Back to home page

EIC code displayed by LXR

 
 

    


Warning, file /include/Rivet/Math/eigen3/src/Core/arch/AltiVec/Complex.h was not indexed or was modified since last indexation (in which case cross-reference links may be missing, inaccurate or erroneous).

0001 // This file is part of Eigen, a lightweight C++ template library
0002 // for linear algebra.
0003 //
0004 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
0005 // Copyright (C) 2010-2016 Konstantinos Margaritis <markos@freevec.org>
0006 //
0007 // This Source Code Form is subject to the terms of the Mozilla
0008 // Public License v. 2.0. If a copy of the MPL was not distributed
0009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
0010 
0011 #ifndef EIGEN_COMPLEX32_ALTIVEC_H
0012 #define EIGEN_COMPLEX32_ALTIVEC_H
0013 
0014 namespace RivetEigen {
0015 
0016 namespace internal {
0017 
0018 static Packet4ui  p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_MZERO);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
0019 #ifdef __VSX__
0020 #if defined(_BIG_ENDIAN)
0021 static Packet2ul  p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
0022 static Packet2ul  p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO,  (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
0023 #else
0024 static Packet2ul  p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO,  (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
0025 static Packet2ul  p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
0026 #endif
0027 #endif
0028 
0029 //---------- float ----------
0030 struct Packet2cf
0031 {
0032   EIGEN_STRONG_INLINE explicit Packet2cf() {}
0033   EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
0034 
0035   EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b)
0036   {
0037     Packet4f v1, v2;
0038 
0039     // Permute and multiply the real parts of a and b
0040     v1 = vec_perm(a.v, a.v, p16uc_PSET32_WODD);
0041     // Get the imaginary parts of a
0042     v2 = vec_perm(a.v, a.v, p16uc_PSET32_WEVEN);
0043     // multiply a_re * b
0044     v1 = vec_madd(v1, b.v, p4f_ZERO);
0045     // multiply a_im * b and get the conjugate result
0046     v2 = vec_madd(v2, b.v, p4f_ZERO);
0047     v2 = reinterpret_cast<Packet4f>(pxor(v2, reinterpret_cast<Packet4f>(p4ui_CONJ_XOR)));
0048     // permute back to a proper order
0049     v2 = vec_perm(v2, v2, p16uc_COMPLEX32_REV);
0050 
0051     return Packet2cf(padd<Packet4f>(v1, v2));
0052   }
0053 
0054   EIGEN_STRONG_INLINE Packet2cf& operator*=(const Packet2cf& b) {
0055     v = pmul(Packet2cf(*this), b).v;
0056     return *this;
0057   }
0058   EIGEN_STRONG_INLINE Packet2cf operator*(const Packet2cf& b) const {
0059     return Packet2cf(*this) *= b;
0060   }
0061 
0062   EIGEN_STRONG_INLINE Packet2cf& operator+=(const Packet2cf& b) {
0063     v = padd(v, b.v);
0064     return *this;
0065   }
0066   EIGEN_STRONG_INLINE Packet2cf operator+(const Packet2cf& b) const {
0067     return Packet2cf(*this) += b;
0068   }
0069   EIGEN_STRONG_INLINE Packet2cf& operator-=(const Packet2cf& b) {
0070     v = psub(v, b.v);
0071     return *this;
0072   }
0073   EIGEN_STRONG_INLINE Packet2cf operator-(const Packet2cf& b) const {
0074     return Packet2cf(*this) -= b;
0075   }
0076   EIGEN_STRONG_INLINE Packet2cf operator-(void) const {
0077     return Packet2cf(-v);
0078   }
0079 
0080   Packet4f  v;
0081 };
0082 
0083 template<> struct packet_traits<std::complex<float> >  : default_packet_traits
0084 {
0085   typedef Packet2cf type;
0086   typedef Packet2cf half;
0087   typedef Packet4f as_real;
0088   enum {
0089     Vectorizable = 1,
0090     AlignedOnScalar = 1,
0091     size = 2,
0092     HasHalfPacket = 0,
0093 
0094     HasAdd    = 1,
0095     HasSub    = 1,
0096     HasMul    = 1,
0097     HasDiv    = 1,
0098     HasNegate = 1,
0099     HasAbs    = 0,
0100     HasAbs2   = 0,
0101     HasMin    = 0,
0102     HasMax    = 0,
0103 #ifdef __VSX__
0104     HasBlend  = 1,
0105 #endif
0106     HasSetLinear = 0
0107   };
0108 };
0109 
0110 template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet2cf half; typedef Packet4f as_real; };
0111 
0112 template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>&  from)
0113 {
0114   Packet2cf res;
0115   if((std::ptrdiff_t(&from) % 16) == 0)
0116     res.v = pload<Packet4f>((const float *)&from);
0117   else
0118     res.v = ploadu<Packet4f>((const float *)&from);
0119   res.v = vec_perm(res.v, res.v, p16uc_PSET64_HI);
0120   return res;
0121 }
0122 
0123 template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>*        from) { return Packet2cf(pload<Packet4f>((const float *) from)); }
0124 template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>*       from) { return Packet2cf(ploadu<Packet4f>((const float*) from)); }
0125 template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>*     from) { return pset1<Packet2cf>(*from); }
0126 
0127 template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { pstore((float*)to, from.v); }
0128 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { pstoreu((float*)to, from.v); }
0129 
0130 EIGEN_STRONG_INLINE Packet2cf pload2(const std::complex<float>* from0, const std::complex<float>* from1)
0131 {
0132   Packet4f res0, res1;
0133 #ifdef __VSX__
0134   __asm__ ("lxsdx %x0,%y1" : "=wa" (res0) : "Z" (*from0));
0135   __asm__ ("lxsdx %x0,%y1" : "=wa" (res1) : "Z" (*from1));
0136 #ifdef _BIG_ENDIAN
0137   __asm__ ("xxpermdi %x0, %x1, %x2, 0" : "=wa" (res0) : "wa" (res0), "wa" (res1));
0138 #else
0139   __asm__ ("xxpermdi %x0, %x2, %x1, 0" : "=wa" (res0) : "wa" (res0), "wa" (res1));
0140 #endif
0141 #else
0142   *reinterpret_cast<std::complex<float> *>(&res0) = *from0;
0143   *reinterpret_cast<std::complex<float> *>(&res1) = *from1;
0144   res0 = vec_perm(res0, res1, p16uc_TRANSPOSE64_HI);
0145 #endif
0146   return Packet2cf(res0);
0147 }
0148 
0149 template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride)
0150 {
0151   EIGEN_ALIGN16 std::complex<float> af[2];
0152   af[0] = from[0*stride];
0153   af[1] = from[1*stride];
0154   return pload<Packet2cf>(af);
0155 }
0156 template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride)
0157 {
0158   EIGEN_ALIGN16 std::complex<float> af[2];
0159   pstore<std::complex<float> >((std::complex<float> *) af, from);
0160   to[0*stride] = af[0];
0161   to[1*stride] = af[1];
0162 }
0163 
0164 template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v + b.v); }
0165 template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v - b.v); }
0166 template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); }
0167 template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf(pxor<Packet4f>(a.v, reinterpret_cast<Packet4f>(p4ui_CONJ_XOR))); }
0168 
0169 template<> EIGEN_STRONG_INLINE Packet2cf pand   <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pand<Packet4f>(a.v, b.v)); }
0170 template<> EIGEN_STRONG_INLINE Packet2cf por    <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(por<Packet4f>(a.v, b.v)); }
0171 template<> EIGEN_STRONG_INLINE Packet2cf pxor   <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pxor<Packet4f>(a.v, b.v)); }
0172 template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pandnot<Packet4f>(a.v, b.v)); }
0173 
0174 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr)    { EIGEN_PPC_PREFETCH(addr); }
0175 
0176 template<> EIGEN_STRONG_INLINE std::complex<float>  pfirst<Packet2cf>(const Packet2cf& a)
0177 {
0178   EIGEN_ALIGN16 std::complex<float> res[2];
0179   pstore((float *)&res, a.v);
0180 
0181   return res[0];
0182 }
0183 
0184 template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
0185 {
0186   Packet4f rev_a;
0187   rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX32_REV2);
0188   return Packet2cf(rev_a);
0189 }
0190 
0191 template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
0192 {
0193   Packet4f b;
0194   b = vec_sld(a.v, a.v, 8);
0195   b = padd<Packet4f>(a.v, b);
0196   return pfirst<Packet2cf>(Packet2cf(b));
0197 }
0198 
0199 template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
0200 {
0201   Packet4f b;
0202   Packet2cf prod;
0203   b = vec_sld(a.v, a.v, 8);
0204   prod = pmul<Packet2cf>(a, Packet2cf(b));
0205 
0206   return pfirst<Packet2cf>(prod);
0207 }
0208 
0209 EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f)
0210 
0211 template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
0212 {
0213   // TODO optimize it for AltiVec
0214   Packet2cf res = pmul(a, pconj(b));
0215   Packet4f s = pmul<Packet4f>(b.v, b.v);
0216   return Packet2cf(pdiv(res.v, padd<Packet4f>(s, vec_perm(s, s, p16uc_COMPLEX32_REV))));
0217 }
0218 
0219 template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& x)
0220 {
0221   return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX32_REV));
0222 }
0223 
0224 EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet2cf,2>& kernel)
0225 {
0226   Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
0227   kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
0228   kernel.packet[0].v = tmp;
0229 }
0230 
0231 template<> EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) {
0232   Packet4f eq = reinterpret_cast<Packet4f>(vec_cmpeq(a.v,b.v));
0233   return Packet2cf(vec_and(eq, vec_perm(eq, eq, p16uc_COMPLEX32_REV)));
0234 }
0235 
0236 #ifdef __VSX__
0237 template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) {
0238   Packet2cf result;
0239   result.v = reinterpret_cast<Packet4f>(pblend<Packet2d>(ifPacket, reinterpret_cast<Packet2d>(thenPacket.v), reinterpret_cast<Packet2d>(elsePacket.v)));
0240   return result;
0241 }
0242 #endif
0243 
0244 template<> EIGEN_STRONG_INLINE Packet2cf psqrt<Packet2cf>(const Packet2cf& a)
0245 {
0246   return psqrt_complex<Packet2cf>(a);
0247 }
0248 
0249 //---------- double ----------
0250 #ifdef __VSX__
0251 struct Packet1cd
0252 {
0253   EIGEN_STRONG_INLINE Packet1cd() {}
0254   EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
0255 
0256   EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b)
0257   {
0258     Packet2d a_re, a_im, v1, v2;
0259 
0260     // Permute and multiply the real parts of a and b
0261     a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI);
0262     // Get the imaginary parts of a
0263     a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO);
0264     // multiply a_re * b
0265     v1 = vec_madd(a_re, b.v, p2d_ZERO);
0266     // multiply a_im * b and get the conjugate result
0267     v2 = vec_madd(a_im, b.v, p2d_ZERO);
0268     v2 = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(v2), reinterpret_cast<Packet4ui>(v2), 8));
0269     v2 = pxor(v2, reinterpret_cast<Packet2d>(p2ul_CONJ_XOR1));
0270 
0271     return Packet1cd(padd<Packet2d>(v1, v2));
0272   }
0273 
0274   EIGEN_STRONG_INLINE Packet1cd& operator*=(const Packet1cd& b) {
0275     v = pmul(Packet1cd(*this), b).v;
0276     return *this;
0277   }
0278   EIGEN_STRONG_INLINE Packet1cd operator*(const Packet1cd& b) const {
0279     return Packet1cd(*this) *= b;
0280   }
0281 
0282   EIGEN_STRONG_INLINE Packet1cd& operator+=(const Packet1cd& b) {
0283     v = padd(v, b.v);
0284     return *this;
0285   }
0286   EIGEN_STRONG_INLINE Packet1cd operator+(const Packet1cd& b) const {
0287     return Packet1cd(*this) += b;
0288   }
0289   EIGEN_STRONG_INLINE Packet1cd& operator-=(const Packet1cd& b) {
0290     v = psub(v, b.v);
0291     return *this;
0292   }
0293   EIGEN_STRONG_INLINE Packet1cd operator-(const Packet1cd& b) const {
0294     return Packet1cd(*this) -= b;
0295   }
0296   EIGEN_STRONG_INLINE Packet1cd operator-(void) const {
0297     return Packet1cd(-v);
0298   }
0299 
0300   Packet2d v;
0301 };
0302 
0303 template<> struct packet_traits<std::complex<double> >  : default_packet_traits
0304 {
0305   typedef Packet1cd type;
0306   typedef Packet1cd half;
0307   typedef Packet2d as_real;
0308   enum {
0309     Vectorizable = 1,
0310     AlignedOnScalar = 0,
0311     size = 1,
0312     HasHalfPacket = 0,
0313 
0314     HasAdd    = 1,
0315     HasSub    = 1,
0316     HasMul    = 1,
0317     HasDiv    = 1,
0318     HasNegate = 1,
0319     HasAbs    = 0,
0320     HasAbs2   = 0,
0321     HasMin    = 0,
0322     HasMax    = 0,
0323     HasSetLinear = 0
0324   };
0325 };
0326 
0327 template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet1cd half; typedef Packet2d as_real; };
0328 
0329 template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from) { return Packet1cd(pload<Packet2d>((const double*)from)); }
0330 template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { return Packet1cd(ploadu<Packet2d>((const double*)from)); }
0331 template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> *   to, const Packet1cd& from) { pstore((double*)to, from.v); }
0332 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> *   to, const Packet1cd& from) { pstoreu((double*)to, from.v); }
0333 
0334 template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>&  from)
0335 { /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
0336 
0337 template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index)
0338 {
0339   return pload<Packet1cd>(from);
0340 }
0341 template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index)
0342 {
0343   pstore<std::complex<double> >(to, from);
0344 }
0345 
0346 template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); }
0347 template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); }
0348 template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); }
0349 template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(pxor(a.v, reinterpret_cast<Packet2d>(p2ul_CONJ_XOR2))); }
0350 
0351 template<> EIGEN_STRONG_INLINE Packet1cd pand   <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pand(a.v,b.v)); }
0352 template<> EIGEN_STRONG_INLINE Packet1cd por    <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(por(a.v,b.v)); }
0353 template<> EIGEN_STRONG_INLINE Packet1cd pxor   <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pxor(a.v,b.v)); }
0354 template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pandnot(a.v, b.v)); }
0355 
0356 template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>*     from)  { return pset1<Packet1cd>(*from); }
0357 
0358 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr)    { EIGEN_PPC_PREFETCH(addr); }
0359 
0360 template<> EIGEN_STRONG_INLINE std::complex<double>  pfirst<Packet1cd>(const Packet1cd& a)
0361 {
0362   EIGEN_ALIGN16 std::complex<double> res[2];
0363   pstore<std::complex<double> >(res, a);
0364 
0365   return res[0];
0366 }
0367 
0368 template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
0369 
0370 template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
0371 
0372 template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
0373 
0374 EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d)
0375 
0376 template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
0377 {
0378   // TODO optimize it for AltiVec
0379   Packet1cd res = pmul(a,pconj(b));
0380   Packet2d s = pmul<Packet2d>(b.v, b.v);
0381   return Packet1cd(pdiv(res.v, padd<Packet2d>(s, vec_perm(s, s, p16uc_REVERSE64))));
0382 }
0383 
0384 EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
0385 {
0386   return Packet1cd(preverse(Packet2d(x.v)));
0387 }
0388 
0389 EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
0390 {
0391   Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
0392   kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
0393   kernel.packet[0].v = tmp;
0394 }
0395 
0396 template<> EIGEN_STRONG_INLINE Packet1cd pcmp_eq(const Packet1cd& a, const Packet1cd& b) {
0397   // Compare real and imaginary parts of a and b to get the mask vector:
0398   // [re(a)==re(b), im(a)==im(b)]
0399   Packet2d eq = reinterpret_cast<Packet2d>(vec_cmpeq(a.v,b.v));
0400   // Swap real/imag elements in the mask in to get:
0401   // [im(a)==im(b), re(a)==re(b)]
0402   Packet2d eq_swapped = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(eq), reinterpret_cast<Packet4ui>(eq), 8));
0403   // Return re(a)==re(b) & im(a)==im(b) by computing bitwise AND of eq and eq_swapped
0404   return Packet1cd(vec_and(eq, eq_swapped));
0405 }
0406 
0407 template<> EIGEN_STRONG_INLINE Packet1cd psqrt<Packet1cd>(const Packet1cd& a)
0408 {
0409   return psqrt_complex<Packet1cd>(a);
0410 }
0411 
0412 #endif // __VSX__
0413 } // end namespace internal
0414 
0415 } // end namespace RivetEigen
0416 
0417 #endif // EIGEN_COMPLEX32_ALTIVEC_H