|
||||
File indexing completed on 2025-01-30 09:31:42
0001 // Copyright 2018 The Abseil Authors. 0002 // 0003 // Licensed under the Apache License, Version 2.0 (the "License"); 0004 // you may not use this file except in compliance with the License. 0005 // You may obtain a copy of the License at 0006 // 0007 // https://www.apache.org/licenses/LICENSE-2.0 0008 // 0009 // Unless required by applicable law or agreed to in writing, software 0010 // distributed under the License is distributed on an "AS IS" BASIS, 0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 0012 // See the License for the specific language governing permissions and 0013 // limitations under the License. 0014 // 0015 // ----------------------------------------------------------------------------- 0016 // File: node_hash_set.h 0017 // ----------------------------------------------------------------------------- 0018 // 0019 // An `absl::node_hash_set<T>` is an unordered associative container designed to 0020 // be a more efficient replacement for `std::unordered_set`. Like 0021 // `unordered_set`, search, insertion, and deletion of set elements can be done 0022 // as an `O(1)` operation. However, `node_hash_set` (and other unordered 0023 // associative containers known as the collection of Abseil "Swiss tables") 0024 // contain other optimizations that result in both memory and computation 0025 // advantages. 0026 // 0027 // In most cases, your default choice for a hash table should be a map of type 0028 // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need 0029 // pointer stability, a `node_hash_set` should be your preferred choice. As 0030 // well, if you are migrating your code from using `std::unordered_set`, a 0031 // `node_hash_set` should be an easy migration. Consider migrating to 0032 // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set` 0033 // upon further review. 0034 // 0035 // `node_hash_set` is not exception-safe. 0036 0037 #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_ 0038 #define ABSL_CONTAINER_NODE_HASH_SET_H_ 0039 0040 #include <cstddef> 0041 #include <memory> 0042 #include <type_traits> 0043 0044 #include "absl/algorithm/container.h" 0045 #include "absl/base/attributes.h" 0046 #include "absl/container/hash_container_defaults.h" 0047 #include "absl/container/internal/container_memory.h" 0048 #include "absl/container/internal/node_slot_policy.h" 0049 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export 0050 #include "absl/memory/memory.h" 0051 #include "absl/meta/type_traits.h" 0052 0053 namespace absl { 0054 ABSL_NAMESPACE_BEGIN 0055 namespace container_internal { 0056 template <typename T> 0057 struct NodeHashSetPolicy; 0058 } // namespace container_internal 0059 0060 // ----------------------------------------------------------------------------- 0061 // absl::node_hash_set 0062 // ----------------------------------------------------------------------------- 0063 // 0064 // An `absl::node_hash_set<T>` is an unordered associative container which 0065 // has been optimized for both speed and memory footprint in most common use 0066 // cases. Its interface is similar to that of `std::unordered_set<T>` with the 0067 // following notable differences: 0068 // 0069 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and 0070 // `insert()`, provided that the set is provided a compatible heterogeneous 0071 // hashing function and equality operator. See below for details. 0072 // * Contains a `capacity()` member function indicating the number of element 0073 // slots (open, deleted, and empty) within the hash set. 0074 // * Returns `void` from the `erase(iterator)` overload. 0075 // 0076 // By default, `node_hash_set` uses the `absl::Hash` hashing framework. 0077 // All fundamental and Abseil types that support the `absl::Hash` framework have 0078 // a compatible equality operator for comparing insertions into `node_hash_set`. 0079 // If your type is not yet supported by the `absl::Hash` framework, see 0080 // absl/hash/hash.h for information on extending Abseil hashing to user-defined 0081 // types. 0082 // 0083 // Using `absl::node_hash_set` at interface boundaries in dynamically loaded 0084 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may 0085 // be randomized across dynamically loaded libraries. 0086 // 0087 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type 0088 // parameters can be used or `T` should have public inner types 0089 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case, 0090 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be 0091 // well-formed. Both types are basically functors: 0092 // * `Hash` should support `size_t operator()(U val) const` that returns a hash 0093 // for the given `val`. 