Warning, /include/absl/debugging/internal/stacktrace_x86-inl.inc is written in an unsupported language. File is not indexed.
0001 // Copyright 2017 The Abseil Authors.
0002 //
0003 // Licensed under the Apache License, Version 2.0 (the "License");
0004 // you may not use this file except in compliance with the License.
0005 // You may obtain a copy of the License at
0006 //
0007 // https://www.apache.org/licenses/LICENSE-2.0
0008 //
0009 // Unless required by applicable law or agreed to in writing, software
0010 // distributed under the License is distributed on an "AS IS" BASIS,
0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
0012 // See the License for the specific language governing permissions and
0013 // limitations under the License.
0014 //
0015 // Produce stack trace
0016
0017 #ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
0018 #define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
0019
0020 #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
0021 #include <ucontext.h> // for ucontext_t
0022 #endif
0023
0024 #if !defined(_WIN32)
0025 #include <unistd.h>
0026 #endif
0027
0028 #include <cassert>
0029 #include <cstdint>
0030 #include <limits>
0031
0032 #include "absl/base/attributes.h"
0033 #include "absl/base/macros.h"
0034 #include "absl/base/port.h"
0035 #include "absl/debugging/internal/address_is_readable.h"
0036 #include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
0037 #include "absl/debugging/stacktrace.h"
0038
0039 using absl::debugging_internal::AddressIsReadable;
0040
0041 #if defined(__linux__) && defined(__i386__)
0042 // Count "push %reg" instructions in VDSO __kernel_vsyscall(),
0043 // preceding "syscall" or "sysenter".
0044 // If __kernel_vsyscall uses frame pointer, answer 0.
0045 //
0046 // kMaxBytes tells how many instruction bytes of __kernel_vsyscall
0047 // to analyze before giving up. Up to kMaxBytes+1 bytes of
0048 // instructions could be accessed.
0049 //
0050 // Here are known __kernel_vsyscall instruction sequences:
0051 //
0052 // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
0053 // Used on Intel.
0054 // 0xffffe400 <__kernel_vsyscall+0>: push %ecx
0055 // 0xffffe401 <__kernel_vsyscall+1>: push %edx
0056 // 0xffffe402 <__kernel_vsyscall+2>: push %ebp
0057 // 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp
0058 // 0xffffe405 <__kernel_vsyscall+5>: sysenter
0059 //
0060 // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
0061 // Used on AMD.
0062 // 0xffffe400 <__kernel_vsyscall+0>: push %ebp
0063 // 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp
0064 // 0xffffe403 <__kernel_vsyscall+3>: syscall
0065 //
0066
0067 // The sequence below isn't actually expected in Google fleet,
0068 // here only for completeness. Remove this comment from OSS release.
0069
0070 // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
0071 // 0xffffe400 <__kernel_vsyscall+0>: int $0x80
0072 // 0xffffe401 <__kernel_vsyscall+1>: ret
0073 //
0074 static const int kMaxBytes = 10;
0075
0076 // We use assert()s instead of DCHECK()s -- this is too low level
0077 // for DCHECK().
0078
0079 static int CountPushInstructions(const unsigned char *const addr) {
0080 int result = 0;
0081 for (int i = 0; i < kMaxBytes; ++i) {
0082 if (addr[i] == 0x89) {
0083 // "mov reg,reg"
0084 if (addr[i + 1] == 0xE5) {
0085 // Found "mov %esp,%ebp".
0086 return 0;
0087 }
0088 ++i; // Skip register encoding byte.
0089 } else if (addr[i] == 0x0F &&
0090 (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
0091 // Found "sysenter" or "syscall".
0092 return result;
0093 } else if ((addr[i] & 0xF0) == 0x50) {
0094 // Found "push %reg".
0095 ++result;
0096 } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
0097 // Found "int $0x80"
0098 assert(result == 0);
0099 return 0;
0100 } else {
0101 // Unexpected instruction.
0102 assert(false && "unexpected instruction in __kernel_vsyscall");
0103 return 0;
0104 }
0105 }
0106 // Unexpected: didn't find SYSENTER or SYSCALL in
0107 // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
0108 assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
0109 return 0;
0110 }
0111 #endif
0112
0113 // Assume stack frames larger than 100,000 bytes are bogus.
0114 static const int kMaxFrameBytes = 100000;
0115 // Stack end to use when we don't know the actual stack end
0116 // (effectively just the end of address space).
0117 constexpr uintptr_t kUnknownStackEnd =
0118 std::numeric_limits<size_t>::max() - sizeof(void *);
0119
0120 // Returns the stack frame pointer from signal context, 0 if unknown.
0121 // vuc is a ucontext_t *. We use void* to avoid the use
0122 // of ucontext_t on non-POSIX systems.
0123 static uintptr_t GetFP(const void *vuc) {
0124 #if !defined(__linux__)
0125 static_cast<void>(vuc); // Avoid an unused argument compiler warning.
0126 #else
0127 if (vuc != nullptr) {
0128 auto *uc = reinterpret_cast<const ucontext_t *>(vuc);
0129 #if defined(__i386__)
0130 const auto bp = uc->uc_mcontext.gregs[REG_EBP];
0131 const auto sp = uc->uc_mcontext.gregs[REG_ESP];
0132 #elif defined(__x86_64__)
0133 const auto bp = uc->uc_mcontext.gregs[REG_RBP];
0134 const auto sp = uc->uc_mcontext.gregs[REG_RSP];
0135 #else
0136 const uintptr_t bp = 0;
0137 const uintptr_t sp = 0;
0138 #endif
0139 // Sanity-check that the base pointer is valid. It's possible that some
0140 // code in the process is compiled with --copt=-fomit-frame-pointer or
0141 // --copt=-momit-leaf-frame-pointer.
0142 //
0143 // TODO(bcmills): -momit-leaf-frame-pointer is currently the default
0144 // behavior when building with clang. Talk to the C++ toolchain team about
0145 // fixing that.
0146 if (bp >= sp && bp - sp <= kMaxFrameBytes)
0147 return static_cast<uintptr_t>(bp);
0148
0149 // If bp isn't a plausible frame pointer, return the stack pointer instead.
0150 // If we're lucky, it points to the start of a stack frame; otherwise, we'll
0151 // get one frame of garbage in the stack trace and fail the sanity check on
0152 // the next iteration.
0153 return static_cast<uintptr_t>(sp);
0154 }
0155 #endif
0156 return 0;
0157 }
0158
0159 // Given a pointer to a stack frame, locate and return the calling
0160 // stackframe, or return null if no stackframe can be found. Perform sanity
0161 // checks (the strictness of which is controlled by the boolean parameter
0162 // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
0163 template <bool STRICT_UNWINDING, bool WITH_CONTEXT>
0164 ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
0165 ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
0166 static void **NextStackFrame(void **old_fp, const void *uc,
0167 size_t stack_low, size_t stack_high) {
0168 void **new_fp = (void **)*old_fp;
0169
0170 #if defined(__linux__) && defined(__i386__)
0171 if (WITH_CONTEXT && uc != nullptr) {
0172 // How many "push %reg" instructions are there at __kernel_vsyscall?
0173 // This is constant for a given kernel and processor, so compute
0174 // it only once.
0175 static int num_push_instructions = -1; // Sentinel: not computed yet.
0176 // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
0177 // be there.
0178 static const unsigned char *kernel_rt_sigreturn_address = nullptr;
0179 static const unsigned char *kernel_vsyscall_address = nullptr;
0180 if (num_push_instructions == -1) {
0181 #ifdef ABSL_HAVE_VDSO_SUPPORT
0182 absl::debugging_internal::VDSOSupport vdso;
0183 if (vdso.IsPresent()) {
0184 absl::debugging_internal::VDSOSupport::SymbolInfo
0185 rt_sigreturn_symbol_info;
0186 absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
0187 if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
0188 &rt_sigreturn_symbol_info) ||
0189 !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
0190 &vsyscall_symbol_info) ||
0191 rt_sigreturn_symbol_info.address == nullptr ||
0192 vsyscall_symbol_info.address == nullptr) {
0193 // Unexpected: 32-bit VDSO is present, yet one of the expected
0194 // symbols is missing or null.
0195 assert(false && "VDSO is present, but doesn't have expected symbols");
0196 num_push_instructions = 0;
0197 } else {
0198 kernel_rt_sigreturn_address =
0199 reinterpret_cast<const unsigned char *>(
0200 rt_sigreturn_symbol_info.address);
0201 kernel_vsyscall_address =
0202 reinterpret_cast<const unsigned char *>(
0203 vsyscall_symbol_info.address);
0204 num_push_instructions =
0205 CountPushInstructions(kernel_vsyscall_address);
0206 }
0207 } else {
0208 num_push_instructions = 0;
0209 }
0210 #else // ABSL_HAVE_VDSO_SUPPORT
0211 num_push_instructions = 0;
0212 #endif // ABSL_HAVE_VDSO_SUPPORT
0213 }
0214 if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
0215 old_fp[1] == kernel_rt_sigreturn_address) {
0216 const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
0217 // This kernel does not use frame pointer in its VDSO code,
0218 // and so %ebp is not suitable for unwinding.
0219 void **const reg_ebp =
0220 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
0221 const unsigned char *const reg_eip =
0222 reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
0223 if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
0224 reg_eip - kernel_vsyscall_address < kMaxBytes) {
0225 // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
0226 // Restore from 'ucv' instead.
0227 void **const reg_esp =
0228 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
0229 // Check that alleged %esp is not null and is reasonably aligned.
0230 if (reg_esp &&
0231 ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
0232 // Check that alleged %esp is actually readable. This is to prevent
0233 // "double fault" in case we hit the first fault due to e.g. stack
0234 // corruption.
0235 void *const reg_esp2 = reg_esp[num_push_instructions - 1];
0236 if (AddressIsReadable(reg_esp2)) {
0237 // Alleged %esp is readable, use it for further unwinding.
0238 new_fp = reinterpret_cast<void **>(reg_esp2);
0239 }
0240 }
0241 }
0242 }
0243 }
0244 #endif
0245
0246 const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
0247 const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
0248
0249 // Check that the transition from frame pointer old_fp to frame
0250 // pointer new_fp isn't clearly bogus. Skip the checks if new_fp
0251 // matches the signal context, so that we don't skip out early when
0252 // using an alternate signal stack.
0253 //
0254 // TODO(bcmills): The GetFP call should be completely unnecessary when
0255 // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's
0256 // stack by this point), but it is empirically still needed (e.g. when the
0257 // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some
0258 // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what
0259 // it's supposed to.
0260 if (STRICT_UNWINDING &&
0261 (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
0262 // With the stack growing downwards, older stack frame must be
0263 // at a greater address that the current one.
0264 if (new_fp_u <= old_fp_u) return nullptr;
0265
0266 // If we get a very large frame size, it may be an indication that we
0267 // guessed frame pointers incorrectly and now risk a paging fault
0268 // dereferencing a wrong frame pointer. Or maybe not because large frames
0269 // are possible as well. The main stack is assumed to be readable,
0270 // so we assume the large frame is legit if we know the real stack bounds
0271 // and are within the stack.
0272 if (new_fp_u - old_fp_u > kMaxFrameBytes) {
0273 if (stack_high < kUnknownStackEnd &&
0274 static_cast<size_t>(getpagesize()) < stack_low) {
0275 // Stack bounds are known.
0276 if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
0277 // new_fp_u is not within the known stack.
0278 return nullptr;
0279 }
0280 } else {
0281 // Stack bounds are unknown, prefer truncated stack to possible crash.
0282 return nullptr;
0283 }
0284 }
0285 if (stack_low < old_fp_u && old_fp_u <= stack_high) {
0286 // Old BP was in the expected stack region...
0287 if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
0288 // ... but new BP is outside of expected stack region.
0289 // It is most likely bogus.
0290 return nullptr;
0291 }
0292 } else {
0293 // We may be here if we are executing in a co-routine with a
0294 // separate stack. We can't do safety checks in this case.
0295 }
0296 } else {
0297 if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below
0298 // In the non-strict mode, allow discontiguous stack frames.
0299 // (alternate-signal-stacks for example).
0300 if (new_fp == old_fp) return nullptr;
0301 }
0302
0303 if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
0304 #ifdef __i386__
0305 // On 32-bit machines, the stack pointer can be very close to
0306 // 0xffffffff, so we explicitly check for a pointer into the
0307 // last two pages in the address space
0308 if (new_fp_u >= 0xffffe000) return nullptr;
0309 #endif
0310 #if !defined(_WIN32)
0311 if (!STRICT_UNWINDING) {
0312 // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
0313 // on AMD-based machines with VDSO-enabled kernels.
0314 // Make an extra sanity check to insure new_fp is readable.
0315 // Note: NextStackFrame<false>() is only called while the program
0316 // is already on its last leg, so it's ok to be slow here.
0317
0318 if (!AddressIsReadable(new_fp)) {
0319 return nullptr;
0320 }
0321 }
0322 #endif
0323 return new_fp;
0324 }
0325
0326 template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
0327 ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
0328 ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
0329 ABSL_ATTRIBUTE_NOINLINE
0330 static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,
0331 const void *ucp, int *min_dropped_frames) {
0332 int n = 0;
0333 void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
0334
0335 // Assume that the first page is not stack.
0336 size_t stack_low = static_cast<size_t>(getpagesize());
0337 size_t stack_high = kUnknownStackEnd;
0338
0339 while (fp && n < max_depth) {
0340 if (*(fp + 1) == reinterpret_cast<void *>(0)) {
0341 // In 64-bit code, we often see a frame that
0342 // points to itself and has a return address of 0.
0343 break;
0344 }
0345 void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
0346 fp, ucp, stack_low, stack_high);
0347 if (skip_count > 0) {
0348 skip_count--;
0349 } else {
0350 result[n] = *(fp + 1);
0351 if (IS_STACK_FRAMES) {
0352 if (next_fp > fp) {
0353 sizes[n] = static_cast<int>(
0354 reinterpret_cast<uintptr_t>(next_fp) -
0355 reinterpret_cast<uintptr_t>(fp));
0356 } else {
0357 // A frame-size of 0 is used to indicate unknown frame size.
0358 sizes[n] = 0;
0359 }
0360 }
0361 n++;
0362 }
0363 fp = next_fp;
0364 }
0365 if (min_dropped_frames != nullptr) {
0366 // Implementation detail: we clamp the max of frames we are willing to
0367 // count, so as not to spend too much time in the loop below.
0368 const int kMaxUnwind = 1000;
0369 int num_dropped_frames = 0;
0370 for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) {
0371 if (skip_count > 0) {
0372 skip_count--;
0373 } else {
0374 num_dropped_frames++;
0375 }
0376 fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low,
0377 stack_high);
0378 }
0379 *min_dropped_frames = num_dropped_frames;
0380 }
0381 return n;
0382 }
0383
0384 namespace absl {
0385 ABSL_NAMESPACE_BEGIN
0386 namespace debugging_internal {
0387 bool StackTraceWorksForTest() {
0388 return true;
0389 }
0390 } // namespace debugging_internal
0391 ABSL_NAMESPACE_END
0392 } // namespace absl
0393
0394 #endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_