Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-04-19 09:10:06

0001 #ifndef METOOLS_Loops_Master_Integrals_H
0002 #define METOOLS_Loops_Master_Integrals_H
0003 
0004 #include "ATOOLS/Math/MyComplex.H"
0005 #include "METOOLS/Loops/Divergence_Array.H"
0006 
0007 // set global renormalisation scale as backup to m_Z^2
0008 #define GLOBAL_RENORMALISATION_SCALE 8315.251344
0009 
0010 namespace METOOLS {
0011 
0012   //! dimension D=4-2epsilon
0013   inline DivArrD D() { return DivArrD(0.,0.,0.,4.,-2.,0.); }
0014 #define D D()
0015   /*! Convention on input:
0016       - \f$ p_i^2 \f$ labels the squared outer momenta
0017       - \f$ m_i^2 \f$ labels the masses of the internal lines
0018       - \f$ s_{ij}=(p_i + p_j)^2 \f$
0019       - \f$ \mu^2 \f$ labels the renormalisation scale
0020       Convention on output:
0021       - array with the following entries
0022         [0] - \f$ \sim \frac{1}{\epsilon_{UV}} \f$
0023         [1] - \f$ \sim \frac{1}{\epsilon_{IR}} \f$
0024         [2] - \f$ \sim \frac{1}{\epsilon_{IR}^2} \f$
0025         [3] - \f$ \sim 1 \f$
0026         [4] - \f$ \sim \epsilon \f$
0027         [5] - \f$ \sim \epsilon^2 \f$
0028       All terms \f$ \sim \epsilon/\epsilon^2 \f$ are currently not calculated.
0029       This is suitable for 1-loop integrals, but nothing beyond.
0030    */
0031   //! A_0(m2;mu2)
0032   DivArrC
0033   Master_Tadpole(const Complex&,
0034                  double);
0035   //! B_0(s12;m02,m12;mu2)
0036   DivArrC
0037   Master_Bubble(const double&,
0038                 const Complex&, const Complex&,
0039                 double);
0040   //! C_0(p12,p22,s12;m02,m12,m22;mu2)
0041   DivArrC
0042   Master_Triangle(const double&,  const double&,  const double&,
0043                   const Complex&, const Complex&, const Complex&,
0044                   double);
0045   //! D_0(p12,p22,p32,p43,s12,s23;m12,m22,m32,m42;mu2)
0046   DivArrC
0047   Master_Box(const double&,  const double&,  const double&,  const double&,
0048              const double&,  const double&,
0049              const Complex&, const Complex&, const Complex&, const Complex&,
0050              double);
0051 
0052 
0053 }
0054 
0055 #endif