Warning, /include/absl/debugging/internal/stacktrace_aarch64-inl.inc is written in an unsupported language. File is not indexed.
0001 #ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
0002 #define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
0003
0004 // Generate stack tracer for aarch64
0005
0006 #if defined(__linux__)
0007 #include <signal.h>
0008 #include <sys/mman.h>
0009 #include <ucontext.h>
0010 #include <unistd.h>
0011 #endif
0012
0013 #include <atomic>
0014 #include <cassert>
0015 #include <cstdint>
0016 #include <iostream>
0017 #include <limits>
0018
0019 #include "absl/base/attributes.h"
0020 #include "absl/debugging/internal/address_is_readable.h"
0021 #include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
0022 #include "absl/debugging/stacktrace.h"
0023
0024 static const size_t kUnknownFrameSize = 0;
0025 // Stack end to use when we don't know the actual stack end
0026 // (effectively just the end of address space).
0027 constexpr uintptr_t kUnknownStackEnd =
0028 std::numeric_limits<size_t>::max() - sizeof(void *);
0029
0030 #if defined(__linux__)
0031 // Returns the address of the VDSO __kernel_rt_sigreturn function, if present.
0032 static const unsigned char* GetKernelRtSigreturnAddress() {
0033 constexpr uintptr_t kImpossibleAddress = 1;
0034 ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress};
0035 uintptr_t address = memoized.load(std::memory_order_relaxed);
0036 if (address != kImpossibleAddress) {
0037 return reinterpret_cast<const unsigned char*>(address);
0038 }
0039
0040 address = reinterpret_cast<uintptr_t>(nullptr);
0041
0042 #ifdef ABSL_HAVE_VDSO_SUPPORT
0043 absl::debugging_internal::VDSOSupport vdso;
0044 if (vdso.IsPresent()) {
0045 absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info;
0046 auto lookup = [&](int type) {
0047 return vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", type,
0048 &symbol_info);
0049 };
0050 if ((!lookup(STT_FUNC) && !lookup(STT_NOTYPE)) ||
0051 symbol_info.address == nullptr) {
0052 // Unexpected: VDSO is present, yet the expected symbol is missing
0053 // or null.
0054 assert(false && "VDSO is present, but doesn't have expected symbol");
0055 } else {
0056 if (reinterpret_cast<uintptr_t>(symbol_info.address) !=
0057 kImpossibleAddress) {
0058 address = reinterpret_cast<uintptr_t>(symbol_info.address);
0059 } else {
0060 assert(false && "VDSO returned invalid address");
0061 }
0062 }
0063 }
0064 #endif
0065
0066 memoized.store(address, std::memory_order_relaxed);
0067 return reinterpret_cast<const unsigned char*>(address);
0068 }
0069 #endif // __linux__
0070
0071 // Compute the size of a stack frame in [low..high). We assume that
0072 // low < high. Return size of kUnknownFrameSize.
0073 template<typename T>
0074 static size_t ComputeStackFrameSize(const T* low,
0075 const T* high) {
0076 const char* low_char_ptr = reinterpret_cast<const char *>(low);
0077 const char* high_char_ptr = reinterpret_cast<const char *>(high);
0078 return low < high ? static_cast<size_t>(high_char_ptr - low_char_ptr)
0079 : kUnknownFrameSize;
0080 }
0081
0082 // Saves stack info that is expensive to calculate to avoid recalculating per frame.
0083 struct StackInfo {
0084 uintptr_t stack_low;
0085 uintptr_t stack_high;
0086 uintptr_t sig_stack_low;
0087 uintptr_t sig_stack_high;
0088 };
0089
0090 static bool InsideSignalStack(void** ptr, const StackInfo* stack_info) {
0091 uintptr_t comparable_ptr = reinterpret_cast<uintptr_t>(ptr);
0092 if (stack_info->sig_stack_high == kUnknownStackEnd)
0093 return false;
0094 return (comparable_ptr >= stack_info->sig_stack_low &&
0095 comparable_ptr < stack_info->sig_stack_high);
0096 }
0097
0098 // Given a pointer to a stack frame, locate and return the calling
0099 // stackframe, or return null if no stackframe can be found. Perform sanity
0100 // checks (the strictness of which is controlled by the boolean parameter
0101 // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
0102 template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
0103 ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
0104 ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
0105 static void **NextStackFrame(void **old_frame_pointer, const void *uc,
0106 const StackInfo *stack_info) {
0107 void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer);
0108
0109 #if defined(__linux__)
0110 if (WITH_CONTEXT && uc != nullptr) {
0111 // Check to see if next frame's return address is __kernel_rt_sigreturn.
0112 if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) {
0113 const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
0114 // old_frame_pointer[0] is not suitable for unwinding, look at
0115 // ucontext to discover frame pointer before signal.
0116 void **const pre_signal_frame_pointer =
0117 reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]);
0118
0119 // The most recent signal always needs special handling to find the frame
0120 // pointer, but a nested signal does not. If pre_signal_frame_pointer is
0121 // earlier in the stack than the old_frame_pointer, then use it. If it is
0122 // later, then we have already unwound through it and it needs no special
0123 // handling.
0124 if (pre_signal_frame_pointer >= old_frame_pointer) {
0125 new_frame_pointer = pre_signal_frame_pointer;
0126 }
0127 }
0128 #endif
0129
0130 // The frame pointer should be 8-byte aligned.
0131 if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 7) != 0)
0132 return nullptr;
0133
0134 // Check that alleged frame pointer is actually readable. This is to
0135 // prevent "double fault" in case we hit the first fault due to e.g.
0136 // stack corruption.
0137 if (!absl::debugging_internal::AddressIsReadable(
0138 new_frame_pointer))
0139 return nullptr;
0140 }
0141
0142 // Only check the size if both frames are in the same stack.
0143 if (InsideSignalStack(new_frame_pointer, stack_info) ==
0144 InsideSignalStack(old_frame_pointer, stack_info)) {
0145 // Check frame size. In strict mode, we assume frames to be under
0146 // 100,000 bytes. In non-strict mode, we relax the limit to 1MB.
0147 const size_t max_size = STRICT_UNWINDING ? 100000 : 1000000;
0148 const size_t frame_size =
0149 ComputeStackFrameSize(old_frame_pointer, new_frame_pointer);
0150 if (frame_size == kUnknownFrameSize)
0151 return nullptr;
0152 // A very large frame may mean corrupt memory or an erroneous frame
0153 // pointer. But also maybe just a plain-old large frame. Assume that if the
0154 // frame is within a known stack, then it is valid.
0155 if (frame_size > max_size) {
0156 size_t stack_low = stack_info->stack_low;
0157 size_t stack_high = stack_info->stack_high;
0158 if (InsideSignalStack(new_frame_pointer, stack_info)) {
0159 stack_low = stack_info->sig_stack_low;
0160 stack_high = stack_info->sig_stack_high;
0161 }
0162 if (stack_high < kUnknownStackEnd &&
0163 static_cast<size_t>(getpagesize()) < stack_low) {
0164 const uintptr_t new_fp_u =
0165 reinterpret_cast<uintptr_t>(new_frame_pointer);
0166 // Stack bounds are known.
0167 if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
0168 // new_frame_pointer is not within a known stack.
0169 return nullptr;
0170 }
0171 } else {
0172 // Stack bounds are unknown, prefer truncated stack to possible crash.
0173 return nullptr;
0174 }
0175 }
0176 }
0177
0178 return new_frame_pointer;
0179 }
0180
0181 template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
0182 // We count on the bottom frame being this one. See the comment
0183 // at prev_return_address
0184 ABSL_ATTRIBUTE_NOINLINE
0185 ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
0186 ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
0187 static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
0188 const void *ucp, int *min_dropped_frames) {
0189 #ifdef __GNUC__
0190 void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0));
0191 #else
0192 # error reading stack point not yet supported on this platform.
0193 #endif
0194 skip_count++; // Skip the frame for this function.
0195 int n = 0;
0196
0197 // Assume that the first page is not stack.
0198 StackInfo stack_info;
0199 stack_info.stack_low = static_cast<uintptr_t>(getpagesize());
0200 stack_info.stack_high = kUnknownStackEnd;
0201 stack_info.sig_stack_low = stack_info.stack_low;
0202 stack_info.sig_stack_high = kUnknownStackEnd;
0203
0204 // The frame pointer points to low address of a frame. The first 64-bit
0205 // word of a frame points to the next frame up the call chain, which normally
0206 // is just after the high address of the current frame. The second word of
0207 // a frame contains return address of to the caller. To find a pc value
0208 // associated with the current frame, we need to go down a level in the call
0209 // chain. So we remember return the address of the last frame seen. This
0210 // does not work for the first stack frame, which belongs to UnwindImp() but
0211 // we skip the frame for UnwindImp() anyway.
0212 void* prev_return_address = nullptr;
0213 // The nth frame size is the difference between the nth frame pointer and the
0214 // the frame pointer below it in the call chain. There is no frame below the
0215 // leaf frame, but this function is the leaf anyway, and we skip it.
0216 void** prev_frame_pointer = nullptr;
0217
0218 while (frame_pointer && n < max_depth) {
0219 if (skip_count > 0) {
0220 skip_count--;
0221 } else {
0222 result[n] = prev_return_address;
0223 if (IS_STACK_FRAMES) {
0224 sizes[n] = static_cast<int>(
0225 ComputeStackFrameSize(prev_frame_pointer, frame_pointer));
0226 }
0227 n++;
0228 }
0229 prev_return_address = frame_pointer[1];
0230 prev_frame_pointer = frame_pointer;
0231 // The absl::GetStackFrames routine is called when we are in some
0232 // informational context (the failure signal handler for example).
0233 // Use the non-strict unwinding rules to produce a stack trace
0234 // that is as complete as possible (even if it contains a few bogus
0235 // entries in some rare cases).
0236 frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
0237 frame_pointer, ucp, &stack_info);
0238 }
0239
0240 if (min_dropped_frames != nullptr) {
0241 // Implementation detail: we clamp the max of frames we are willing to
0242 // count, so as not to spend too much time in the loop below.
0243 const int kMaxUnwind = 200;
0244 int num_dropped_frames = 0;
0245 for (int j = 0; frame_pointer != nullptr && j < kMaxUnwind; j++) {
0246 if (skip_count > 0) {
0247 skip_count--;
0248 } else {
0249 num_dropped_frames++;
0250 }
0251 frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
0252 frame_pointer, ucp, &stack_info);
0253 }
0254 *min_dropped_frames = num_dropped_frames;
0255 }
0256 return n;
0257 }
0258
0259 namespace absl {
0260 ABSL_NAMESPACE_BEGIN
0261 namespace debugging_internal {
0262 bool StackTraceWorksForTest() {
0263 return true;
0264 }
0265 } // namespace debugging_internal
0266 ABSL_NAMESPACE_END
0267 } // namespace absl
0268
0269 #endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_