0094 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true 0095 // if `lhs` is equal to `rhs`. 0096 // 0097 // In most cases `T` needs only to provide the `absl_container_hash`. In this 0098 // case `std::equal_to<void>` will be used instead of `eq` part. 0099 // 0100 // Example: 0101 // 0102 // // Create a node hash set of three strings 0103 // absl::node_hash_set<std::string> ducks = 0104 // {"huey", "dewey", "louie"}; 0105 // 0106 // // Insert a new element into the node hash set 0107 // ducks.insert("donald"); 0108 // 0109 // // Force a rehash of the node hash set 0110 // ducks.rehash(0); 0111 // 0112 // // See if "dewey" is present 0113 // if (ducks.contains("dewey")) { 0114 // std::cout << "We found dewey!" << std::endl; 0115 // } 0116 template <class T, class Hash = DefaultHashContainerHash<T>, 0117 class Eq = DefaultHashContainerEq<T>, class Alloc = std::allocator<T>> 0118 class ABSL_INTERNAL_ATTRIBUTE_OWNER node_hash_set 0119 : public absl::container_internal::raw_hash_set< 0120 absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> { 0121 using Base = typename node_hash_set::raw_hash_set; 0122 0123 public: 0124 // Constructors and Assignment Operators 0125 // 0126 // A node_hash_set supports the same overload set as `std::unordered_set` 0127 // for construction and assignment: 0128 // 0129 // * Default constructor 0130 // 0131 // // No allocation for the table's elements is made. 0132 // absl::node_hash_set<std::string> set1; 0133 // 0134 // * Initializer List constructor 0135 // 0136 // absl::node_hash_set<std::string> set2 = 0137 // {{"huey"}, {"dewey"}, {"louie"}}; 0138 // 0139 // * Copy constructor 0140 // 0141 // absl::node_hash_set<std::string> set3(set2); 0142 // 0143 // * Copy assignment operator 0144 // 0145 // // Hash functor and Comparator are copied as well 0146 // absl::node_hash_set<std::string> set4; 0147 // set4 = set3; 0148 // 0149 // * Move constructor 0150 // 0151 // // Move is guaranteed efficient 0152 // absl::node_hash_set<std::string> set5(std::move(set4)); 0153 // 0154 // * Move assignment operator 0155 // 0156 // // May be efficient if allocators are compatible 0157 // absl::node_hash_set<std::string> set6; 0158 // set6 = std::move(set5); 0159 // 0160 // * Range constructor 0161 // 0162 // std::vector<std::string> v = {"a", "b"}; 0163 // absl::node_hash_set<std::string> set7(v.begin(), v.end()); 0164 node_hash_set() {} 0165 using Base::Base; 0166 0167 // node_hash_set::begin() 0168 // 0169 // Returns an iterator to the beginning of the `node_hash_set`. 0170 using Base::begin; 0171 0172 // node_hash_set::cbegin() 0173 // 0174 // Returns a const iterator to the beginning of the `node_hash_set`. 0175 using Base::cbegin; 0176 0177 // node_hash_set::cend() 0178 // 0179 // Returns a const iterator to the end of the `node_hash_set`. 0180 using Base::cend; 0181 0182 // node_hash_set::end() 0183 // 0184 // Returns an iterator to the end of the `node_hash_set`. 0185 using Base::end; 0186 0187 // node_hash_set::capacity() 0188 // 0189 // Returns the number of element slots (assigned, deleted, and empty) 0190 // available within the `node_hash_set`. 0191 // 0192 // NOTE: this member function is particular to `absl::node_hash_set` and is 0193 // not provided in the `std::unordered_set` API. 0194 using Base::capacity; 0195 0196 // node_hash_set::empty() 0197 // 0198 // Returns whether or not the `node_hash_set` is empty. 0199 using Base::empty; 0200 0201 // node_hash_set::max_size() 0202 // 0203 // Returns the largest theoretical possible number of elements within a 0204 // `node_hash_set` under current memory constraints. This value can be thought 0205 // of the largest value of `std::distance(begin(), end())` for a 0206 // `node_hash_set<T>`. 0207 using Base::max_size; 0208 0209 // node_hash_set::size() 0210 // 0211 // Returns the number of elements currently within the `node_hash_set`. 0212 using Base::size; 0213 0214 // node_hash_set::clear() 0215 // 0216 // Removes all elements from the `node_hash_set`. Invalidates any references, 0217 // pointers, or iterators referring to contained elements. 0218 // 0219 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking 0220 // the underlying buffer call `erase(begin(), end())`. 0221 using Base::clear; 0222 0223 // node_hash_set::erase() 0224 // 0225 // Erases elements within the `node_hash_set`. Erasing does not trigger a 0226 // rehash. Overloads are listed below. 