|
||||
File indexing completed on 2025-01-18 09:27:16
0001 // Copyright 2024 The Abseil Authors 0002 // 0003 // Licensed under the Apache License, Version 2.0 (the "License"); 0004 // you may not use this file except in compliance with the License. 0005 // You may obtain a copy of the License at 0006 // 0007 // https://www.apache.org/licenses/LICENSE-2.0 0008 // 0009 // Unless required by applicable law or agreed to in writing, software 0010 // distributed under the License is distributed on an "AS IS" BASIS, 0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 0012 // See the License for the specific language governing permissions and 0013 // limitations under the License. 0014 0015 #ifndef ABSL_DEBUGGING_INTERNAL_BOUNDED_UTF8_LENGTH_SEQUENCE_H_ 0016 #define ABSL_DEBUGGING_INTERNAL_BOUNDED_UTF8_LENGTH_SEQUENCE_H_ 0017 0018 #include <cstdint> 0019 0020 #include "absl/base/config.h" 0021 #include "absl/numeric/bits.h" 0022 0023 namespace absl { 0024 ABSL_NAMESPACE_BEGIN 0025 namespace debugging_internal { 0026 0027 // A sequence of up to max_elements integers between 1 and 4 inclusive, whose 0028 // insertion operation computes the sum of all the elements before the insertion 0029 // point. This is useful in decoding Punycode, where one needs to know where in 0030 // a UTF-8 byte stream the n-th code point begins. 0031 // 0032 // BoundedUtf8LengthSequence is async-signal-safe and suitable for use in 0033 // symbolizing stack traces in a signal handler, provided max_elements is not 0034 // improvidently large. For inputs of lengths accepted by the Rust demangler, 0035 // up to a couple hundred code points, InsertAndReturnSumOfPredecessors should 0036 // run in a few dozen clock cycles, on par with the other arithmetic required 0037 // for Punycode decoding. 0038 template <uint32_t max_elements> 0039 class BoundedUtf8LengthSequence { 0040 public: 0041 // Constructs an empty sequence. 0042 BoundedUtf8LengthSequence() = default; 0043 0044 // Inserts `utf_length` at position `index`, shifting any existing elements at 0045 // or beyond `index` one position to the right. If the sequence is already 0046 // full, the rightmost element is discarded. 0047 // 0048 // Returns the sum of the elements at positions 0 to `index - 1` inclusive. 0049 // If `index` is greater than the number of elements already inserted, the 0050 // excess positions in the range count 1 apiece. 0051 // 0052 // REQUIRES: index < max_elements and 1 <= utf8_length <= 4. 0053 uint32_t InsertAndReturnSumOfPredecessors( 0054 uint32_t index, uint32_t utf8_length) { 0055 // The caller shouldn't pass out-of-bounds inputs, but if it does happen, 0056 // clamp the values and try to continue. If we're being called from a 0057 // signal handler, the last thing we want to do is crash. Emitting 0058 // malformed UTF-8 is a lesser evil. 0059 if (index >= max_elements) index = max_elements - 1; 0060 if (utf8_length == 0 || utf8_length > 4) utf8_length = 1; 0061 0062 const uint32_t word_index = index/32; 0063 const uint32_t bit_index = 2 * (index % 32); 0064 const uint64_t ones_bit = uint64_t{1} << bit_index; 0065 0066 // Compute the sum of predecessors. 0067 // - Each value from 1 to 4 is represented by a bit field with value from 0068 // 0 to 3, so the desired sum is index plus the sum of the 0069 // representations actually stored. 0070 // - For each bit field, a set low bit should contribute 1 to the sum, and 0071 // a set high bit should contribute 2. 0072 // - Another way to say the same thing is that each set bit contributes 1, 0073 // and each set high bit contributes an additional 1. 0074 // - So the sum we want is index + popcount(everything) + popcount(bits in 0075 // odd positions). 0076 const uint64_t odd_bits_mask = 0xaaaaaaaaaaaaaaaa; 0077 const uint64_t lower_seminibbles_mask = ones_bit - 1; 0078 const uint64_t higher_seminibbles_mask = ~lower_seminibbles_mask; 0079 const uint64_t same_word_bits_below_insertion = 0080 rep_[word_index] & lower_seminibbles_mask; 0081 int full_popcount = absl::popcount(same_word_bits_below_insertion); 0082 int odd_popcount = 0083 absl::popcount(same_word_bits_below_insertion & odd_bits_mask); 0084 for (uint32_t j = word_index; j > 0; --j) { 0085 const uint64_t word_below_insertion = rep_[j - 1]; 0086 full_popcount += absl::popcount(word_below_insertion); 0087 odd_popcount += absl::popcount(word_below_insertion & odd_bits_mask); 0088 } 0089 const uint32_t sum_of_predecessors = 0090 index + static_cast<uint32_t>(full_popcount + odd_popcount); 0091 0092 // Now insert utf8_length's representation, shifting successors up one 0093 // place. 0094 for (uint32_t j = max_elements/32 - 1; j > word_index; --j) { 0095 rep_[j] = (rep_[j] << 2) | (rep_[j - 1] >> 62); 0096 } 0097 rep_[word_index] = 0098 (rep_[word_index] & lower_seminibbles_mask) | 0099 (uint64_t{utf8_length - 1} << bit_index) | 0100 ((rep_[word_index] & higher_seminibbles_mask) << 2); 0101 0102 return sum_of_predecessors; 0103 } 0104 0105 private: 0106 // If the (32 * i + j)-th element of the represented sequence has the value k 0107 // (0 <= j < 32, 1 <= k <= 4), then bits 2 * j and 2 * j + 1 of rep_[i] 0108 // contain the seminibble (k - 1). 0109 // 0110 // In particular, the zero-initialization of rep_ makes positions not holding 0111 // any inserted element count as 1 in InsertAndReturnSumOfPredecessors. 0112 // 0113 // Example: rep_ = {0xb1, ... the rest zeroes ...} represents the sequence 0114 // (2, 1, 4, 3, ... the rest 1's ...). Constructing the sequence of Unicode 0115 // code points "Àa🂻中" = {U+00C0, U+0061, U+1F0BB, U+4E2D} (among many 0116 // other examples) would yield this value of rep_. 0117 static_assert(max_elements > 0 && max_elements % 32 == 0, 0118 "max_elements must be a positive multiple of 32"); 0119 uint64_t rep_[max_elements/32] = {}; 0120 }; 0121 0122 } // namespace debugging_internal 0123 ABSL_NAMESPACE_END 0124 } // namespace absl 0125 0126 #endif // ABSL_DEBUGGING_INTERNAL_BOUNDED_UTF8_LENGTH_SEQUENCE_H_
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |