![]() |
|
|||
File indexing completed on 2025-04-19 09:10:07
0001 #ifndef MODEL_Main_Running_AlphaQED_H 0002 #define MODEL_Main_Running_AlphaQED_H 0003 0004 #include "ATOOLS/Phys/Flavour.H" 0005 #include "ATOOLS/Math/Function_Base.H" 0006 0007 namespace MODEL { 0008 class Running_AlphaQED : public ATOOLS::Function_Base { 0009 const static double m_A[4],m_B[4],m_C[4]; 0010 double m_alpha0; 0011 0012 double PiGamma(const ATOOLS::Flavour &, double); 0013 public: 0014 Running_AlphaQED(const double); 0015 0016 double operator()(double); 0017 double AqedThomson() { return m_alpha0; } 0018 0019 void PrintSummary(); 0020 }; 0021 0022 extern Running_AlphaQED * aqed; 0023 0024 /*! 0025 \class Running_AlphaQED 0026 \brief The class for the (running) electromagnetic coupling constant. 0027 0028 This is an implementation of the 0029 <A HREF="http://131.169.91.193/cgi-bin/spiface/find/hep/www?key=2184940"> 0030 electromagnetic coupling constant </A> by R. Kleiss et al. with the 0031 <A HREF="http://131.169.91.193/cgi-bin/spiface/find/hep/www?key=2076233"> 0032 hadronic component</A> by H. Burkhardt et al.. 0033 */ 0034 /*! 0035 \var const static double Running_AlphaQED::m_A[4] 0036 The \f$A_i\f$ parameters needed to calculate the hadronic component of \f$\alpha_{QED}\f$ 0037 \f[A_0 = 0.0,\; A_1 = 0.0,\; A_2 = 0.00165,\; A_3 = 0.00221\,.\f] 0038 */ 0039 /*! 0040 \var const static double Running_AlphaQED::m_B[4] 0041 The \f$A_i\f$ parameters needed to calculate the hadronic component of \f$\alpha_{QED}\f$ 0042 \f[B_0 = 0.00835,\; B_1 = 0.00238,\; B_2 = 0.00299,\; B_3 = 0.00293\,.\f] 0043 */ 0044 /*! 0045 \var const static double Running_AlphaQED::m_C[4] 0046 The \f$A_i\f$ parameters needed to calculate the hadronic component of \f$\alpha_{QED}\f$ 0047 \f[C_0 = 1.0,\; C_1 = 3.927,\; C_2 = 1.0,\; C_3 = 1.0\f] 0048 */ 0049 /*! 0050 \var double Running_AlphaQED::m_alpha0 0051 \f$\alpha_{QED}\f$ in the Thomson limit, 0052 \f[\alpha^{(0)}_{QED} = 1/137.03599976\,.\f] 0053 */ 0054 /*! 0055 \fn double Running_AlphaQED::PiGamma(const ATOOLS::Flavour &, double) 0056 With the mass of the particle and the scale the vacuum polarization is given by 0057 \f[\Pi_\gamma(m^2,s)] = \left\{ \begin{array}{lcl} 0058 -5/3-\log(m^2/s)\;& \;\mbox{\rm if}\;& \; 4m^2/s<10^{-3}\\ 0059 1/3-(1+2m^2/s) 0060 \left[2+\sqrt{1-4m^2/s}\cdot 0061 \log\frac{1-\sqrt{1-4m^2/s}}{1+\sqrt{1-4m^2/s}}\right] 0062 \;&\;\mbox{\rm if}\;&\; 4m^2/s<1\\ 0063 0\;& \;\mbox{\rm if}\;& \; 4m^2/s\ge 1 0064 \end{array} \right.\f] 0065 */ 0066 /*! 0067 \fn Running_AlphaQED::Running_AlphaQED(const double); 0068 Initialises \f$\alpha_{QED}\f$ with the value at scale t=0 0069 */ 0070 /*! 0071 \fn double Running_AlphaQED::operator()(double); 0072 Returns the value for running \f$\alpha_{QED}\f$. 0073 \f[\alpha_{QED}(Q^2) = \frac{\alpha^{(0)}_{QED}}{1-\sigma}\,,\f] 0074 where 0075 \f[\sigma = \sigma_{\rm lepton} + \sigma_{\rm hadron} + \sigma_{\rm top}\f] 0076 The leptonic component is given by 0077 \f[\sigma_{\rm lepton}(Q^2) = \sum\limits_{l=e^-,\mu^-,\tau^-} 0078 \frac{\alpha^{(0)}_{QED}}{3\pi}\cdot\Pi_\gamma(l,Q^2)\,.\f] 0079 \f[\sigma_{\rm hadron}(Q^2) = A[i] + B[i] \log\left(1+C[i]\cdot Q^2\right)\,.\f] 0080 \f[\sigma_{\rm top}(Q^2) = \frac{\alpha^{(0)}_{QED}}{3\pi}\cdot\Pi_\gamma(t,Q^2)\,.\f] 0081 */ 0082 /*! 0083 \fn double Running_AlphaQED::AqedThomson() 0084 Returns \f$\alpha_{QED}\f$ in the Thomson limit. 0085 */ 0086 } 0087 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |