|
||||
File indexing completed on 2025-01-30 09:31:41
0001 // Copyright 2018 The Abseil Authors. 0002 // 0003 // Licensed under the Apache License, Version 2.0 (the "License"); 0004 // you may not use this file except in compliance with the License. 0005 // You may obtain a copy of the License at 0006 // 0007 // https://www.apache.org/licenses/LICENSE-2.0 0008 // 0009 // Unless required by applicable law or agreed to in writing, software 0010 // distributed under the License is distributed on an "AS IS" BASIS, 0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 0012 // See the License for the specific language governing permissions and 0013 // limitations under the License. 0014 // 0015 // ----------------------------------------------------------------------------- 0016 // File: btree_map.h 0017 // ----------------------------------------------------------------------------- 0018 // 0019 // This header file defines B-tree maps: sorted associative containers mapping 0020 // keys to values. 0021 // 0022 // * `absl::btree_map<>` 0023 // * `absl::btree_multimap<>` 0024 // 0025 // These B-tree types are similar to the corresponding types in the STL 0026 // (`std::map` and `std::multimap`) and generally conform to the STL interfaces 0027 // of those types. However, because they are implemented using B-trees, they 0028 // are more efficient in most situations. 0029 // 0030 // Unlike `std::map` and `std::multimap`, which are commonly implemented using 0031 // red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold 0032 // multiple values per node. Holding multiple values per node often makes 0033 // B-tree maps perform better than their `std::map` counterparts, because 0034 // multiple entries can be checked within the same cache hit. 0035 // 0036 // However, these types should not be considered drop-in replacements for 0037 // `std::map` and `std::multimap` as there are some API differences, which are 0038 // noted in this header file. The most consequential differences with respect to 0039 // migrating to b-tree from the STL types are listed in the next paragraph. 0040 // Other API differences are minor. 0041 // 0042 // Importantly, insertions and deletions may invalidate outstanding iterators, 0043 // pointers, and references to elements. Such invalidations are typically only 0044 // an issue if insertion and deletion operations are interleaved with the use of 0045 // more than one iterator, pointer, or reference simultaneously. For this 0046 // reason, `insert()`, `erase()`, and `extract_and_get_next()` return a valid 0047 // iterator at the current position. Another important difference is that 0048 // key-types must be copy-constructible. 0049 // 0050 // Another API difference is that btree iterators can be subtracted, and this 0051 // is faster than using std::distance. 0052 // 0053 // B-tree maps are not exception-safe. 0054 0055 #ifndef ABSL_CONTAINER_BTREE_MAP_H_ 0056 #define ABSL_CONTAINER_BTREE_MAP_H_ 0057 0058 #include "absl/base/attributes.h" 0059 #include "absl/container/internal/btree.h" // IWYU pragma: export 0060 #include "absl/container/internal/btree_container.h" // IWYU pragma: export 0061 0062 namespace absl { 0063 ABSL_NAMESPACE_BEGIN 0064 0065 namespace container_internal { 0066 0067 template <typename Key, typename Data, typename Compare, typename Alloc, 0068 int TargetNodeSize, bool IsMulti> 0069 struct map_params; 0070 0071 } // namespace container_internal 0072 0073 // absl::btree_map<> 0074 // 0075 // An `absl::btree_map<K, V>` is an ordered associative container of 0076 // unique keys and associated values designed to be a more efficient replacement 0077 // for `std::map` (in most cases). 0078 // 0079 // Keys are sorted using an (optional) comparison function, which defaults to 0080 // `std::less<K>`. 0081 // 0082 // An `absl::btree_map<K, V>` uses a default allocator of 0083 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate) 0084 // nodes, and construct and destruct values within those nodes. You may 0085 // instead specify a custom allocator `A` (which in turn requires specifying a 0086 // custom comparator `C`) as in `absl::btree_map<K, V, C, A>`. 0087 // 0088 template <typename Key, typename Value, typename Compare = std::less<Key>, 0089 typename Alloc = std::allocator<std::pair<const Key, Value>>> 0090 class ABSL_INTERNAL_ATTRIBUTE_OWNER btree_map 0091 : public container_internal::btree_map_container< 0092 container_internal::btree<container_internal::map_params< 0093 Key, Value, Compare, Alloc, /*TargetNodeSize=*/256, 0094 /*IsMulti=*/false>>> { 0095 using Base = typename btree_map::btree_map_container; 0096 0097 public: 0098 // Constructors and Assignment Operators 0099 // 0100 // A `btree_map` supports the same overload set as `std::map` 0101 // for construction and assignment: 0102 // 0103 // * Default constructor 0104 // 0105 // absl::btree_map<int, std::string> map1; 0106 // 0107 // * Initializer List constructor 0108 // 0109 // absl::btree_map<int, std::string> map2 = 0110 // {{1, "huey"}, {2, "dewey"}, {3, "louie"},}; 0111 // 0112 // * Copy constructor 0113 // 0114 // absl::btree_map<int, std::string> map3(map2); 0115 // 0116 // * Copy assignment operator 0117 // 0118 // absl::btree_map<int, std::string> map4; 0119 // map4 = map3; 0120 // 0121 // * Move constructor 0122 // 0123 // // Move is guaranteed efficient 0124 // absl::btree_map<int, std::string> map5(std::move(map4)); 0125 // 0126 // * Move assignment operator 0127 // 0128 // // May be efficient if allocators are compatible 0129 // absl::btree_map<int, std::string> map6; 0130 // map6 = std::move(map5); 0131 // 0132 // * Range constructor 0133 // 0134 // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}}; 0135 // absl::btree_map<int, std::string> map7(v.begin(), v.end()); 0136 btree_map() {} 0137 using Base::Base; 0138 0139 // btree_map::begin() 0140 // 0141 // Returns an iterator to the beginning of the `btree_map`. 0142 using Base::begin; 0143 0144 // btree_map::cbegin() 0145 // 0146 // Returns a const iterator to the beginning of the `btree_map`. 0147 using Base::cbegin; 0148 0149 // btree_map::end() 0150 // 0151 // Returns an iterator to the end of the `btree_map`. 0152 using Base::end; 0153 0154 // btree_map::cend() 0155 // 0156 // Returns a const iterator to the end of the `btree_map`. 0157 using Base::cend; 0158 0159 // btree_map::empty() 0160 // 0161 // Returns whether or not the `btree_map` is empty. 0162 using Base::empty; 0163 0164 // btree_map::max_size() 0165 // 0166 // Returns the largest theoretical possible number of elements within a 0167 // `btree_map` under current memory constraints. This value can be thought 0168 // of as the largest value of `std::distance(begin(), end())` for a 0169 // `btree_map<Key, T>`. 0170 using Base::max_size; 0171 0172 // btree_map::size() 0173 // 0174 // Returns the number of elements currently within the `btree_map`. 0175 using Base::size; 0176 0177 // btree_map::clear() 0178 // 0179 // Removes all elements from the `btree_map`. Invalidates any references, 0180 // pointers, or iterators referring to contained elements. 0181 using Base::clear; 0182 0183 // btree_map::erase() 0184 // 0185 // Erases elements within the `btree_map`. If an erase occurs, any references, 0186 // pointers, or iterators are invalidated. 0187 // Overloads are listed below. 0188 // 0189 // iterator erase(iterator position): 0190 // iterator erase(const_iterator position): 0191 // 0192 // Erases the element at `position` of the `btree_map`, returning 0193 // the iterator pointing to the element after the one that was erased 0194 // (or end() if none exists). 0195 // 0196 // iterator erase(const_iterator first, const_iterator last): 0197 // 0198 // Erases the elements in the open interval [`first`, `last`), returning 0199 // the iterator pointing to the element after the interval that was erased 0200 // (or end() if none exists). 0201 // 0202 // template <typename K> size_type erase(const K& key): 0203 // 0204 // Erases the element with the matching key, if it exists, returning the 0205 // number of elements erased (0 or 1). 0206 using Base::erase; 0207 0208 // btree_map::insert() 0209 // 0210 // Inserts an element of the specified value into the `btree_map`, 0211 // returning an iterator pointing to the newly inserted element, provided that 0212 // an element with the given key does not already exist. If an insertion 0213 // occurs, any references, pointers, or iterators are invalidated. 0214 // Overloads are listed below. 0215 // 0216 // std::pair<iterator,bool> insert(const value_type& value): 0217 // 0218 // Inserts a value into the `btree_map`. Returns a pair consisting of an 0219 // iterator to the inserted element (or to the element that prevented the 0220 // insertion) and a bool denoting whether the insertion took place. 0221 // 0222 // std::pair<iterator,bool> insert(value_type&& value): 0223 // 0224 // Inserts a moveable value into the `btree_map`. Returns a pair 0225 // consisting of an iterator to the inserted element (or to the element that 0226 // prevented the insertion) and a bool denoting whether the insertion took 0227 // place. 0228 // 0229 // iterator insert(const_iterator hint, const value_type& value): 0230 // iterator insert(const_iterator hint, value_type&& value): 0231 // 0232 // Inserts a value, using the position of `hint` as a non-binding suggestion 0233 // for where to begin the insertion search. Returns an iterator to the 0234 // inserted element, or to the existing element that prevented the 0235 // insertion. 0236 // 0237 // void insert(InputIterator first, InputIterator last): 0238 // 0239 // Inserts a range of values [`first`, `last`). 0240 // 0241 // void insert(std::initializer_list<init_type> ilist): 0242 // 0243 // Inserts the elements within the initializer list `ilist`. 0244 using Base::insert; 0245 0246 // btree_map::insert_or_assign() 0247 // 0248 // Inserts an element of the specified value into the `btree_map` provided 0249 // that a value with the given key does not already exist, or replaces the 0250 // corresponding mapped type with the forwarded `obj` argument if a key for 0251 // that value already exists, returning an iterator pointing to the newly 0252 // inserted element. Overloads are listed below. 0253 // 0254 // pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj): 0255 // pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj): 0256 // 0257 // Inserts/Assigns (or moves) the element of the specified key into the 0258 // `btree_map`. If the returned bool is true, insertion took place, and if 0259 // it's false, assignment took place. 0260 // 0261 // iterator insert_or_assign(const_iterator hint, 0262 // const key_type& k, M&& obj): 0263 // iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj): 0264 // 0265 // Inserts/Assigns (or moves) the element of the specified key into the 0266 // `btree_map` using the position of `hint` as a non-binding suggestion 0267 // for where to begin the insertion search. 0268 using Base::insert_or_assign; 0269 0270 // btree_map::emplace() 0271 // 0272 // Inserts an element of the specified value by constructing it in-place 0273 // within the `btree_map`, provided that no element with the given key 0274 // already exists. 0275 // 0276 // The element may be constructed even if there already is an element with the 0277 // key in the container, in which case the newly constructed element will be 0278 // destroyed immediately. Prefer `try_emplace()` unless your key is not 0279 // copyable or moveable. 0280 // 0281 // If an insertion occurs, any references, pointers, or iterators are 0282 // invalidated. 0283 using Base::emplace; 0284 0285 // btree_map::emplace_hint() 0286 // 0287 // Inserts an element of the specified value by constructing it in-place 0288 // within the `btree_map`, using the position of `hint` as a non-binding 0289 // suggestion for where to begin the insertion search, and only inserts 0290 // provided that no element with the given key already exists. 0291 // 0292 // The element may be constructed even if there already is an element with the 0293 // key in the container, in which case the newly constructed element will be 0294 // destroyed immediately. Prefer `try_emplace()` unless your key is not 0295 // copyable or moveable. 0296 // 0297 // If an insertion occurs, any references, pointers, or iterators are 0298 // invalidated. 0299 using Base::emplace_hint; 0300 0301 // btree_map::try_emplace() 0302 // 0303 // Inserts an element of the specified value by constructing it in-place 0304 // within the `btree_map`, provided that no element with the given key 0305 // already exists. Unlike `emplace()`, if an element with the given key 0306 // already exists, we guarantee that no element is constructed. 0307 // 0308 // If an insertion occurs, any references, pointers, or iterators are 0309 // invalidated. 0310 // 0311 // Overloads are listed below. 0312 // 0313 // std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args): 0314 // std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args): 0315 // 0316 // Inserts (via copy or move) the element of the specified key into the 0317 // `btree_map`. 0318 // 0319 // iterator try_emplace(const_iterator hint, 0320 // const key_type& k, Args&&... args): 0321 // iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args): 0322 // 0323 // Inserts (via copy or move) the element of the specified key into the 0324 // `btree_map` using the position of `hint` as a non-binding suggestion 0325 // for where to begin the insertion search. 0326 using Base::try_emplace; 0327 0328 // btree_map::extract() 0329 // 0330 // Extracts the indicated element, erasing it in the process, and returns it 0331 // as a C++17-compatible node handle. Any references, pointers, or iterators 0332 // are invalidated. Overloads are listed below. 0333 // 0334 // node_type extract(const_iterator position): 0335 // 0336 // Extracts the element at the indicated position and returns a node handle 0337 // owning that extracted data. 0338 // 0339 // template <typename K> node_type extract(const K& k): 0340 // 0341 // Extracts the element with the key matching the passed key value and 0342 // returns a node handle owning that extracted data. If the `btree_map` 0343 // does not contain an element with a matching key, this function returns an 0344 // empty node handle. 0345 // 0346 // NOTE: when compiled in an earlier version of C++ than C++17, 0347 // `node_type::key()` returns a const reference to the key instead of a 0348 // mutable reference. We cannot safely return a mutable reference without 0349 // std::launder (which is not available before C++17). 0350 // 0351 // NOTE: In this context, `node_type` refers to the C++17 concept of a 0352 // move-only type that owns and provides access to the elements in associative 0353 // containers (https://en.cppreference.com/w/cpp/container/node_handle). 0354 // It does NOT refer to the data layout of the underlying btree. 0355 using Base::extract; 0356 0357 // btree_map::extract_and_get_next() 0358 // 0359 // Extracts the indicated element, erasing it in the process, and returns it 0360 // as a C++17-compatible node handle along with an iterator to the next 0361 // element. 0362 // 0363 // extract_and_get_next_return_type extract_and_get_next( 0364 // const_iterator position): 0365 // 0366 // Extracts the element at the indicated position, returns a struct 0367 // containing a member named `node`: a node handle owning that extracted 0368 // data and a member named `next`: an iterator pointing to the next element 0369 // in the btree. 0370 using Base::extract_and_get_next; 0371 0372 // btree_map::merge() 0373 // 0374 // Extracts elements from a given `source` btree_map into this 0375 // `btree_map`. If the destination `btree_map` already contains an 0376 // element with an equivalent key, that element is not extracted. 0377 using Base::merge; 0378 0379 // btree_map::swap(btree_map& other) 0380 // 0381 // Exchanges the contents of this `btree_map` with those of the `other` 0382 // btree_map, avoiding invocation of any move, copy, or swap operations on 0383 // individual elements. 0384 // 0385 // All iterators and references on the `btree_map` remain valid, excepting 0386 // for the past-the-end iterator, which is invalidated. 0387 using Base::swap; 0388 0389 // btree_map::at() 0390 // 0391 // Returns a reference to the mapped value of the element with key equivalent 0392 // to the passed key. 0393 using Base::at; 0394 0395 // btree_map::contains() 0396 // 0397 // template <typename K> bool contains(const K& key) const: 0398 // 0399 // Determines whether an element comparing equal to the given `key` exists 0400 // within the `btree_map`, returning `true` if so or `false` otherwise. 0401 // 0402 // Supports heterogeneous lookup, provided that the map has a compatible 0403 // heterogeneous comparator. 0404 using Base::contains; 0405 0406 // btree_map::count() 0407 // 0408 // template <typename K> size_type count(const K& key) const: 0409 // 0410 // Returns the number of elements comparing equal to the given `key` within 0411 // the `btree_map`. Note that this function will return either `1` or `0` 0412 // since duplicate elements are not allowed within a `btree_map`. 0413 // 0414 // Supports heterogeneous lookup, provided that the map has a compatible 0415 // heterogeneous comparator. 0416 using Base::count; 0417 0418 // btree_map::equal_range() 0419 // 0420 // Returns a half-open range [first, last), defined by a `std::pair` of two 0421 // iterators, containing all elements with the passed key in the `btree_map`. 0422 using Base::equal_range; 0423 0424 // btree_map::find() 0425 // 0426 // template <typename K> iterator find(const K& key): 0427 // template <typename K> const_iterator find(const K& key) const: 0428 // 0429 // Finds an element with the passed `key` within the `btree_map`. 0430 // 0431 // Supports heterogeneous lookup, provided that the map has a compatible 0432 // heterogeneous comparator. 0433 using Base::find; 0434 0435 // btree_map::lower_bound() 0436 // 0437 // template <typename K> iterator lower_bound(const K& key): 0438 // template <typename K> const_iterator lower_bound(const K& key) const: 0439 // 0440 // Finds the first element with a key that is not less than `key` within the 0441 // `btree_map`. 0442 // 0443 // Supports heterogeneous lookup, provided that the map has a compatible 0444 // heterogeneous comparator. 0445 using Base::lower_bound; 0446 0447 // btree_map::upper_bound() 0448 // 0449 // template <typename K> iterator upper_bound(const K& key): 0450 // template <typename K> const_iterator upper_bound(const K& key) const: 0451 // 0452 // Finds the first element with a key that is greater than `key` within the 0453 // `btree_map`. 0454 // 0455 // Supports heterogeneous lookup, provided that the map has a compatible 0456 // heterogeneous comparator. 0457 using Base::upper_bound; 0458 0459 // btree_map::operator[]() 0460 // 0461 // Returns a reference to the value mapped to the passed key within the 0462 // `btree_map`, performing an `insert()` if the key does not already 0463 // exist. 0464 // 0465 // If an insertion occurs, any references, pointers, or iterators are 0466 // invalidated. Otherwise iterators are not affected and references are not 0467 // invalidated. Overloads are listed below. 0468 // 0469 // T& operator[](key_type&& key): 0470 // T& operator[](const key_type& key): 0471 // 0472 // Inserts a value_type object constructed in-place if the element with the 0473 // given key does not exist. 0474 using Base::operator[]; 0475 0476 // btree_map::get_allocator() 0477 // 0478 // Returns the allocator function associated with this `btree_map`. 0479 using Base::get_allocator; 0480 0481 // btree_map::key_comp(); 0482 // 0483 // Returns the key comparator associated with this `btree_map`. 0484 using Base::key_comp; 0485 0486 // btree_map::value_comp(); 0487 // 0488 // Returns the value comparator associated with this `btree_map`. 0489 using Base::value_comp; 0490 }; 0491 0492 // absl::swap(absl::btree_map<>, absl::btree_map<>) 0493 // 0494 // Swaps the contents of two `absl::btree_map` containers. 0495 template <typename K, typename V, typename C, typename A> 0496 void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) { 0497 return x.swap(y); 0498 } 0499 0500 // absl::erase_if(absl::btree_map<>, Pred) 0501 // 0502 // Erases all elements that satisfy the predicate pred from the container. 0503 // Returns the number of erased elements. 0504 template <typename K, typename V, typename C, typename A, typename Pred> 0505 typename btree_map<K, V, C, A>::size_type erase_if( 0506 btree_map<K, V, C, A> &map, Pred pred) { 0507 return container_internal::btree_access::erase_if(map, std::move(pred)); 0508 } 0509 0510 // absl::btree_multimap 0511 // 0512 // An `absl::btree_multimap<K, V>` is an ordered associative container of 0513 // keys and associated values designed to be a more efficient replacement for 0514 // `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap 0515 // allows multiple elements with equivalent keys. 0516 // 0517 // Keys are sorted using an (optional) comparison function, which defaults to 0518 // `std::less<K>`. 0519 // 0520 // An `absl::btree_multimap<K, V>` uses a default allocator of 0521 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate) 0522 // nodes, and construct and destruct values within those nodes. You may 0523 // instead specify a custom allocator `A` (which in turn requires specifying a 0524 // custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`. 0525 // 0526 template <typename Key, typename Value, typename Compare = std::less<Key>, 0527 typename Alloc = std::allocator<std::pair<const Key, Value>>> 0528 class ABSL_INTERNAL_ATTRIBUTE_OWNER btree_multimap 0529 : public container_internal::btree_multimap_container< 0530 container_internal::btree<container_internal::map_params< 0531 Key, Value, Compare, Alloc, /*TargetNodeSize=*/256, 0532 /*IsMulti=*/true>>> { 0533 using Base = typename btree_multimap::btree_multimap_container; 0534 0535 public: 0536 // Constructors and Assignment Operators 0537 // 0538 // A `btree_multimap` supports the same overload set as `std::multimap` 0539 // for construction and assignment: 0540 // 0541 // * Default constructor 0542 // 0543 // absl::btree_multimap<int, std::string> map1; 0544 // 0545 // * Initializer List constructor 0546 // 0547 // absl::btree_multimap<int, std::string> map2 = 0548 // {{1, "huey"}, {2, "dewey"}, {3, "louie"},}; 0549 // 0550 // * Copy constructor 0551 // 0552 // absl::btree_multimap<int, std::string> map3(map2); 0553 // 0554 // * Copy assignment operator 0555 // 0556 // absl::btree_multimap<int, std::string> map4; 0557 // map4 = map3; 0558 // 0559 // * Move constructor 0560 // 0561 // // Move is guaranteed efficient 0562 // absl::btree_multimap<int, std::string> map5(std::move(map4)); 0563 // 0564 // * Move assignment operator 0565 // 0566 // // May be efficient if allocators are compatible 0567 // absl::btree_multimap<int, std::string> map6; 0568 // map6 = std::move(map5); 0569 // 0570 // * Range constructor 0571 // 0572 // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}}; 0573 // absl::btree_multimap<int, std::string> map7(v.begin(), v.end()); 0574 btree_multimap() {} 0575 using Base::Base; 0576 0577 // btree_multimap::begin() 0578 // 0579 // Returns an iterator to the beginning of the `btree_multimap`. 0580 using Base::begin; 0581 0582 // btree_multimap::cbegin() 0583 // 0584 // Returns a const iterator to the beginning of the `btree_multimap`. 0585 using Base::cbegin; 0586 0587 // btree_multimap::end() 0588 // 0589 // Returns an iterator to the end of the `btree_multimap`. 0590 using Base::end; 0591 0592 // btree_multimap::cend() 0593 // 0594 // Returns a const iterator to the end of the `btree_multimap`. 0595 using Base::cend; 0596 0597 // btree_multimap::empty() 0598 // 0599 // Returns whether or not the `btree_multimap` is empty. 0600 using Base::empty; 0601 0602 // btree_multimap::max_size() 0603 // 0604 // Returns the largest theoretical possible number of elements within a 0605 // `btree_multimap` under current memory constraints. This value can be 0606 // thought of as the largest value of `std::distance(begin(), end())` for a 0607 // `btree_multimap<Key, T>`. 0608 using Base::max_size; 0609 0610 // btree_multimap::size() 0611 // 0612 // Returns the number of elements currently within the `btree_multimap`. 0613 using Base::size; 0614 0615 // btree_multimap::clear() 0616 // 0617 // Removes all elements from the `btree_multimap`. Invalidates any references, 0618 // pointers, or iterators referring to contained elements. 0619 using Base::clear; 0620 0621 // btree_multimap::erase() 0622 // 0623 // Erases elements within the `btree_multimap`. If an erase occurs, any 0624 // references, pointers, or iterators are invalidated. 0625 // Overloads are listed below. 0626 // 0627 // iterator erase(iterator position): 0628 // iterator erase(const_iterator position): 0629 // 0630 // Erases the element at `position` of the `btree_multimap`, returning 0631 // the iterator pointing to the element after the one that was erased 0632 // (or end() if none exists). 0633 // 0634 // iterator erase(const_iterator first, const_iterator last): 0635 // 0636 // Erases the elements in the open interval [`first`, `last`), returning 0637 // the iterator pointing to the element after the interval that was erased 0638 // (or end() if none exists). 0639 // 0640 // template <typename K> size_type erase(const K& key): 0641 // 0642 // Erases the elements matching the key, if any exist, returning the 0643 // number of elements erased. 0644 using Base::erase; 0645 0646 // btree_multimap::insert() 0647 // 0648 // Inserts an element of the specified value into the `btree_multimap`, 0649 // returning an iterator pointing to the newly inserted element. 0650 // Any references, pointers, or iterators are invalidated. Overloads are 0651 // listed below. 0652 // 0653 // iterator insert(const value_type& value): 0654 // 0655 // Inserts a value into the `btree_multimap`, returning an iterator to the 0656 // inserted element. 0657 // 0658 // iterator insert(value_type&& value): 0659 // 0660 // Inserts a moveable value into the `btree_multimap`, returning an iterator 0661 // to the inserted element. 0662 // 0663 // iterator insert(const_iterator hint, const value_type& value): 0664 // iterator insert(const_iterator hint, value_type&& value): 0665 // 0666 // Inserts a value, using the position of `hint` as a non-binding suggestion 0667 // for where to begin the insertion search. Returns an iterator to the 0668 // inserted element. 0669 // 0670 // void insert(InputIterator first, InputIterator last): 0671 // 0672 // Inserts a range of values [`first`, `last`). 0673 // 0674 // void insert(std::initializer_list<init_type> ilist): 0675 // 0676 // Inserts the elements within the initializer list `ilist`. 0677 using Base::insert; 0678 0679 // btree_multimap::emplace() 0680 // 0681 // Inserts an element of the specified value by constructing it in-place 0682 // within the `btree_multimap`. Any references, pointers, or iterators are 0683 // invalidated. 0684 using Base::emplace; 0685 0686 // btree_multimap::emplace_hint() 0687 // 0688 // Inserts an element of the specified value by constructing it in-place 0689 // within the `btree_multimap`, using the position of `hint` as a non-binding 0690 // suggestion for where to begin the insertion search. 0691 // 0692 // Any references, pointers, or iterators are invalidated. 0693 using Base::emplace_hint; 0694 0695 // btree_multimap::extract() 0696 // 0697 // Extracts the indicated element, erasing it in the process, and returns it 0698 // as a C++17-compatible node handle. Overloads are listed below. 0699 // 0700 // node_type extract(const_iterator position): 0701 // 0702 // Extracts the element at the indicated position and returns a node handle 0703 // owning that extracted data. 0704 // 0705 // template <typename K> node_type extract(const K& k): 0706 // 0707 // Extracts the element with the key matching the passed key value and 0708 // returns a node handle owning that extracted data. If the `btree_multimap` 0709 // does not contain an element with a matching key, this function returns an 0710 // empty node handle. 0711 // 0712 // NOTE: when compiled in an earlier version of C++ than C++17, 0713 // `node_type::key()` returns a const reference to the key instead of a 0714 // mutable reference. We cannot safely return a mutable reference without 0715 // std::launder (which is not available before C++17). 0716 // 0717 // NOTE: In this context, `node_type` refers to the C++17 concept of a 0718 // move-only type that owns and provides access to the elements in associative 0719 // containers (https://en.cppreference.com/w/cpp/container/node_handle). 0720 // It does NOT refer to the data layout of the underlying btree. 0721 using Base::extract; 0722 0723 // btree_multimap::extract_and_get_next() 0724 // 0725 // Extracts the indicated element, erasing it in the process, and returns it 0726 // as a C++17-compatible node handle along with an iterator to the next 0727 // element. 0728 // 0729 // extract_and_get_next_return_type extract_and_get_next( 0730 // const_iterator position): 0731 // 0732 // Extracts the element at the indicated position, returns a struct 0733 // containing a member named `node`: a node handle owning that extracted 0734 // data and a member named `next`: an iterator pointing to the next element 0735 // in the btree. 0736 using Base::extract_and_get_next; 0737 0738 // btree_multimap::merge() 0739 // 0740 // Extracts all elements from a given `source` btree_multimap into this 0741 // `btree_multimap`. 0742 using Base::merge; 0743 0744 // btree_multimap::swap(btree_multimap& other) 0745 // 0746 // Exchanges the contents of this `btree_multimap` with those of the `other` 0747 // btree_multimap, avoiding invocation of any move, copy, or swap operations 0748 // on individual elements. 0749 // 0750 // All iterators and references on the `btree_multimap` remain valid, 0751 // excepting for the past-the-end iterator, which is invalidated. 0752 using Base::swap; 0753 0754 // btree_multimap::contains() 0755 // 0756 // template <typename K> bool contains(const K& key) const: 0757 // 0758 // Determines whether an element comparing equal to the given `key` exists 0759 // within the `btree_multimap`, returning `true` if so or `false` otherwise. 0760 // 0761 // Supports heterogeneous lookup, provided that the map has a compatible 0762 // heterogeneous comparator. 0763 using Base::contains; 0764 0765 // btree_multimap::count() 0766 // 0767 // template <typename K> size_type count(const K& key) const: 0768 // 0769 // Returns the number of elements comparing equal to the given `key` within 0770 // the `btree_multimap`. 0771 // 0772 // Supports heterogeneous lookup, provided that the map has a compatible 0773 // heterogeneous comparator. 0774 using Base::count; 0775 0776 // btree_multimap::equal_range() 0777 // 0778 // Returns a half-open range [first, last), defined by a `std::pair` of two 0779 // iterators, containing all elements with the passed key in the 0780 // `btree_multimap`. 0781 using Base::equal_range; 0782 0783 // btree_multimap::find() 0784 // 0785 // template <typename K> iterator find(const K& key): 0786 // template <typename K> const_iterator find(const K& key) const: 0787 // 0788 // Finds an element with the passed `key` within the `btree_multimap`. 0789 // 0790 // Supports heterogeneous lookup, provided that the map has a compatible 0791 // heterogeneous comparator. 0792 using Base::find; 0793 0794 // btree_multimap::lower_bound() 0795 // 0796 // template <typename K> iterator lower_bound(const K& key): 0797 // template <typename K> const_iterator lower_bound(const K& key) const: 0798 // 0799 // Finds the first element with a key that is not less than `key` within the 0800 // `btree_multimap`. 0801 // 0802 // Supports heterogeneous lookup, provided that the map has a compatible 0803 // heterogeneous comparator. 0804 using Base::lower_bound; 0805 0806 // btree_multimap::upper_bound() 0807 // 0808 // template <typename K> iterator upper_bound(const K& key): 0809 // template <typename K> const_iterator upper_bound(const K& key) const: 0810 // 0811 // Finds the first element with a key that is greater than `key` within the 0812 // `btree_multimap`. 0813 // 0814 // Supports heterogeneous lookup, provided that the map has a compatible 0815 // heterogeneous comparator. 0816 using Base::upper_bound; 0817 0818 // btree_multimap::get_allocator() 0819 // 0820 // Returns the allocator function associated with this `btree_multimap`. 0821 using Base::get_allocator; 0822 0823 // btree_multimap::key_comp(); 0824 // 0825 // Returns the key comparator associated with this `btree_multimap`. 0826 using Base::key_comp; 0827 0828 // btree_multimap::value_comp(); 0829 // 0830 // Returns the value comparator associated with this `btree_multimap`. 0831 using Base::value_comp; 0832 }; 0833 0834 // absl::swap(absl::btree_multimap<>, absl::btree_multimap<>) 0835 // 0836 // Swaps the contents of two `absl::btree_multimap` containers. 0837 template <typename K, typename V, typename C, typename A> 0838 void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) { 0839 return x.swap(y); 0840 } 0841 0842 // absl::erase_if(absl::btree_multimap<>, Pred) 0843 // 0844 // Erases all elements that satisfy the predicate pred from the container. 0845 // Returns the number of erased elements. 0846 template <typename K, typename V, typename C, typename A, typename Pred> 0847 typename btree_multimap<K, V, C, A>::size_type erase_if( 0848 btree_multimap<K, V, C, A> &map, Pred pred) { 0849 return container_internal::btree_access::erase_if(map, std::move(pred)); 0850 } 0851 0852 namespace container_internal { 0853 0854 // A parameters structure for holding the type parameters for a btree_map. 0855 // Compare and Alloc should be nothrow copy-constructible. 0856 template <typename Key, typename Data, typename Compare, typename Alloc, 0857 int TargetNodeSize, bool IsMulti> 0858 struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, IsMulti, 0859 /*IsMap=*/true, map_slot_policy<Key, Data>> { 0860 using super_type = typename map_params::common_params; 0861 using mapped_type = Data; 0862 // This type allows us to move keys when it is safe to do so. It is safe 0863 // for maps in which value_type and mutable_value_type are layout compatible. 0864 using slot_policy = typename super_type::slot_policy; 0865 using slot_type = typename super_type::slot_type; 0866 using value_type = typename super_type::value_type; 0867 using init_type = typename super_type::init_type; 0868 0869 template <typename V> 0870 static auto key(const V &value ABSL_ATTRIBUTE_LIFETIME_BOUND) 0871 -> decltype((value.first)) { 0872 return value.first; 0873 } 0874 static const Key &key(const slot_type *s) { return slot_policy::key(s); } 0875 static const Key &key(slot_type *s) { return slot_policy::key(s); } 0876 // For use in node handle. 0877 static auto mutable_key(slot_type *s) 0878 -> decltype(slot_policy::mutable_key(s)) { 0879 return slot_policy::mutable_key(s); 0880 } 0881 static mapped_type &value(value_type *value) { return value->second; } 0882 }; 0883 0884 } // namespace container_internal 0885 0886 ABSL_NAMESPACE_END 0887 } // namespace absl 0888 0889 #endif // ABSL_CONTAINER_BTREE_MAP_H_
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |