Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2024-11-15 09:00:53

0001 //
0002 // Copyright 2017 The Abseil Authors.
0003 //
0004 // Licensed under the Apache License, Version 2.0 (the "License");
0005 // you may not use this file except in compliance with the License.
0006 // You may obtain a copy of the License at
0007 //
0008 //      https://www.apache.org/licenses/LICENSE-2.0
0009 //
0010 // Unless required by applicable law or agreed to in writing, software
0011 // distributed under the License is distributed on an "AS IS" BASIS,
0012 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
0013 // See the License for the specific language governing permissions and
0014 // limitations under the License.
0015 //
0016 // -----------------------------------------------------------------------------
0017 // File: optimization.h
0018 // -----------------------------------------------------------------------------
0019 //
0020 // This header file defines portable macros for performance optimization.
0021 
0022 #ifndef ABSL_BASE_OPTIMIZATION_H_
0023 #define ABSL_BASE_OPTIMIZATION_H_
0024 
0025 #include <assert.h>
0026 
0027 #include "absl/base/config.h"
0028 #include "absl/base/options.h"
0029 
0030 // ABSL_BLOCK_TAIL_CALL_OPTIMIZATION
0031 //
0032 // Instructs the compiler to avoid optimizing tail-call recursion. This macro is
0033 // useful when you wish to preserve the existing function order within a stack
0034 // trace for logging, debugging, or profiling purposes.
0035 //
0036 // Example:
0037 //
0038 //   int f() {
0039 //     int result = g();
0040 //     ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
0041 //     return result;
0042 //   }
0043 #if defined(__pnacl__)
0044 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
0045 #elif defined(__clang__)
0046 // Clang will not tail call given inline volatile assembly.
0047 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
0048 #elif defined(__GNUC__)
0049 // GCC will not tail call given inline volatile assembly.
0050 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
0051 #elif defined(_MSC_VER)
0052 #include <intrin.h>
0053 // The __nop() intrinsic blocks the optimisation.
0054 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop()
0055 #else
0056 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
0057 #endif
0058 
0059 // ABSL_CACHELINE_SIZE
0060 //
0061 // Explicitly defines the size of the L1 cache for purposes of alignment.
0062 // Setting the cacheline size allows you to specify that certain objects be
0063 // aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations.
0064 // (See below.)
0065 //
0066 // NOTE: this macro should be replaced with the following C++17 features, when
0067 // those are generally available:
0068 //
0069 //   * `std::hardware_constructive_interference_size`
0070 //   * `std::hardware_destructive_interference_size`
0071 //
0072 // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
0073 // for more information.
0074 #if defined(__GNUC__)
0075 // Cache line alignment
0076 #if defined(__i386__) || defined(__x86_64__)
0077 #define ABSL_CACHELINE_SIZE 64
0078 #elif defined(__powerpc64__)
0079 #define ABSL_CACHELINE_SIZE 128
0080 #elif defined(__aarch64__)
0081 // We would need to read special register ctr_el0 to find out L1 dcache size.
0082 // This value is a good estimate based on a real aarch64 machine.
0083 #define ABSL_CACHELINE_SIZE 64
0084 #elif defined(__arm__)
0085 // Cache line sizes for ARM: These values are not strictly correct since
0086 // cache line sizes depend on implementations, not architectures.  There
0087 // are even implementations with cache line sizes configurable at boot
0088 // time.
0089 #if defined(__ARM_ARCH_5T__)
0090 #define ABSL_CACHELINE_SIZE 32
0091 #elif defined(__ARM_ARCH_7A__)
0092 #define ABSL_CACHELINE_SIZE 64
0093 #endif
0094 #endif
0095 #endif
0096 
0097 #ifndef ABSL_CACHELINE_SIZE
0098 // A reasonable default guess.  Note that overestimates tend to waste more
0099 // space, while underestimates tend to waste more time.
0100 #define ABSL_CACHELINE_SIZE 64
0101 #endif
0102 
0103 // ABSL_CACHELINE_ALIGNED
0104 //
0105 // Indicates that the declared object be cache aligned using
0106 // `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to
0107 // load a set of related objects in the L1 cache for performance improvements.
0108 // Cacheline aligning objects properly allows constructive memory sharing and
0109 // prevents destructive (or "false") memory sharing.
0110 //
0111 // NOTE: callers should replace uses of this macro with `alignas()` using
0112 // `std::hardware_constructive_interference_size` and/or
0113 // `std::hardware_destructive_interference_size` when C++17 becomes available to
0114 // them.
0115 //
0116 // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
0117 // for more information.
0118 //
0119 // On some compilers, `ABSL_CACHELINE_ALIGNED` expands to an `__attribute__`
0120 // or `__declspec` attribute. For compilers where this is not known to work,
0121 // the macro expands to nothing.
0122 //
0123 // No further guarantees are made here. The result of applying the macro
0124 // to variables and types is always implementation-defined.
0125 //
0126 // WARNING: It is easy to use this attribute incorrectly, even to the point
0127 // of causing bugs that are difficult to diagnose, crash, etc. It does not
0128 // of itself guarantee that objects are aligned to a cache line.
0129 //
0130 // NOTE: Some compilers are picky about the locations of annotations such as
0131 // this attribute, so prefer to put it at the beginning of your declaration.
0132 // For example,
0133 //
0134 //   ABSL_CACHELINE_ALIGNED static Foo* foo = ...
0135 //
0136 //   class ABSL_CACHELINE_ALIGNED Bar { ...
0137 //
0138 // Recommendations:
0139 //
0140 // 1) Consult compiler documentation; this comment is not kept in sync as
0141 //    toolchains evolve.
0142 // 2) Verify your use has the intended effect. This often requires inspecting
0143 //    the generated machine code.
0144 // 3) Prefer applying this attribute to individual variables. Avoid
0145 //    applying it to types. This tends to localize the effect.
0146 #if defined(__clang__) || defined(__GNUC__)
0147 #define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE)))
0148 #elif defined(_MSC_VER)
0149 #define ABSL_CACHELINE_ALIGNED __declspec(align(ABSL_CACHELINE_SIZE))
0150 #else
0151 #define ABSL_CACHELINE_ALIGNED
0152 #endif
0153 
0154 // ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE
0155 //
0156 // Enables the compiler to prioritize compilation using static analysis for
0157 // likely paths within a boolean branch.
0158 //
0159 // Example:
0160 //
0161 //   if (ABSL_PREDICT_TRUE(expression)) {
0162 //     return result;                        // Faster if more likely
0163 //   } else {
0164 //     return 0;
0165 //   }
0166 //
0167 // Compilers can use the information that a certain branch is not likely to be
0168 // taken (for instance, a CHECK failure) to optimize for the common case in
0169 // the absence of better information (ie. compiling gcc with `-fprofile-arcs`).
0170 //
0171 // Recommendation: Modern CPUs dynamically predict branch execution paths,
0172 // typically with accuracy greater than 97%. As a result, annotating every
0173 // branch in a codebase is likely counterproductive; however, annotating
0174 // specific branches that are both hot and consistently mispredicted is likely
0175 // to yield performance improvements.
0176 #if ABSL_HAVE_BUILTIN(__builtin_expect) || \
0177     (defined(__GNUC__) && !defined(__clang__))
0178 #define ABSL_PREDICT_FALSE(x) (__builtin_expect(false || (x), false))
0179 #define ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true))
0180 #else
0181 #define ABSL_PREDICT_FALSE(x) (x)
0182 #define ABSL_PREDICT_TRUE(x) (x)
0183 #endif
0184 
0185 // `ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL()` aborts the program in the fastest
0186 // possible way, with no attempt at logging. One use is to implement hardening
0187 // aborts with ABSL_OPTION_HARDENED.  Since this is an internal symbol, it
0188 // should not be used directly outside of Abseil.
0189 #if ABSL_HAVE_BUILTIN(__builtin_trap) || \
0190     (defined(__GNUC__) && !defined(__clang__))
0191 #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() __builtin_trap()
0192 #else
0193 #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() abort()
0194 #endif
0195 
0196 // `ABSL_INTERNAL_UNREACHABLE_IMPL()` is the platform specific directive to
0197 // indicate that a statement is unreachable, and to allow the compiler to
0198 // optimize accordingly. Clients should use `ABSL_UNREACHABLE()`, which is
0199 // defined below.
0200 #if defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L
0201 #define ABSL_INTERNAL_UNREACHABLE_IMPL() std::unreachable()
0202 #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable)
0203 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_unreachable()
0204 #elif ABSL_HAVE_BUILTIN(__builtin_assume)
0205 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_assume(false)
0206 #elif defined(_MSC_VER)
0207 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __assume(false)
0208 #else
0209 #define ABSL_INTERNAL_UNREACHABLE_IMPL()
0210 #endif
0211 
0212 // `ABSL_UNREACHABLE()` is an unreachable statement.  A program which reaches
0213 // one has undefined behavior, and the compiler may optimize accordingly.
0214 #if ABSL_OPTION_HARDENED == 1 && defined(NDEBUG)
0215 // Abort in hardened mode to avoid dangerous undefined behavior.
0216 #define ABSL_UNREACHABLE()                \
0217   do {                                    \
0218     ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL(); \
0219     ABSL_INTERNAL_UNREACHABLE_IMPL();     \
0220   } while (false)
0221 #else
0222 // The assert only fires in debug mode to aid in debugging.
0223 // When NDEBUG is defined, reaching ABSL_UNREACHABLE() is undefined behavior.
0224 #define ABSL_UNREACHABLE()                       \
0225   do {                                           \
0226     /* NOLINTNEXTLINE: misc-static-assert */     \
0227     assert(false && "ABSL_UNREACHABLE reached"); \
0228     ABSL_INTERNAL_UNREACHABLE_IMPL();            \
0229   } while (false)
0230 #endif
0231 
0232 // ABSL_ASSUME(cond)
0233 //
0234 // Informs the compiler that a condition is always true and that it can assume
0235 // it to be true for optimization purposes.
0236 //
0237 // WARNING: If the condition is false, the program can produce undefined and
0238 // potentially dangerous behavior.
0239 //
0240 // In !NDEBUG mode, the condition is checked with an assert().
0241 //
0242 // NOTE: The expression must not have side effects, as it may only be evaluated
0243 // in some compilation modes and not others. Some compilers may issue a warning
0244 // if the compiler cannot prove the expression has no side effects. For example,
0245 // the expression should not use a function call since the compiler cannot prove
0246 // that a function call does not have side effects.
0247 //
0248 // Example:
0249 //
0250 //   int x = ...;
0251 //   ABSL_ASSUME(x >= 0);
0252 //   // The compiler can optimize the division to a simple right shift using the
0253 //   // assumption specified above.
0254 //   int y = x / 16;
0255 //
0256 #if !defined(NDEBUG)
0257 #define ABSL_ASSUME(cond) assert(cond)
0258 #elif ABSL_HAVE_BUILTIN(__builtin_assume)
0259 #define ABSL_ASSUME(cond) __builtin_assume(cond)
0260 #elif defined(_MSC_VER)
0261 #define ABSL_ASSUME(cond) __assume(cond)
0262 #elif defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L
0263 #define ABSL_ASSUME(cond)            \
0264   do {                               \
0265     if (!(cond)) std::unreachable(); \
0266   } while (false)
0267 #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable)
0268 #define ABSL_ASSUME(cond)                 \
0269   do {                                    \
0270     if (!(cond)) __builtin_unreachable(); \
0271   } while (false)
0272 #else
0273 #define ABSL_ASSUME(cond)               \
0274   do {                                  \
0275     static_cast<void>(false && (cond)); \
0276   } while (false)
0277 #endif
0278 
0279 // ABSL_INTERNAL_UNIQUE_SMALL_NAME(cond)
0280 // This macro forces small unique name on a static file level symbols like
0281 // static local variables or static functions. This is intended to be used in
0282 // macro definitions to optimize the cost of generated code. Do NOT use it on
0283 // symbols exported from translation unit since it may cause a link time
0284 // conflict.
0285 //
0286 // Example:
0287 //
0288 // #define MY_MACRO(txt)
0289 // namespace {
0290 //  char VeryVeryLongVarName[] ABSL_INTERNAL_UNIQUE_SMALL_NAME() = txt;
0291 //  const char* VeryVeryLongFuncName() ABSL_INTERNAL_UNIQUE_SMALL_NAME();
0292 //  const char* VeryVeryLongFuncName() { return txt; }
0293 // }
0294 //
0295 
0296 #if defined(__GNUC__)
0297 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #x
0298 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME1(x) ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x)
0299 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME() \
0300   asm(ABSL_INTERNAL_UNIQUE_SMALL_NAME1(.absl.__COUNTER__))
0301 #else
0302 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME()
0303 #endif
0304 
0305 #endif  // ABSL_BASE_OPTIMIZATION_H_