0227 // 0228 // void erase(const_iterator pos): 0229 // 0230 // Erases the element at `position` of the `node_hash_set`, returning 0231 // `void`. 0232 // 0233 // NOTE: this return behavior is different than that of STL containers in 0234 // general and `std::unordered_set` in particular. 0235 // 0236 // iterator erase(const_iterator first, const_iterator last): 0237 // 0238 // Erases the elements in the open interval [`first`, `last`), returning an 0239 // iterator pointing to `last`. The special case of calling 0240 // `erase(begin(), end())` resets the reserved growth such that if 0241 // `reserve(N)` has previously been called and there has been no intervening 0242 // call to `clear()`, then after calling `erase(begin(), end())`, it is safe 0243 // to assume that inserting N elements will not cause a rehash. 0244 // 0245 // size_type erase(const key_type& key): 0246 // 0247 // Erases the element with the matching key, if it exists, returning the 0248 // number of elements erased (0 or 1). 0249 using Base::erase; 0250 0251 // node_hash_set::insert() 0252 // 0253 // Inserts an element of the specified value into the `node_hash_set`, 0254 // returning an iterator pointing to the newly inserted element, provided that 0255 // an element with the given key does not already exist. If rehashing occurs 0256 // due to the insertion, all iterators are invalidated. Overloads are listed 0257 // below. 0258 // 0259 // std::pair<iterator,bool> insert(const T& value): 0260 // 0261 // Inserts a value into the `node_hash_set`. Returns a pair consisting of an 0262 // iterator to the inserted element (or to the element that prevented the 0263 // insertion) and a bool denoting whether the insertion took place. 0264 // 0265 // std::pair<iterator,bool> insert(T&& value): 0266 // 0267 // Inserts a moveable value into the `node_hash_set`. Returns a pair 0268 // consisting of an iterator to the inserted element (or to the element that 0269 // prevented the insertion) and a bool denoting whether the insertion took 0270 // place. 0271 // 0272 // iterator insert(const_iterator hint, const T& value): 0273 // iterator insert(const_iterator hint, T&& value): 0274 // 0275 // Inserts a value, using the position of `hint` as a non-binding suggestion 0276 // for where to begin the insertion search. Returns an iterator to the 0277 // inserted element, or to the existing element that prevented the 0278 // insertion. 0279 // 0280 // void insert(InputIterator first, InputIterator last): 0281 // 0282 // Inserts a range of values [`first`, `last`). 0283 // 0284 // NOTE: Although the STL does not specify which element may be inserted if 0285 // multiple keys compare equivalently, for `node_hash_set` we guarantee the 0286 // first match is inserted. 0287 // 0288 // void insert(std::initializer_list<T> ilist): 0289 // 0290 // Inserts the elements within the initializer list `ilist`. 0291 // 0292 // NOTE: Although the STL does not specify which element may be inserted if 0293 // multiple keys compare equivalently within the initializer list, for 0294 // `node_hash_set` we guarantee the first match is inserted. 0295 using Base::insert; 0296 0297 // node_hash_set::emplace() 0298 // 0299 // Inserts an element of the specified value by constructing it in-place 0300 // within the `node_hash_set`, provided that no element with the given key 0301 // already exists. 0302 // 0303 // The element may be constructed even if there already is an element with the 0304 // key in the container, in which case the newly constructed element will be 0305 // destroyed immediately. 0306 // 0307 // If rehashing occurs due to the insertion, all iterators are invalidated. 0308 using Base::emplace; 0309 0310 // node_hash_set::emplace_hint() 0311 // 0312 // Inserts an element of the specified value by constructing it in-place 0313 // within the `node_hash_set`, using the position of `hint` as a non-binding 0314 // suggestion for where to begin the insertion search, and only inserts 0315 // provided that no element with the given key already exists. 0316 // 0317 // The element may be constructed even if there already is an element with the 0318 // key in the container, in which case the newly constructed element will be 0319 // destroyed immediately. 0320 // 0321 // If rehashing occurs due to the insertion, all iterators are invalidated. 0322 using Base::emplace_hint; 0323 0324 // node_hash_set::extract() 0325 // 0326 // Extracts the indicated element, erasing it in the process, and returns it 0327 // as a C++17-compatible node handle. Overloads are listed below. 0328 // 0329 // node_type extract(const_iterator position): 0330 // 0331 // Extracts the element at the indicated position and returns a node handle 0332 // owning that extracted data. 0333 // 0334 // node_type extract(const key_type& x): 0335 // 0336 // Extracts the element with the key matching the passed key value and 0337 // returns a node handle owning that extracted data. If the `node_hash_set` 0338 // does not contain an element with a matching key, this function returns an 0339 // empty node handle. 0340 using Base::extract; 0341 0342 // node_hash_set::merge() 0343 // 0344 // Extracts elements from a given `source` node hash set into this 0345 // `node_hash_set`. If the destination `node_hash_set` already contains an 0346 // element with an equivalent key, that element is not extracted. 0347 using Base::merge; 0348 0349 // node_hash_set::swap(node_hash_set& other) 0350 // 0351 // Exchanges the contents of this `node_hash_set` with those of the `other` 0352 // node hash set, avoiding invocation of any move, copy, or swap operations on 0353 // individual elements. 0354 // 0355 // All iterators and references on the `node_hash_set` remain valid, excepting 0356 // for the past-the-end iterator, which is invalidated. 0357 // 0358 // `swap()` requires that the node hash set's hashing and key equivalence 0359 // functions be Swappable, and are exchanged using unqualified calls to 0360 // non-member `swap()`. If the set's allocator has 0361 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` 0362 // set to `true`, the allocators are also exchanged using an unqualified call 0363 // to non-member `swap()`; otherwise, the allocators are not swapped. 0364 using Base::swap; 0365 0366 // node_hash_set::rehash(count) 0367 // 0368 // Rehashes the `node_hash_set`, setting the number of slots to be at least 0369 // the passed value. If the new number of slots increases the load factor more 0370 // than the current maximum load factor 0371 // (`count` < `size()` / `max_load_factor()`), then the new number of slots 0372 // will be at least `size()` / `max_load_factor()`. 0373 // 0374 // To force a rehash, pass rehash(0). 0375 // 0376 // NOTE: unlike behavior in `std::unordered_set`, references are also 0377 // invalidated upon a `rehash()`. 0378 using Base::rehash; 0379 0380 // node_hash_set::reserve(count) 0381 // 0382 // Sets the number of slots in the `node_hash_set` to the number needed to 0383 // accommodate at least `count` total elements without exceeding the current 0384 // maximum load factor, and may rehash the container if needed. 0385 using Base::reserve; 0386 0387 // node_hash_set::contains() 0388 // 0389 // Determines whether an element comparing equal to the given `key` exists 0390 // within the `node_hash_set`, returning `true` if so or `false` otherwise. 0391 using Base::contains; 0392 0393 // node_hash_set::count(const Key& key) const 0394 // 0395 // Returns the number of elements comparing equal to the given `key` within 0396 // the `node_hash_set`. note that this function will return either `1` or `0` 0397 // since duplicate elements are not allowed within a `node_hash_set`. 0398 using Base::count; 0399 0400 // node_hash_set::equal_range() 0401 // 0402 // Returns a closed range [first, last], defined by a `std::pair` of two 0403 // iterators, containing all elements with the passed key in the 0404 // `node_hash_set`. 0405 using Base::equal_range; 0406 0407 // node_hash_set::find() 0408 // 0409 // Finds an element with the passed `key` within the `node_hash_set`. 0410 using Base::find; 0411 0412 // node_hash_set::bucket_count() 0413 // 0414 // Returns the number of "buckets" within the `node_hash_set`. Note that 0415 // because a node hash set contains all elements within its internal storage, 0416 // this value simply equals the current capacity of the `node_hash_set`. 0417 using Base::bucket_count; 0418 0419 // node_hash_set::load_factor() 0420 // 0421 // Returns the current load factor of the `node_hash_set` (the average number 0422 // of slots occupied with a value within the hash set). 0423 using Base::load_factor; 0424 0425 // node_hash_set::max_load_factor() 0426 // 0427 // Manages the maximum load factor of the `node_hash_set`. Overloads are 0428 // listed below. 0429 // 0430 // float node_hash_set::max_load_factor() 0431 // 0432 // Returns the current maximum load factor of the `node_hash_set`. 0433 // 0434 // void node_hash_set::max_load_factor(float ml) 0435 // 0436 // Sets the maximum load factor of the `node_hash_set` to the passed value. 0437 // 0438 // NOTE: This overload is provided only for API compatibility with the STL; 0439 // `node_hash_set` will ignore any set load factor and manage its rehashing 0440 // internally as an implementation detail. 0441 using Base::max_load_factor; 0442 0443 // node_hash_set::get_allocator() 0444 // 0445 // Returns the allocator function associated with this `node_hash_set`. 0446 using Base::get_allocator; 0447 0448 // node_hash_set::hash_function() 0449 // 0450 // Returns the hashing function used to hash the keys within this 0451 // `node_hash_set`. 0452 using Base::hash_function; 0453 0454 // node_hash_set::key_eq() 0455 // 0456 // Returns the function used for comparing keys equality. 0457 using Base::key_eq; 0458 }; 0459 0460 // erase_if(node_hash_set<>, Pred) 0461 // 0462 // Erases all elements that satisfy the predicate `pred` from the container `c`. 0463 // Returns the number of erased elements. 0464 template <typename T, typename H, typename E, typename A, typename Predicate> 0465 typename node_hash_set<T, H, E, A>::size_type erase_if( 0466 node_hash_set<T, H, E, A>& c, Predicate pred) { 0467 return container_internal::EraseIf(pred, &c); 0468 } 0469 0470 namespace container_internal { 0471 0472 // c_for_each_fast(node_hash_set<>, Function) 0473 // 0474 // Container-based version of the <algorithm> `std::for_each()` function to 0475 // apply a function to a container's elements. 0476 // There is no guarantees on the order of the function calls. 0477 // Erasure and/or insertion of elements in the function is not allowed. 0478 template <typename T, typename H, typename E, typename A, typename Function> 0479 decay_t<Function> c_for_each_fast(const node_hash_set<T, H, E, A>& c, 0480 Function&& f) { 0481 container_internal::ForEach(f, &c); 0482 return f; 0483 } 0484 template <typename T, typename H, typename E, typename A, typename Function> 0485 decay_t<Function> c_for_each_fast(node_hash_set<T, H, E, A>& c, Function&& f) { 0486 container_internal::ForEach(f, &c); 0487 return f; 0488 } 0489 template <typename T, typename H, typename E, typename A, typename Function> 0490 decay_t<Function> c_for_each_fast(node_hash_set<T, H, E, A>&& c, Function&& f) { 0491 container_internal::ForEach(f, &c); 0492 return f; 0493 } 0494 0495 } // namespace container_internal 0496 0497 namespace container_internal { 0498 0499 template <class T> 0500 struct NodeHashSetPolicy 0501 : absl::container_internal::node_slot_policy<T&, NodeHashSetPolicy<T>> { 0502 using key_type = T; 0503 using init_type = T; 0504 using constant_iterators = std::true_type; 0505 0506 template <class Allocator, class... Args> 0507 static T* new_element(Allocator* alloc, Args&&... args) { 0508 using ValueAlloc = 0509 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; 0510 ValueAlloc value_alloc(*alloc); 0511 T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1); 0512 absl::allocator_traits<ValueAlloc>::construct(value_alloc, res, 0513 std::forward<Args>(args)...); 0514 return res; 0515 } 0516 0517 template <class Allocator> 0518 static void delete_element(Allocator* alloc, T* elem) { 0519 using ValueAlloc = 0520 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; 0521 ValueAlloc value_alloc(*alloc); 0522 absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem); 0523 absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1); 0524 } 0525 0526 template <class F, class... Args> 0527 static decltype(absl::container_internal::DecomposeValue( 0528 std::declval<F>(), std::declval<Args>()...)) 0529 apply(F&& f, Args&&... args) { 0530 return absl::container_internal::DecomposeValue( 0531 std::forward<F>(f), std::forward<Args>(args)...); 0532 } 0533 0534 static size_t element_space_used(const T*) { return sizeof(T); } 0535 0536 template <class Hash> 0537 static constexpr HashSlotFn get_hash_slot_fn() { 0538 return &TypeErasedDerefAndApplyToSlotFn<Hash, T>; 0539 } 0540 }; 0541 } // namespace container_internal 0542 0543 namespace container_algorithm_internal { 0544 0545 // Specialization of trait in absl/algorithm/container.h 0546 template <class Key, class Hash, class KeyEqual, class Allocator> 0547 struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>> 0548 : std::true_type {}; 0549 0550 } // namespace container_algorithm_internal 0551 ABSL_NAMESPACE_END 0552 } // namespace absl 0553 0554 #endif // ABSL_CONTAINER_NODE_HASH_SET_H_
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |