Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-04-19 09:10:08

0001 #ifndef PDF_Main_PDF_Electron_H
0002 #define PDF_Main_PDF_Electron_H
0003 
0004 #include "PDF/Main/PDF_Base.H"
0005 
0006 namespace PDF {
0007   class PDF_Electron : public PDF_Base {
0008     double m_mass;
0009     double m_alpha,m_beta;
0010     double m_xpdf;
0011     int    m_izetta,m_order,m_init;
0012   public:
0013     PDF_Electron(const ATOOLS::Flavour,const int,const int);
0014     ~PDF_Electron() {}
0015     PDF_Base * GetCopy();
0016 
0017     void   CalculateSpec(const double&,const double&);
0018     double GetXPDF(const ATOOLS::Flavour&);
0019     double GetXPDF(const kf_code&, bool);
0020 
0021     bool EWOn() { return true; }
0022 
0023   };
0024   /*!
0025     \class PDF_Electron
0026     \brief This is a pure QED structure function for an electron or, more general, for a lepton. 
0027 
0028     This class houses the QED structure function for an electron, or, more general, charged
0029     leptons in the parametrization of 
0030     <A HREF=""></A>. 
0031     It is based on the leading log
0032     approximation leading to exponentiation including further higher order terms up to
0033     \f${\cal O}(\alpha^3)\f$ in the electromagnetic coupling constant. Furthermore, different
0034     exponentiation schemes are available, see also 
0035     <A HREF=""></A>.
0036   */
0037   /*!
0038     \var double PDF_Electron::m_alpha
0039     The electromagnetic coupling constant, taken at the scale at which the structure 
0040     function is to be evaluated.
0041   */
0042   /*!
0043     \var double PDF_Electron::m_beta
0044     The characteristic exponent of the lepton PDF. It is given by
0045     \f[
0046     \beta = \alpha(m_l^2)/\pi (\log(E^2/m_l^2)-1)
0047     \f]
0048   */
0049   /*!
0050     \var double PDF_Electron::m_mass
0051     The mass of the lepton.
0052   */
0053   /*!
0054     \var int PDF_Electron::m_order
0055     The order in alpha for the caluclation of the structure function.
0056   */
0057   /*!
0058     \var int PDF_Electron::m_izetta
0059     The \f$\zeta\f$-scheme for the definition of how the logarithms enter the exponentiation.
0060   */
0061   /*!
0062     \fn PDF_Electron::PDF_Electron(const ATOOLS::Flavour,const int,const int)
0063     The constructor, initializes all constant parameters for evaluation in Calculate.
0064   */
0065   /*!
0066     \fn PDF_Base * PDF_Electron::GetCopy()
0067     A method to initialize another electron PDF as exact copy of the current one.
0068     This is needed for the initial state shower of APACIC.
0069   */
0070   /*!
0071     \fn void PDF_Electron::CalculateSpec(const double&, const double&);
0072     Here, the following expression is evaluated:
0073     \f[
0074     \begin{array}{l}
0075     f(x,Q^2) = \\ \\ \\ \\ \\
0076     \end{array}
0077     \begin{array}{l}
0078     (1-x)^{\frac{\beta}{2}-1}\cdot
0079     \frac{\beta\exp\left(\frac12\Gamma_E*\beta+\frac38\beta_S\right)}{2\gamma}\\
0080     - \frac{\beta_H}{4}(1+x)
0081     - \frac{\beta_H^2}{32}
0082     \left[\frac{1+3x^2}{1-x}\log(x) + 4(1+x)\log(1-x)+5+x\right]\\
0083     - \frac{\beta_H^3}{384}
0084       \left[\vphantom{\frac32}
0085             (1+x)\left(6\mbox{\rm Li}_2(x)+12\log^2(1-x)-3\pi^2\right) \right.\\
0086       \;\;\;\;\;\;\;\; 
0087             + \frac{1}{1-1x}\left(\frac{3(1+8x+3x^2)}{2}\log(x)
0088                             + 6(x+5)(1-x)\log(1-x)
0089           +12(1+x^2)\log(x)\log(1-x) \right.\\
0090        \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left.\left.              
0091           +12(1+x^2)\log(x)\log(1-x)
0092           -\frac{1+7x^2}{2}\log^2(x)
0093           +\frac{39-24x-15x^2}{4}\right)\right]\,,
0094     \end{array}
0095     \f]
0096     where a number of choices are possible for the various \f$\beta\f$.
0097     Defining 
0098     \f[
0099     L = 2\log\frac{Q}{m_e}\;,\;\;
0100     \beta_e = \frac{2\alpha (L-1)}{\pi}\;,\;\; 
0101     \eta = \frac{2\alpha L}{\pi} 
0102     \f]
0103     for various values of \f$\zeta\f$ (m_izetta) the \f$\beta\f$ are given by:
0104     \f[
0105     \zeta = \left\{
0106             \begin{array}{l} 0 \\ 1 \\ \mbox{\rm else}\end{array}
0107             \begin{array}{l}  \beta = \beta_e\,,\;\; \beta_H = \beta_S = \eta\,,\\
0108                         \beta = \beta_S = \beta_e\,,\;\; \beta_H = \eta\,,\\
0109                         \beta = \beta_S = \beta_H = \beta_e\,.
0110       \end{array}\right.
0111     \f]
0112     The above expression for \f$f(x,Q^2)\f$ is valid for
0113     \f[ 
0114     x\in [0,0.9999]\,,
0115     \f]
0116     and the pdf weight yields
0117     \f[
0118     {\cal W}(x,Q^2) = x f(x,Q^2)\,.
0119     \f]
0120     For
0121     \f[ 
0122     x\in [0.9999,0.999999]
0123     \f]
0124     the pdf is replaced by
0125     \f[
0126     {\cal W}(x,Q^2) = x f(x,Q^2)\cdot \frac{100^{\beta/2}}{100^{\beta/2}-1}\,.
0127     \f]
0128     For higher $x$ values a zero is returned. Hence, the modification for the high \f$x\f$
0129     range basically amounts to moving a good portion of the contributions from the potentially 
0130     numerically instable region close to 1 to a lower range.
0131   */
0132 } 
0133 #endif // PDF_Electron_H