|
||||
File indexing completed on 2025-01-18 09:27:15
0001 // Copyright 2018 The Abseil Authors. 0002 // 0003 // Licensed under the Apache License, Version 2.0 (the "License"); 0004 // you may not use this file except in compliance with the License. 0005 // You may obtain a copy of the License at 0006 // 0007 // https://www.apache.org/licenses/LICENSE-2.0 0008 // 0009 // Unless required by applicable law or agreed to in writing, software 0010 // distributed under the License is distributed on an "AS IS" BASIS, 0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 0012 // See the License for the specific language governing permissions and 0013 // limitations under the License. 0014 // 0015 // ----------------------------------------------------------------------------- 0016 // File: flat_hash_set.h 0017 // ----------------------------------------------------------------------------- 0018 // 0019 // An `absl::flat_hash_set<T>` is an unordered associative container designed to 0020 // be a more efficient replacement for `std::unordered_set`. Like 0021 // `unordered_set`, search, insertion, and deletion of set elements can be done 0022 // as an `O(1)` operation. However, `flat_hash_set` (and other unordered 0023 // associative containers known as the collection of Abseil "Swiss tables") 0024 // contain other optimizations that result in both memory and computation 0025 // advantages. 0026 // 0027 // In most cases, your default choice for a hash set should be a set of type 0028 // `flat_hash_set`. 0029 // 0030 // `flat_hash_set` is not exception-safe. 0031 0032 #ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_ 0033 #define ABSL_CONTAINER_FLAT_HASH_SET_H_ 0034 0035 #include <cstddef> 0036 #include <memory> 0037 #include <type_traits> 0038 #include <utility> 0039 0040 #include "absl/algorithm/container.h" 0041 #include "absl/base/attributes.h" 0042 #include "absl/base/macros.h" 0043 #include "absl/container/hash_container_defaults.h" 0044 #include "absl/container/internal/container_memory.h" 0045 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export 0046 #include "absl/memory/memory.h" 0047 #include "absl/meta/type_traits.h" 0048 0049 namespace absl { 0050 ABSL_NAMESPACE_BEGIN 0051 namespace container_internal { 0052 template <typename T> 0053 struct FlatHashSetPolicy; 0054 } // namespace container_internal 0055 0056 // ----------------------------------------------------------------------------- 0057 // absl::flat_hash_set 0058 // ----------------------------------------------------------------------------- 0059 // 0060 // An `absl::flat_hash_set<T>` is an unordered associative container which has 0061 // been optimized for both speed and memory footprint in most common use cases. 0062 // Its interface is similar to that of `std::unordered_set<T>` with the 0063 // following notable differences: 0064 // 0065 // * Requires keys that are CopyConstructible 0066 // * Supports heterogeneous lookup, through `find()` and `insert()`, provided 0067 // that the set is provided a compatible heterogeneous hashing function and 0068 // equality operator. See below for details. 0069 // * Invalidates any references and pointers to elements within the table after 0070 // `rehash()` and when the table is moved. 0071 // * Contains a `capacity()` member function indicating the number of element 0072 // slots (open, deleted, and empty) within the hash set. 0073 // * Returns `void` from the `erase(iterator)` overload. 0074 // 0075 // By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All 0076 // fundamental and Abseil types that support the `absl::Hash` framework have a 0077 // compatible equality operator for comparing insertions into `flat_hash_set`. 0078 // If your type is not yet supported by the `absl::Hash` framework, see 0079 // absl/hash/hash.h for information on extending Abseil hashing to user-defined 0080 // types. 0081 // 0082 // Using `absl::flat_hash_set` at interface boundaries in dynamically loaded 0083 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may 0084 // be randomized across dynamically loaded libraries. 0085 // 0086 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type 0087 // parameters can be used or `T` should have public inner types 0088 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case, 0089 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be 0090 // well-formed. Both types are basically functors: 0091 // * `Hash` should support `size_t operator()(U val) const` that returns a hash 0092 // for the given `val`. 0093 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true 0094 // if `lhs` is equal to `rhs`. 0095 // 0096 // In most cases `T` needs only to provide the `absl_container_hash`. In this 0097 // case `std::equal_to<void>` will be used instead of `eq` part. 0098 // 0099 // NOTE: A `flat_hash_set` stores its keys directly inside its implementation 0100 // array to avoid memory indirection. Because a `flat_hash_set` is designed to 0101 // move data when rehashed, set keys will not retain pointer stability. If you 0102 // require pointer stability, consider using 0103 // `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and 0104 // you require pointer stability, consider `absl::node_hash_set` instead. 0105 // 0106 // Example: 0107 // 0108 // // Create a flat hash set of three strings 0109 // absl::flat_hash_set<std::string> ducks = 0110 // {"huey", "dewey", "louie"}; 0111 // 0112 // // Insert a new element into the flat hash set 0113 // ducks.insert("donald"); 0114 // 0115 // // Force a rehash of the flat hash set 0116 // ducks.rehash(0); 0117 // 0118 // // See if "dewey" is present 0119 // if (ducks.contains("dewey")) { 0120 // std::cout << "We found dewey!" << std::endl; 0121 // } 0122 template <class T, class Hash = DefaultHashContainerHash<T>, 0123 class Eq = DefaultHashContainerEq<T>, 0124 class Allocator = std::allocator<T>> 0125 class ABSL_INTERNAL_ATTRIBUTE_OWNER flat_hash_set 0126 : public absl::container_internal::raw_hash_set< 0127 absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> { 0128 using Base = typename flat_hash_set::raw_hash_set; 0129 0130 public: 0131 // Constructors and Assignment Operators 0132 // 0133 // A flat_hash_set supports the same overload set as `std::unordered_set` 0134 // for construction and assignment: 0135 // 0136 // * Default constructor 0137 // 0138 // // No allocation for the table's elements is made. 0139 // absl::flat_hash_set<std::string> set1; 0140 // 0141 // * Initializer List constructor 0142 // 0143 // absl::flat_hash_set<std::string> set2 = 0144 // {{"huey"}, {"dewey"}, {"louie"},}; 0145 // 0146 // * Copy constructor 0147 // 0148 // absl::flat_hash_set<std::string> set3(set2); 0149 // 0150 // * Copy assignment operator 0151 // 0152 // // Hash functor and Comparator are copied as well 0153 // absl::flat_hash_set<std::string> set4; 0154 // set4 = set3; 0155 // 0156 // * Move constructor 0157 // 0158 // // Move is guaranteed efficient 0159 // absl::flat_hash_set<std::string> set5(std::move(set4)); 0160 // 0161 // * Move assignment operator 0162 // 0163 // // May be efficient if allocators are compatible 0164 // absl::flat_hash_set<std::string> set6; 0165 // set6 = std::move(set5); 0166 // 0167 // * Range constructor 0168 // 0169 // std::vector<std::string> v = {"a", "b"}; 0170 // absl::flat_hash_set<std::string> set7(v.begin(), v.end()); 0171 flat_hash_set() {} 0172 using Base::Base; 0173 0174 // flat_hash_set::begin() 0175 // 0176 // Returns an iterator to the beginning of the `flat_hash_set`. 0177 using Base::begin; 0178 0179 // flat_hash_set::cbegin() 0180 // 0181 // Returns a const iterator to the beginning of the `flat_hash_set`. 0182 using Base::cbegin; 0183 0184 // flat_hash_set::cend() 0185 // 0186 // Returns a const iterator to the end of the `flat_hash_set`. 0187 using Base::cend; 0188 0189 // flat_hash_set::end() 0190 // 0191 // Returns an iterator to the end of the `flat_hash_set`. 0192 using Base::end; 0193 0194 // flat_hash_set::capacity() 0195 // 0196 // Returns the number of element slots (assigned, deleted, and empty) 0197 // available within the `flat_hash_set`. 0198 // 0199 // NOTE: this member function is particular to `absl::flat_hash_set` and is 0200 // not provided in the `std::unordered_set` API. 0201 using Base::capacity; 0202 0203 // flat_hash_set::empty() 0204 // 0205 // Returns whether or not the `flat_hash_set` is empty. 0206 using Base::empty; 0207 0208 // flat_hash_set::max_size() 0209 // 0210 // Returns the largest theoretical possible number of elements within a 0211 // `flat_hash_set` under current memory constraints. This value can be thought 0212 // of the largest value of `std::distance(begin(), end())` for a 0213 // `flat_hash_set<T>`. 0214 using Base::max_size; 0215 0216 // flat_hash_set::size() 0217 // 0218 // Returns the number of elements currently within the `flat_hash_set`. 0219 using Base::size; 0220 0221 // flat_hash_set::clear() 0222 // 0223 // Removes all elements from the `flat_hash_set`. Invalidates any references, 0224 // pointers, or iterators referring to contained elements. 0225 // 0226 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking 0227 // the underlying buffer call `erase(begin(), end())`. 0228 using Base::clear; 0229 0230 // flat_hash_set::erase() 0231 // 0232 // Erases elements within the `flat_hash_set`. Erasing does not trigger a 0233 // rehash. Overloads are listed below. 0234 // 0235 // void erase(const_iterator pos): 0236 // 0237 // Erases the element at `position` of the `flat_hash_set`, returning 0238 // `void`. 0239 // 0240 // NOTE: returning `void` in this case is different than that of STL 0241 // containers in general and `std::unordered_set` in particular (which 0242 // return an iterator to the element following the erased element). If that 0243 // iterator is needed, simply post increment the iterator: 0244 // 0245 // set.erase(it++); 0246 // 0247 // iterator erase(const_iterator first, const_iterator last): 0248 // 0249 // Erases the elements in the open interval [`first`, `last`), returning an 0250 // iterator pointing to `last`. The special case of calling 0251 // `erase(begin(), end())` resets the reserved growth such that if 0252 // `reserve(N)` has previously been called and there has been no intervening 0253 // call to `clear()`, then after calling `erase(begin(), end())`, it is safe 0254 // to assume that inserting N elements will not cause a rehash. 0255 // 0256 // size_type erase(const key_type& key): 0257 // 0258 // Erases the element with the matching key, if it exists, returning the 0259 // number of elements erased (0 or 1). 0260 using Base::erase; 0261 0262 // flat_hash_set::insert() 0263 // 0264 // Inserts an element of the specified value into the `flat_hash_set`, 0265 // returning an iterator pointing to the newly inserted element, provided that 0266 // an element with the given key does not already exist. If rehashing occurs 0267 // due to the insertion, all iterators are invalidated. Overloads are listed 0268 // below. 0269 // 0270 // std::pair<iterator,bool> insert(const T& value): 0271 // 0272 // Inserts a value into the `flat_hash_set`. Returns a pair consisting of an 0273 // iterator to the inserted element (or to the element that prevented the 0274 // insertion) and a bool denoting whether the insertion took place. 0275 // 0276 // std::pair<iterator,bool> insert(T&& value): 0277 // 0278 // Inserts a moveable value into the `flat_hash_set`. Returns a pair 0279 // consisting of an iterator to the inserted element (or to the element that 0280 // prevented the insertion) and a bool denoting whether the insertion took 0281 // place. 0282 // 0283 // iterator insert(const_iterator hint, const T& value): 0284 // iterator insert(const_iterator hint, T&& value): 0285 // 0286 // Inserts a value, using the position of `hint` as a non-binding suggestion 0287 // for where to begin the insertion search. Returns an iterator to the 0288 // inserted element, or to the existing element that prevented the 0289 // insertion. 0290 // 0291 // void insert(InputIterator first, InputIterator last): 0292 // 0293 // Inserts a range of values [`first`, `last`). 0294 // 0295 // NOTE: Although the STL does not specify which element may be inserted if 0296 // multiple keys compare equivalently, for `flat_hash_set` we guarantee the 0297 // first match is inserted. 0298 // 0299 // void insert(std::initializer_list<T> ilist): 0300 // 0301 // Inserts the elements within the initializer list `ilist`. 0302 // 0303 // NOTE: Although the STL does not specify which element may be inserted if 0304 // multiple keys compare equivalently within the initializer list, for 0305 // `flat_hash_set` we guarantee the first match is inserted. 0306 using Base::insert; 0307 0308 // flat_hash_set::emplace() 0309 // 0310 // Inserts an element of the specified value by constructing it in-place 0311 // within the `flat_hash_set`, provided that no element with the given key 0312 // already exists. 0313 // 0314 // The element may be constructed even if there already is an element with the 0315 // key in the container, in which case the newly constructed element will be 0316 // destroyed immediately. 0317 // 0318 // If rehashing occurs due to the insertion, all iterators are invalidated. 0319 using Base::emplace; 0320 0321 // flat_hash_set::emplace_hint() 0322 // 0323 // Inserts an element of the specified value by constructing it in-place 0324 // within the `flat_hash_set`, using the position of `hint` as a non-binding 0325 // suggestion for where to begin the insertion search, and only inserts 0326 // provided that no element with the given key already exists. 0327 // 0328 // The element may be constructed even if there already is an element with the 0329 // key in the container, in which case the newly constructed element will be 0330 // destroyed immediately. 0331 // 0332 // If rehashing occurs due to the insertion, all iterators are invalidated. 0333 using Base::emplace_hint; 0334 0335 // flat_hash_set::extract() 0336 // 0337 // Extracts the indicated element, erasing it in the process, and returns it 0338 // as a C++17-compatible node handle. Overloads are listed below. 0339 // 0340 // node_type extract(const_iterator position): 0341 // 0342 // Extracts the element at the indicated position and returns a node handle 0343 // owning that extracted data. 0344 // 0345 // node_type extract(const key_type& x): 0346 // 0347 // Extracts the element with the key matching the passed key value and 0348 // returns a node handle owning that extracted data. If the `flat_hash_set` 0349 // does not contain an element with a matching key, this function returns an 0350 // empty node handle. 0351 using Base::extract; 0352 0353 // flat_hash_set::merge() 0354 // 0355 // Extracts elements from a given `source` flat hash set into this 0356 // `flat_hash_set`. If the destination `flat_hash_set` already contains an 0357 // element with an equivalent key, that element is not extracted. 0358 using Base::merge; 0359 0360 // flat_hash_set::swap(flat_hash_set& other) 0361 // 0362 // Exchanges the contents of this `flat_hash_set` with those of the `other` 0363 // flat hash set, avoiding invocation of any move, copy, or swap operations on 0364 // individual elements. 0365 // 0366 // All iterators and references on the `flat_hash_set` remain valid, excepting 0367 // for the past-the-end iterator, which is invalidated. 0368 // 0369 // `swap()` requires that the flat hash set's hashing and key equivalence 0370 // functions be Swappable, and are exchanged using unqualified calls to 0371 // non-member `swap()`. If the set's allocator has 0372 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` 0373 // set to `true`, the allocators are also exchanged using an unqualified call 0374 // to non-member `swap()`; otherwise, the allocators are not swapped. 0375 using Base::swap; 0376 0377 // flat_hash_set::rehash(count) 0378 // 0379 // Rehashes the `flat_hash_set`, setting the number of slots to be at least 0380 // the passed value. If the new number of slots increases the load factor more 0381 // than the current maximum load factor 0382 // (`count` < `size()` / `max_load_factor()`), then the new number of slots 0383 // will be at least `size()` / `max_load_factor()`. 0384 // 0385 // To force a rehash, pass rehash(0). 0386 // 0387 // NOTE: unlike behavior in `std::unordered_set`, references are also 0388 // invalidated upon a `rehash()`. 0389 using Base::rehash; 0390 0391 // flat_hash_set::reserve(count) 0392 // 0393 // Sets the number of slots in the `flat_hash_set` to the number needed to 0394 // accommodate at least `count` total elements without exceeding the current 0395 // maximum load factor, and may rehash the container if needed. 0396 using Base::reserve; 0397 0398 // flat_hash_set::contains() 0399 // 0400 // Determines whether an element comparing equal to the given `key` exists 0401 // within the `flat_hash_set`, returning `true` if so or `false` otherwise. 0402 using Base::contains; 0403 0404 // flat_hash_set::count(const Key& key) const 0405 // 0406 // Returns the number of elements comparing equal to the given `key` within 0407 // the `flat_hash_set`. note that this function will return either `1` or `0` 0408 // since duplicate elements are not allowed within a `flat_hash_set`. 0409 using Base::count; 0410 0411 // flat_hash_set::equal_range() 0412 // 0413 // Returns a closed range [first, last], defined by a `std::pair` of two 0414 // iterators, containing all elements with the passed key in the 0415 // `flat_hash_set`. 0416 using Base::equal_range; 0417 0418 // flat_hash_set::find() 0419 // 0420 // Finds an element with the passed `key` within the `flat_hash_set`. 0421 using Base::find; 0422 0423 // flat_hash_set::bucket_count() 0424 // 0425 // Returns the number of "buckets" within the `flat_hash_set`. Note that 0426 // because a flat hash set contains all elements within its internal storage, 0427 // this value simply equals the current capacity of the `flat_hash_set`. 0428 using Base::bucket_count; 0429 0430 // flat_hash_set::load_factor() 0431 // 0432 // Returns the current load factor of the `flat_hash_set` (the average number 0433 // of slots occupied with a value within the hash set). 0434 using Base::load_factor; 0435 0436 // flat_hash_set::max_load_factor() 0437 // 0438 // Manages the maximum load factor of the `flat_hash_set`. Overloads are 0439 // listed below. 0440 // 0441 // float flat_hash_set::max_load_factor() 0442 // 0443 // Returns the current maximum load factor of the `flat_hash_set`. 0444 // 0445 // void flat_hash_set::max_load_factor(float ml) 0446 // 0447 // Sets the maximum load factor of the `flat_hash_set` to the passed value. 0448 // 0449 // NOTE: This overload is provided only for API compatibility with the STL; 0450 // `flat_hash_set` will ignore any set load factor and manage its rehashing 0451 // internally as an implementation detail. 0452 using Base::max_load_factor; 0453 0454 // flat_hash_set::get_allocator() 0455 // 0456 // Returns the allocator function associated with this `flat_hash_set`. 0457 using Base::get_allocator; 0458 0459 // flat_hash_set::hash_function() 0460 // 0461 // Returns the hashing function used to hash the keys within this 0462 // `flat_hash_set`. 0463 using Base::hash_function; 0464 0465 // flat_hash_set::key_eq() 0466 // 0467 // Returns the function used for comparing keys equality. 0468 using Base::key_eq; 0469 }; 0470 0471 // erase_if(flat_hash_set<>, Pred) 0472 // 0473 // Erases all elements that satisfy the predicate `pred` from the container `c`. 0474 // Returns the number of erased elements. 0475 template <typename T, typename H, typename E, typename A, typename Predicate> 0476 typename flat_hash_set<T, H, E, A>::size_type erase_if( 0477 flat_hash_set<T, H, E, A>& c, Predicate pred) { 0478 return container_internal::EraseIf(pred, &c); 0479 } 0480 0481 namespace container_internal { 0482 0483 // c_for_each_fast(flat_hash_set<>, Function) 0484 // 0485 // Container-based version of the <algorithm> `std::for_each()` function to 0486 // apply a function to a container's elements. 0487 // There is no guarantees on the order of the function calls. 0488 // Erasure and/or insertion of elements in the function is not allowed. 0489 template <typename T, typename H, typename E, typename A, typename Function> 0490 decay_t<Function> c_for_each_fast(const flat_hash_set<T, H, E, A>& c, 0491 Function&& f) { 0492 container_internal::ForEach(f, &c); 0493 return f; 0494 } 0495 template <typename T, typename H, typename E, typename A, typename Function> 0496 decay_t<Function> c_for_each_fast(flat_hash_set<T, H, E, A>& c, Function&& f) { 0497 container_internal::ForEach(f, &c); 0498 return f; 0499 } 0500 template <typename T, typename H, typename E, typename A, typename Function> 0501 decay_t<Function> c_for_each_fast(flat_hash_set<T, H, E, A>&& c, Function&& f) { 0502 container_internal::ForEach(f, &c); 0503 return f; 0504 } 0505 0506 } // namespace container_internal 0507 0508 namespace container_internal { 0509 0510 template <class T> 0511 struct FlatHashSetPolicy { 0512 using slot_type = T; 0513 using key_type = T; 0514 using init_type = T; 0515 using constant_iterators = std::true_type; 0516 0517 template <class Allocator, class... Args> 0518 static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { 0519 absl::allocator_traits<Allocator>::construct(*alloc, slot, 0520 std::forward<Args>(args)...); 0521 } 0522 0523 // Return std::true_type in case destroy is trivial. 0524 template <class Allocator> 0525 static auto destroy(Allocator* alloc, slot_type* slot) { 0526 absl::allocator_traits<Allocator>::destroy(*alloc, slot); 0527 return IsDestructionTrivial<Allocator, slot_type>(); 0528 } 0529 0530 static T& element(slot_type* slot) { return *slot; } 0531 0532 template <class F, class... Args> 0533 static decltype(absl::container_internal::DecomposeValue( 0534 std::declval<F>(), std::declval<Args>()...)) 0535 apply(F&& f, Args&&... args) { 0536 return absl::container_internal::DecomposeValue( 0537 std::forward<F>(f), std::forward<Args>(args)...); 0538 } 0539 0540 static size_t space_used(const T*) { return 0; } 0541 0542 template <class Hash> 0543 static constexpr HashSlotFn get_hash_slot_fn() { 0544 return &TypeErasedApplyToSlotFn<Hash, T>; 0545 } 0546 }; 0547 } // namespace container_internal 0548 0549 namespace container_algorithm_internal { 0550 0551 // Specialization of trait in absl/algorithm/container.h 0552 template <class Key, class Hash, class KeyEqual, class Allocator> 0553 struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>> 0554 : std::true_type {}; 0555 0556 } // namespace container_algorithm_internal 0557 0558 ABSL_NAMESPACE_END 0559 } // namespace absl 0560 0561 #endif // ABSL_CONTAINER_FLAT_HASH_SET_H_
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |