![]() |
|
|||
File indexing completed on 2025-04-19 09:10:08
0001 #ifndef PDF_Main_PDF_Electron_H 0002 #define PDF_Main_PDF_Electron_H 0003 0004 #include "PDF/Main/PDF_Base.H" 0005 0006 namespace PDF { 0007 class PDF_Electron : public PDF_Base { 0008 double m_mass; 0009 double m_alpha,m_beta; 0010 double m_xpdf; 0011 int m_izetta,m_order,m_init; 0012 public: 0013 PDF_Electron(const ATOOLS::Flavour,const int,const int); 0014 ~PDF_Electron() {} 0015 PDF_Base * GetCopy(); 0016 0017 void CalculateSpec(const double&,const double&); 0018 double GetXPDF(const ATOOLS::Flavour&); 0019 double GetXPDF(const kf_code&, bool); 0020 0021 bool EWOn() { return true; } 0022 0023 }; 0024 /*! 0025 \class PDF_Electron 0026 \brief This is a pure QED structure function for an electron or, more general, for a lepton. 0027 0028 This class houses the QED structure function for an electron, or, more general, charged 0029 leptons in the parametrization of 0030 <A HREF=""></A>. 0031 It is based on the leading log 0032 approximation leading to exponentiation including further higher order terms up to 0033 \f${\cal O}(\alpha^3)\f$ in the electromagnetic coupling constant. Furthermore, different 0034 exponentiation schemes are available, see also 0035 <A HREF=""></A>. 0036 */ 0037 /*! 0038 \var double PDF_Electron::m_alpha 0039 The electromagnetic coupling constant, taken at the scale at which the structure 0040 function is to be evaluated. 0041 */ 0042 /*! 0043 \var double PDF_Electron::m_beta 0044 The characteristic exponent of the lepton PDF. It is given by 0045 \f[ 0046 \beta = \alpha(m_l^2)/\pi (\log(E^2/m_l^2)-1) 0047 \f] 0048 */ 0049 /*! 0050 \var double PDF_Electron::m_mass 0051 The mass of the lepton. 0052 */ 0053 /*! 0054 \var int PDF_Electron::m_order 0055 The order in alpha for the caluclation of the structure function. 0056 */ 0057 /*! 0058 \var int PDF_Electron::m_izetta 0059 The \f$\zeta\f$-scheme for the definition of how the logarithms enter the exponentiation. 0060 */ 0061 /*! 0062 \fn PDF_Electron::PDF_Electron(const ATOOLS::Flavour,const int,const int) 0063 The constructor, initializes all constant parameters for evaluation in Calculate. 0064 */ 0065 /*! 0066 \fn PDF_Base * PDF_Electron::GetCopy() 0067 A method to initialize another electron PDF as exact copy of the current one. 0068 This is needed for the initial state shower of APACIC. 0069 */ 0070 /*! 0071 \fn void PDF_Electron::CalculateSpec(const double&, const double&); 0072 Here, the following expression is evaluated: 0073 \f[ 0074 \begin{array}{l} 0075 f(x,Q^2) = \\ \\ \\ \\ \\ 0076 \end{array} 0077 \begin{array}{l} 0078 (1-x)^{\frac{\beta}{2}-1}\cdot 0079 \frac{\beta\exp\left(\frac12\Gamma_E*\beta+\frac38\beta_S\right)}{2\gamma}\\ 0080 - \frac{\beta_H}{4}(1+x) 0081 - \frac{\beta_H^2}{32} 0082 \left[\frac{1+3x^2}{1-x}\log(x) + 4(1+x)\log(1-x)+5+x\right]\\ 0083 - \frac{\beta_H^3}{384} 0084 \left[\vphantom{\frac32} 0085 (1+x)\left(6\mbox{\rm Li}_2(x)+12\log^2(1-x)-3\pi^2\right) \right.\\ 0086 \;\;\;\;\;\;\;\; 0087 + \frac{1}{1-1x}\left(\frac{3(1+8x+3x^2)}{2}\log(x) 0088 + 6(x+5)(1-x)\log(1-x) 0089 +12(1+x^2)\log(x)\log(1-x) \right.\\ 0090 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left.\left. 0091 +12(1+x^2)\log(x)\log(1-x) 0092 -\frac{1+7x^2}{2}\log^2(x) 0093 +\frac{39-24x-15x^2}{4}\right)\right]\,, 0094 \end{array} 0095 \f] 0096 where a number of choices are possible for the various \f$\beta\f$. 0097 Defining 0098 \f[ 0099 L = 2\log\frac{Q}{m_e}\;,\;\; 0100 \beta_e = \frac{2\alpha (L-1)}{\pi}\;,\;\; 0101 \eta = \frac{2\alpha L}{\pi} 0102 \f] 0103 for various values of \f$\zeta\f$ (m_izetta) the \f$\beta\f$ are given by: 0104 \f[ 0105 \zeta = \left\{ 0106 \begin{array}{l} 0 \\ 1 \\ \mbox{\rm else}\end{array} 0107 \begin{array}{l} \beta = \beta_e\,,\;\; \beta_H = \beta_S = \eta\,,\\ 0108 \beta = \beta_S = \beta_e\,,\;\; \beta_H = \eta\,,\\ 0109 \beta = \beta_S = \beta_H = \beta_e\,. 0110 \end{array}\right. 0111 \f] 0112 The above expression for \f$f(x,Q^2)\f$ is valid for 0113 \f[ 0114 x\in [0,0.9999]\,, 0115 \f] 0116 and the pdf weight yields 0117 \f[ 0118 {\cal W}(x,Q^2) = x f(x,Q^2)\,. 0119 \f] 0120 For 0121 \f[ 0122 x\in [0.9999,0.999999] 0123 \f] 0124 the pdf is replaced by 0125 \f[ 0126 {\cal W}(x,Q^2) = x f(x,Q^2)\cdot \frac{100^{\beta/2}}{100^{\beta/2}-1}\,. 0127 \f] 0128 For higher $x$ values a zero is returned. Hence, the modification for the high \f$x\f$ 0129 range basically amounts to moving a good portion of the contributions from the potentially 0130 numerically instable region close to 1 to a lower range. 0131 */ 0132 } 0133 #endif // PDF_Electron_H
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |