pi
0040 //
0041 // This class is an implementation of discrete_distribution (see
0042 // [rand.dist.samp.discrete]).
0043 //
0044 // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
0045 // absl::discrete_distribution takes O(N) time to precompute the probabilities
0046 // (where N is the number of possible outcomes in the distribution) at
0047 // construction, and then takes O(1) time for each variate generation.  Many
0048 // other implementations also take O(N) time to construct an ordered sequence of
0049 // partial sums, plus O(log N) time per variate to binary search.
0050 //
0051 template <typename IntType = int>
0052 class discrete_distribution {
0053  public:
0054   using result_type = IntType;
0055 
0056   class param_type {
0057    public:
0058     using distribution_type = discrete_distribution;
0059 
0060     param_type() { init(); }
0061 
0062     template <typename InputIterator>
0063     explicit param_type(InputIterator begin, InputIterator end)
0064         : p_(begin, end) {
0065       init();
0066     }
0067 
0068     explicit param_type(std::initializer_list<double> weights) : p_(weights) {
0069       init();
0070     }
0071 
0072     template <class UnaryOperation>
0073     explicit param_type(size_t nw, double xmin, double xmax,
0074                         UnaryOperation fw) {
0075       if (nw > 0) {
0076         p_.reserve(nw);
0077         double delta = (xmax - xmin) / static_cast<double>(nw);
0078         assert(delta > 0);
0079         double t = delta * 0.5;
0080         for (size_t i = 0; i < nw; ++i) {
0081           p_.push_back(fw(xmin + i * delta + t));
0082         }
0083       }
0084       init();
0085     }
0086 
0087     const std::vector<double>& probabilities() const { return p_; }
0088     size_t n() const { return p_.size() - 1; }
0089 
0090     friend bool operator==(const param_type& a, const param_type& b) {
0091       return a.probabilities() == b.probabilities();
0092     }
0093 
0094     friend bool operator!=(const param_type& a, const param_type& b) {
0095       return !(a == b);
0096     }
0097 
0098    private:
0099     friend class discrete_distribution;
0100 
0101     void init();
0102 
0103     std::vector<double> p_;                     // normalized probabilities
0104     std::vector<std::pair<double, size_t>> q_;  // (acceptance, alternate) pairs
0105 
0106     static_assert(std::is_integral<result_type>::value,
0107                   "Class-template absl::discrete_distribution<> must be "
0108                   "parameterized using an integral type.");
0109   };
0110 
0111   discrete_distribution() : param_() {}
0112 
0113   explicit discrete_distribution(const param_type& p) : param_(p) {}
0114 
0115   template <typename InputIterator>
0116   explicit discrete_distribution(InputIterator begin, InputIterator end)
0117       : param_(begin, end) {}
0118 
0119   explicit discrete_distribution(std::initializer_list<double> weights)
0120       : param_(weights) {}
0121 
0122   template <class UnaryOperation>
0123   explicit discrete_distribution(size_t nw, double xmin, double xmax,
0124                                  UnaryOperation fw)
0125       : param_(nw, xmin, xmax, std::move(fw)) {}
0126 
0127   void reset() {}
0128 
0129   // generating functions
0130   template <typename URBG>
0131   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
0132     return (*this)(g, param_);
0133   }
0134 
0135   template <typename URBG>
0136   result_type operator()(URBG& g,  // NOLINT(runtime/references)
0137                          const param_type& p);
0138 
0139   const param_type& param() const { return param_; }
0140   void param(const param_type& p) { param_ = p; }
0141 
0142   result_type(min)() const { return 0; }
0143   result_type(max)() const {
0144     return static_cast<result_type>(param_.n());
0145   }  // inclusive
0146 
0147   // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
0148   // const std::vector<double>&.
0149   const std::vector<double>& probabilities() const {
0150     return param_.probabilities();
0151   }
0152 
0153   friend bool operator==(const discrete_distribution& a,
0154                          const discrete_distribution& b) {
0155     return a.param_ == b.param_;
0156   }
0157   friend bool operator!=(const discrete_distribution& a,
0158                          const discrete_distribution& b) {
0159     return a.param_ != b.param_;
0160   }
0161 
0162  private:
0163   param_type param_;
0164 };
0165 
0166 // --------------------------------------------------------------------------
0167 // Implementation details only below
0168 // --------------------------------------------------------------------------
0169 
0170 namespace random_internal {
0171 
0172 // Using the vector `*probabilities`, whose values are the weights or
0173 // probabilities of an element being selected, constructs the proportional
0174 // probabilities used by the discrete distribution.  `*probabilities` will be
0175 // scaled, if necessary, so that its entries sum to a value sufficiently close
0176 // to 1.0.
0177 std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
0178     std::vector<double>* probabilities);
0179 
0180 }  // namespace random_internal
0181 
0182 template <typename IntType>
0183 void discrete_distribution<IntType>::param_type::init() {
0184   if (p_.empty()) {
0185     p_.push_back(1.0);
0186     q_.emplace_back(1.0, 0);
0187   } else {
0188     assert(n() <= (std::numeric_limits<IntType>::max)());
0189     q_ = random_internal::InitDiscreteDistribution(&p_);
0190   }
0191 }
0192 
0193 template <typename IntType>
0194 template <typename URBG>
0195 typename discrete_distribution<IntType>::result_type
0196 discrete_distribution<IntType>::operator()(
0197     URBG& g,  // NOLINT(runtime/references)
0198     const param_type& p) {
0199   const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
0200   const auto& q = p.q_[idx];
0201   const bool selected = absl::bernoulli_distribution(q.first)(g);
0202   return selected ? idx : static_cast<result_type>(q.second);
0203 }
0204 
0205 template <typename CharT, typename Traits, typename IntType>
0206 std::basic_ostream<CharT, Traits>& operator<<(
0207     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
0208     const discrete_distribution<IntType>& x) {
0209   auto saver = random_internal::make_ostream_state_saver(os);
0210   const auto& probabilities = x.param().probabilities();
0211   os << probabilities.size();
0212 
0213   os.precision(random_internal::stream_precision_helper<double>::kPrecision);
0214   for (const auto& p : probabilities) {
0215     os << os.fill() << p;
0216   }
0217   return os;
0218 }
0219 
0220 template <typename CharT, typename Traits, typename IntType>
0221 std::basic_istream<CharT, Traits>& operator>>(
0222     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
0223     discrete_distribution<IntType>& x) {    // NOLINT(runtime/references)
0224   using param_type = typename discrete_distribution<IntType>::param_type;
0225   auto saver = random_internal::make_istream_state_saver(is);
0226 
0227   size_t n;
0228   std::vector<double> p;
0229 
0230   is >> n;
0231   if (is.fail()) return is;
0232   if (n > 0) {
0233     p.reserve(n);
0234     for (IntType i = 0; i < n && !is.fail(); ++i) {
0235       auto tmp = random_internal::read_floating_point<double>(is);
0236       if (is.fail()) return is;
0237       p.push_back(tmp);
0238     }
0239   }
0240   x.param(param_type(p.begin(), p.end()));
0241   return is;
0242 }
0243 
0244 ABSL_NAMESPACE_END
0245 }  // namespace absl
0246 
0247 #endif  // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_