Warning, /include/Geant4/tools/glutess/sweep is written in an unsupported language. File is not indexed.
0001 // see license file for original license.
0002
0003 #ifndef tools_glutess_sweep
0004 #define tools_glutess_sweep
0005
0006 #include "mesh"
0007 #include "dict"
0008
0009 /* For each pair of adjacent edges crossing the sweep line, there is
0010 * an ActiveRegion to represent the region between them. The active
0011 * regions are kept in sorted order in a dynamic dictionary. As the
0012 * sweep line crosses each vertex, we update the affected regions.
0013 */
0014
0015 struct ActiveRegion {
0016 GLUhalfEdge *eUp; /* upper edge, directed right to left */
0017 DictNode *nodeUp; /* dictionary node corresponding to eUp */
0018 int windingNumber; /* used to determine which regions are
0019 * inside the polygon */
0020 GLUboolean inside; /* is this region inside the polygon? */
0021 GLUboolean sentinel; /* marks fake edges at t = +/-infinity */
0022 GLUboolean dirty; /* marks regions where the upper or lower
0023 * edge has changed, but we haven't checked
0024 * whether they intersect yet */
0025 GLUboolean fixUpperEdge; /* marks temporary edges introduced when
0026 * we process a "right vertex" (one without
0027 * any edges leaving to the right) */
0028 };
0029
0030 #define RegionBelow(r) ((ActiveRegion *) dictKey(dictPred((r)->nodeUp)))
0031 #define RegionAbove(r) ((ActiveRegion *) dictKey(dictSucc((r)->nodeUp)))
0032
0033 ////////////////////////////////////////////////////////
0034 /// inlined C code : ///////////////////////////////////
0035 ////////////////////////////////////////////////////////
0036
0037 #include "geom"
0038 #include "_tess"
0039 #include "priorityq"
0040
0041 #define DebugEvent( tess )
0042
0043 /*
0044 * Invariants for the Edge Dictionary.
0045 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
0046 * at any valid location of the sweep event
0047 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
0048 * share a common endpoint
0049 * - for each e, e->Dst has been processed, but not e->Org
0050 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
0051 * where "event" is the current sweep line event.
0052 * - no edge e has zero length
0053 *
0054 * Invariants for the Mesh (the processed portion).
0055 * - the portion of the mesh left of the sweep line is a planar graph,
0056 * ie. there is *some* way to embed it in the plane
0057 * - no processed edge has zero length
0058 * - no two processed vertices have identical coordinates
0059 * - each "inside" region is monotone, ie. can be broken into two chains
0060 * of monotonically increasing vertices according to VertLeq(v1,v2)
0061 * - a non-invariant: these chains may intersect (very slightly)
0062 *
0063 * Invariants for the Sweep.
0064 * - if none of the edges incident to the event vertex have an activeRegion
0065 * (ie. none of these edges are in the edge dictionary), then the vertex
0066 * has only right-going edges.
0067 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
0068 * by ConnectRightVertex), then it is the only right-going edge from
0069 * its associated vertex. (This says that these edges exist only
0070 * when it is necessary.)
0071 */
0072
0073 /* When we merge two edges into one, we need to compute the combined
0074 * winding of the new edge.
0075 */
0076 #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
0077 eDst->Sym->winding += eSrc->Sym->winding)
0078
0079 inline/*static*/ void static_SweepEvent( GLUtesselator *tess, GLUvertex *vEvent );
0080 inline/*static*/ void static_WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp );
0081 inline/*static*/ int static_CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp );
0082
0083 inline/*static*/ int static_EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
0084 ActiveRegion *reg2 )
0085 /*
0086 * Both edges must be directed from right to left (this is the canonical
0087 * direction for the upper edge of each region).
0088 *
0089 * The strategy is to evaluate a "t" value for each edge at the
0090 * current sweep line position, given by tess->event. The calculations
0091 * are designed to be very stable, but of course they are not perfect.
0092 *
0093 * Special case: if both edge destinations are at the sweep event,
0094 * we sort the edges by slope (they would otherwise compare equally).
0095 */
0096 {
0097 GLUvertex *event = tess->event;
0098 GLUhalfEdge *e1, *e2;
0099 GLUdouble t1, t2;
0100
0101 e1 = reg1->eUp;
0102 e2 = reg2->eUp;
0103
0104 if( e1->Dst == event ) {
0105 if( e2->Dst == event ) {
0106 /* Two edges right of the sweep line which meet at the sweep event.
0107 * Sort them by slope.
0108 */
0109 if( VertLeq( e1->Org, e2->Org )) {
0110 return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
0111 }
0112 return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
0113 }
0114 return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
0115 }
0116 if( e2->Dst == event ) {
0117 return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
0118 }
0119
0120 /* General case - compute signed distance *from* e1, e2 to event */
0121 t1 = EdgeEval( e1->Dst, event, e1->Org );
0122 t2 = EdgeEval( e2->Dst, event, e2->Org );
0123 return (t1 >= t2);
0124 }
0125
0126
0127 inline/*static*/ void static_DeleteRegion( GLUtesselator *tess, ActiveRegion *reg )
0128 {
0129 if( reg->fixUpperEdge ) {
0130 /* It was created with zero winding number, so it better be
0131 * deleted with zero winding number (ie. it better not get merged
0132 * with a real edge).
0133 */
0134 assert( reg->eUp->winding == 0 );
0135 }
0136 reg->eUp->activeRegion = NULL;
0137 dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */
0138 memFree( reg );
0139 }
0140
0141
0142 inline/*static*/ int static_FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge )
0143 /*
0144 * Replace an upper edge which needs fixing (see ConnectRightVertex).
0145 */
0146 {
0147 assert( reg->fixUpperEdge );
0148 if ( !__gl_meshDelete( reg->eUp ) ) return 0;
0149 reg->fixUpperEdge = TOOLS_GLU_FALSE;
0150 reg->eUp = newEdge;
0151 newEdge->activeRegion = reg;
0152
0153 return 1;
0154 }
0155
0156 inline/*static*/ ActiveRegion *static_TopLeftRegion( ActiveRegion *reg )
0157 {
0158 GLUvertex *org = reg->eUp->Org;
0159 GLUhalfEdge *e;
0160
0161 /* Find the region above the uppermost edge with the same origin */
0162 do {
0163 reg = RegionAbove( reg );
0164 } while( reg->eUp->Org == org );
0165
0166 /* If the edge above was a temporary edge introduced by ConnectRightVertex,
0167 * now is the time to fix it.
0168 */
0169 if( reg->fixUpperEdge ) {
0170 e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
0171 if (e == NULL) return NULL;
0172 if ( !static_FixUpperEdge( reg, e ) ) return NULL;
0173 reg = RegionAbove( reg );
0174 }
0175 return reg;
0176 }
0177
0178 inline/*static*/ ActiveRegion *static_TopRightRegion( ActiveRegion *reg )
0179 {
0180 GLUvertex *dst = reg->eUp->Dst;
0181
0182 /* Find the region above the uppermost edge with the same destination */
0183 do {
0184 reg = RegionAbove( reg );
0185 } while( reg->eUp->Dst == dst );
0186 return reg;
0187 }
0188
0189 inline/*static*/ ActiveRegion *static_AddRegionBelow( GLUtesselator *tess,
0190 ActiveRegion *regAbove,
0191 GLUhalfEdge *eNewUp )
0192 /*
0193 * Add a new active region to the sweep line, *somewhere* below "regAbove"
0194 * (according to where the new edge belongs in the sweep-line dictionary).
0195 * The upper edge of the new region will be "eNewUp".
0196 * Winding number and "inside" flag are not updated.
0197 */
0198 {
0199 ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
0200 if (regNew == NULL) longjmp(tess->env,1);
0201
0202 regNew->eUp = eNewUp;
0203 /* __gl_dictListInsertBefore */
0204 regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
0205 if (regNew->nodeUp == NULL) longjmp(tess->env,1);
0206 regNew->fixUpperEdge = TOOLS_GLU_FALSE;
0207 regNew->sentinel = TOOLS_GLU_FALSE;
0208 regNew->dirty = TOOLS_GLU_FALSE;
0209
0210 eNewUp->activeRegion = regNew;
0211 return regNew;
0212 }
0213
0214 inline/*static*/ GLUboolean static_IsWindingInside( GLUtesselator *tess, int n )
0215 {
0216 switch( tess->windingRule ) {
0217 case GLU_TESS_WINDING_ODD:
0218 return (n & 1);
0219 case GLU_TESS_WINDING_NONZERO:
0220 return (n != 0);
0221 case GLU_TESS_WINDING_POSITIVE:
0222 return (n > 0);
0223 case GLU_TESS_WINDING_NEGATIVE:
0224 return (n < 0);
0225 case GLU_TESS_WINDING_ABS_GEQ_TWO:
0226 return (n >= 2) || (n <= -2);
0227 }
0228 /*LINTED*/
0229 assert( TOOLS_GLU_FALSE );
0230 /*NOTREACHED*/
0231 return TOOLS_GLU_FALSE; /* avoid compiler complaints */
0232 }
0233
0234
0235 inline/*static*/ void static_ComputeWinding( GLUtesselator *tess, ActiveRegion *reg )
0236 {
0237 reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
0238 reg->inside = static_IsWindingInside( tess, reg->windingNumber );
0239 }
0240
0241
0242 inline/*static*/ void static_FinishRegion( GLUtesselator *tess, ActiveRegion *reg )
0243 /*
0244 * Delete a region from the sweep line. This happens when the upper
0245 * and lower chains of a region meet (at a vertex on the sweep line).
0246 * The "inside" flag is copied to the appropriate mesh face (we could
0247 * not do this before -- since the structure of the mesh is always
0248 * changing, this face may not have even existed until now).
0249 */
0250 {
0251 GLUhalfEdge *e = reg->eUp;
0252 GLUface *f = e->Lface;
0253
0254 f->inside = reg->inside;
0255 f->anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */
0256 static_DeleteRegion( tess, reg );
0257 }
0258
0259
0260 inline/*static*/ GLUhalfEdge *static_FinishLeftRegions( GLUtesselator *tess,
0261 ActiveRegion *regFirst, ActiveRegion *regLast )
0262 /*
0263 * We are given a vertex with one or more left-going edges. All affected
0264 * edges should be in the edge dictionary. Starting at regFirst->eUp,
0265 * we walk down deleting all regions where both edges have the same
0266 * origin vOrg. At the same time we copy the "inside" flag from the
0267 * active region to the face, since at this point each face will belong
0268 * to at most one region (this was not necessarily true until this point
0269 * in the sweep). The walk stops at the region above regLast; if regLast
0270 * is NULL we walk as far as possible. At the same time we relink the
0271 * mesh if necessary, so that the ordering of edges around vOrg is the
0272 * same as in the dictionary.
0273 */
0274 {
0275 ActiveRegion *reg, *regPrev;
0276 GLUhalfEdge *e, *ePrev;
0277
0278 regPrev = regFirst;
0279 ePrev = regFirst->eUp;
0280 while( regPrev != regLast ) {
0281 regPrev->fixUpperEdge = TOOLS_GLU_FALSE; /* placement was OK */
0282 reg = RegionBelow( regPrev );
0283 e = reg->eUp;
0284 if( e->Org != ePrev->Org ) {
0285 if( ! reg->fixUpperEdge ) {
0286 /* Remove the last left-going edge. Even though there are no further
0287 * edges in the dictionary with this origin, there may be further
0288 * such edges in the mesh (if we are adding left edges to a vertex
0289 * that has already been processed). Thus it is important to call
0290 * FinishRegion rather than just DeleteRegion.
0291 */
0292 static_FinishRegion( tess, regPrev );
0293 break;
0294 }
0295 /* If the edge below was a temporary edge introduced by
0296 * ConnectRightVertex, now is the time to fix it.
0297 */
0298 e = __gl_meshConnect( ePrev->Lprev, e->Sym );
0299 if (e == NULL) longjmp(tess->env,1);
0300 if ( !static_FixUpperEdge( reg, e ) ) longjmp(tess->env,1);
0301 }
0302
0303 /* Relink edges so that ePrev->Onext == e */
0304 if( ePrev->Onext != e ) {
0305 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
0306 if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1);
0307 }
0308 static_FinishRegion( tess, regPrev ); /* may change reg->eUp */
0309 ePrev = reg->eUp;
0310 regPrev = reg;
0311 }
0312 return ePrev;
0313 }
0314
0315
0316 inline/*static*/ void static_AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp,
0317 GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft,
0318 GLUboolean cleanUp )
0319 /*
0320 * Purpose: insert right-going edges into the edge dictionary, and update
0321 * winding numbers and mesh connectivity appropriately. All right-going
0322 * edges share a common origin vOrg. Edges are inserted CCW starting at
0323 * eFirst; the last edge inserted is eLast->Oprev. If vOrg has any
0324 * left-going edges already processed, then eTopLeft must be the edge
0325 * such that an imaginary upward vertical segment from vOrg would be
0326 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
0327 * should be NULL.
0328 */
0329 {
0330 ActiveRegion *reg, *regPrev;
0331 GLUhalfEdge *e, *ePrev;
0332 int firstTime = TOOLS_GLU_TRUE;
0333
0334 /* Insert the new right-going edges in the dictionary */
0335 e = eFirst;
0336 do {
0337 assert( VertLeq( e->Org, e->Dst ));
0338 static_AddRegionBelow( tess, regUp, e->Sym );
0339 e = e->Onext;
0340 } while ( e != eLast );
0341
0342 /* Walk *all* right-going edges from e->Org, in the dictionary order,
0343 * updating the winding numbers of each region, and re-linking the mesh
0344 * edges to match the dictionary ordering (if necessary).
0345 */
0346 if( eTopLeft == NULL ) {
0347 eTopLeft = RegionBelow( regUp )->eUp->Rprev;
0348 }
0349 regPrev = regUp;
0350 ePrev = eTopLeft;
0351 for( ;; ) {
0352 reg = RegionBelow( regPrev );
0353 e = reg->eUp->Sym;
0354 if( e->Org != ePrev->Org ) break;
0355
0356 if( e->Onext != ePrev ) {
0357 /* Unlink e from its current position, and relink below ePrev */
0358 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
0359 if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1);
0360 }
0361 /* Compute the winding number and "inside" flag for the new regions */
0362 reg->windingNumber = regPrev->windingNumber - e->winding;
0363 reg->inside = static_IsWindingInside( tess, reg->windingNumber );
0364
0365 /* Check for two outgoing edges with same slope -- process these
0366 * before any intersection tests (see example in __gl_computeInterior).
0367 */
0368 regPrev->dirty = TOOLS_GLU_TRUE;
0369 if( ! firstTime && static_CheckForRightSplice( tess, regPrev )) {
0370 AddWinding( e, ePrev );
0371 static_DeleteRegion( tess, regPrev );
0372 if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1);
0373 }
0374 firstTime = TOOLS_GLU_FALSE;
0375 regPrev = reg;
0376 ePrev = e;
0377 }
0378 regPrev->dirty = TOOLS_GLU_TRUE;
0379 assert( regPrev->windingNumber - e->winding == reg->windingNumber );
0380
0381 if( cleanUp ) {
0382 /* Check for intersections between newly adjacent edges. */
0383 static_WalkDirtyRegions( tess, regPrev );
0384 }
0385 }
0386
0387
0388 inline/*static*/ void static_CallCombine( GLUtesselator *tess, GLUvertex *isect,
0389 void *data[4], GLUfloat weights[4], int needed )
0390 {
0391 GLUdouble coords[3];
0392
0393 /* Copy coord data in case the callback changes it. */
0394 coords[0] = isect->coords[0];
0395 coords[1] = isect->coords[1];
0396 coords[2] = isect->coords[2];
0397
0398 isect->data = NULL;
0399 CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data );
0400 if( isect->data == NULL ) {
0401 if( ! needed ) {
0402 isect->data = data[0];
0403 } else if( ! tess->fatalError ) {
0404 /* The only way fatal error is when two edges are found to intersect,
0405 * but the user has not provided the callback necessary to handle
0406 * generated intersection points.
0407 */
0408 CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK );
0409 tess->fatalError = TOOLS_GLU_TRUE;
0410 }
0411 }
0412 }
0413
0414 inline/*static*/ void static_SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1,
0415 GLUhalfEdge *e2 )
0416 /*
0417 * Two vertices with idential coordinates are combined into one.
0418 * e1->Org is kept, while e2->Org is discarded.
0419 */
0420 {
0421 void *data[4] = { NULL, NULL, NULL, NULL };
0422 GLUfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 };
0423
0424 data[0] = e1->Org->data;
0425 data[1] = e2->Org->data;
0426 static_CallCombine( tess, e1->Org, data, weights, TOOLS_GLU_FALSE );
0427 if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1);
0428 }
0429
0430 inline/*static*/ void static_VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst,
0431 GLUfloat *weights )
0432 /*
0433 * Find some weights which describe how the intersection vertex is
0434 * a linear combination of "org" and "dest". Each of the two edges
0435 * which generated "isect" is allocated 50% of the weight; each edge
0436 * splits the weight between its org and dst according to the
0437 * relative distance to "isect".
0438 */
0439 {
0440 GLUdouble t1 = VertL1dist( org, isect );
0441 GLUdouble t2 = VertL1dist( dst, isect );
0442
0443 weights[0] = float(0.5 * t2 / (t1 + t2));
0444 weights[1] = float(0.5 * t1 / (t1 + t2));
0445 isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
0446 isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
0447 isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
0448 }
0449
0450
0451 inline/*static*/ void static_GetIntersectData( GLUtesselator *tess, GLUvertex *isect,
0452 GLUvertex *orgUp, GLUvertex *dstUp,
0453 GLUvertex *orgLo, GLUvertex *dstLo )
0454 /*
0455 * We've computed a new intersection point, now we need a "data" pointer
0456 * from the user so that we can refer to this new vertex in the
0457 * rendering callbacks.
0458 */
0459 {
0460 void *data[4];
0461 GLUfloat weights[4];
0462
0463 data[0] = orgUp->data;
0464 data[1] = dstUp->data;
0465 data[2] = orgLo->data;
0466 data[3] = dstLo->data;
0467
0468 isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
0469 static_VertexWeights( isect, orgUp, dstUp, &weights[0] );
0470 static_VertexWeights( isect, orgLo, dstLo, &weights[2] );
0471
0472 static_CallCombine( tess, isect, data, weights, TOOLS_GLU_TRUE );
0473 }
0474
0475 inline/*static*/ int static_CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
0476 /*
0477 * Check the upper and lower edge of "regUp", to make sure that the
0478 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
0479 * origin is leftmost).
0480 *
0481 * The main purpose is to splice right-going edges with the same
0482 * dest vertex and nearly identical slopes (ie. we can't distinguish
0483 * the slopes numerically). However the splicing can also help us
0484 * to recover from numerical errors. For example, suppose at one
0485 * point we checked eUp and eLo, and decided that eUp->Org is barely
0486 * above eLo. Then later, we split eLo into two edges (eg. from
0487 * a splice operation like this one). This can change the result of
0488 * our test so that now eUp->Org is incident to eLo, or barely below it.
0489 * We must correct this condition to maintain the dictionary invariants.
0490 *
0491 * One possibility is to check these edges for intersection again
0492 * (ie. CheckForIntersect). This is what we do if possible. However
0493 * CheckForIntersect requires that tess->event lies between eUp and eLo,
0494 * so that it has something to fall back on when the intersection
0495 * calculation gives us an unusable answer. So, for those cases where
0496 * we can't check for intersection, this routine fixes the problem
0497 * by just splicing the offending vertex into the other edge.
0498 * This is a guaranteed solution, no matter how degenerate things get.
0499 * Basically this is a combinatorial solution to a numerical problem.
0500 */
0501 {
0502 ActiveRegion *regLo = RegionBelow(regUp);
0503 GLUhalfEdge *eUp = regUp->eUp;
0504 GLUhalfEdge *eLo = regLo->eUp;
0505
0506 if( VertLeq( eUp->Org, eLo->Org )) {
0507 if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return TOOLS_GLU_FALSE;
0508
0509 /* eUp->Org appears to be below eLo */
0510 if( ! VertEq( eUp->Org, eLo->Org )) {
0511 /* Splice eUp->Org into eLo */
0512 if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
0513 if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
0514 regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE;
0515
0516 } else if( eUp->Org != eLo->Org ) {
0517 /* merge the two vertices, discarding eUp->Org */
0518 pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
0519 static_SpliceMergeVertices( tess, eLo->Oprev, eUp );
0520 }
0521 } else {
0522 if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return TOOLS_GLU_FALSE;
0523
0524 /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
0525 RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE;
0526 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
0527 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
0528 }
0529 return TOOLS_GLU_TRUE;
0530 }
0531
0532 inline/*static*/ int static_CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
0533 /*
0534 * Check the upper and lower edge of "regUp", to make sure that the
0535 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
0536 * destination is rightmost).
0537 *
0538 * Theoretically, this should always be true. However, splitting an edge
0539 * into two pieces can change the results of previous tests. For example,
0540 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
0541 * is barely above eLo. Then later, we split eLo into two edges (eg. from
0542 * a splice operation like this one). This can change the result of
0543 * the test so that now eUp->Dst is incident to eLo, or barely below it.
0544 * We must correct this condition to maintain the dictionary invariants
0545 * (otherwise new edges might get inserted in the wrong place in the
0546 * dictionary, and bad stuff will happen).
0547 *
0548 * We fix the problem by just splicing the offending vertex into the
0549 * other edge.
0550 */
0551 {
0552 ActiveRegion *regLo = RegionBelow(regUp);
0553 GLUhalfEdge *eUp = regUp->eUp;
0554 GLUhalfEdge *eLo = regLo->eUp;
0555 GLUhalfEdge *e;
0556
0557 assert( ! VertEq( eUp->Dst, eLo->Dst ));
0558
0559 if( VertLeq( eUp->Dst, eLo->Dst )) {
0560 if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return TOOLS_GLU_FALSE;
0561
0562 /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
0563 RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE;
0564 e = __gl_meshSplitEdge( eUp );
0565 if (e == NULL) longjmp(tess->env,1);
0566 if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
0567 e->Lface->inside = regUp->inside;
0568 } else {
0569 if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return TOOLS_GLU_FALSE;
0570
0571 /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
0572 regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE;
0573 e = __gl_meshSplitEdge( eLo );
0574 if (e == NULL) longjmp(tess->env,1);
0575 if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
0576 e->Rface->inside = regUp->inside;
0577 }
0578 return TOOLS_GLU_TRUE;
0579 }
0580
0581
0582 inline/*static*/ int static_CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
0583 /*
0584 * Check the upper and lower edges of the given region to see if
0585 * they intersect. If so, create the intersection and add it
0586 * to the data structures.
0587 *
0588 * Returns TOOLS_GLU_TRUE if adding the new intersection resulted in a recursive
0589 * call to AddRightEdges(); in this case all "dirty" regions have been
0590 * checked for intersections, and possibly regUp has been deleted.
0591 */
0592 {
0593 ActiveRegion *regLo = RegionBelow(regUp);
0594 GLUhalfEdge *eUp = regUp->eUp;
0595 GLUhalfEdge *eLo = regLo->eUp;
0596 GLUvertex *orgUp = eUp->Org;
0597 GLUvertex *orgLo = eLo->Org;
0598 GLUvertex *dstUp = eUp->Dst;
0599 GLUvertex *dstLo = eLo->Dst;
0600 GLUdouble tMinUp, tMaxLo;
0601 GLUvertex isect, *orgMin;
0602 GLUhalfEdge *e;
0603
0604 assert( ! VertEq( dstLo, dstUp ));
0605 assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
0606 assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
0607 assert( orgUp != tess->event && orgLo != tess->event );
0608 assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );
0609
0610 if( orgUp == orgLo ) return TOOLS_GLU_FALSE; /* right endpoints are the same */
0611
0612 tMinUp = GLU_MIN( orgUp->t, dstUp->t );
0613 tMaxLo = GLU_MAX( orgLo->t, dstLo->t );
0614 if( tMinUp > tMaxLo ) return TOOLS_GLU_FALSE; /* t ranges do not overlap */
0615
0616 if( VertLeq( orgUp, orgLo )) {
0617 if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return TOOLS_GLU_FALSE;
0618 } else {
0619 if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return TOOLS_GLU_FALSE;
0620 }
0621
0622 /* At this point the edges intersect, at least marginally */
0623 DebugEvent( tess );
0624
0625 __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
0626 /* The following properties are guaranteed: */
0627 assert( GLU_MIN( orgUp->t, dstUp->t ) <= isect.t );
0628 assert( isect.t <= GLU_MAX( orgLo->t, dstLo->t ));
0629 assert( GLU_MIN( dstLo->s, dstUp->s ) <= isect.s );
0630 assert( isect.s <= GLU_MAX( orgLo->s, orgUp->s ));
0631
0632 if( VertLeq( &isect, tess->event )) {
0633 /* The intersection point lies slightly to the left of the sweep line,
0634 * so move it until it''s slightly to the right of the sweep line.
0635 * (If we had perfect numerical precision, this would never happen
0636 * in the first place). The easiest and safest thing to do is
0637 * replace the intersection by tess->event.
0638 */
0639 isect.s = tess->event->s;
0640 isect.t = tess->event->t;
0641 }
0642 /* Similarly, if the computed intersection lies to the right of the
0643 * rightmost origin (which should rarely happen), it can cause
0644 * unbelievable inefficiency on sufficiently degenerate inputs.
0645 * (If you have the test program, try running test54.d with the
0646 * "X zoom" option turned on).
0647 */
0648 orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
0649 if( VertLeq( orgMin, &isect )) {
0650 isect.s = orgMin->s;
0651 isect.t = orgMin->t;
0652 }
0653
0654 if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
0655 /* Easy case -- intersection at one of the right endpoints */
0656 (void) static_CheckForRightSplice( tess, regUp );
0657 return TOOLS_GLU_FALSE;
0658 }
0659
0660 if( (! VertEq( dstUp, tess->event )
0661 && EdgeSign( dstUp, tess->event, &isect ) >= 0)
0662 || (! VertEq( dstLo, tess->event )
0663 && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
0664 {
0665 /* Very unusual -- the new upper or lower edge would pass on the
0666 * wrong side of the sweep event, or through it. This can happen
0667 * due to very small numerical errors in the intersection calculation.
0668 */
0669 if( dstLo == tess->event ) {
0670 /* Splice dstLo into eUp, and process the new region(s) */
0671 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
0672 if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
0673 regUp = static_TopLeftRegion( regUp );
0674 if (regUp == NULL) longjmp(tess->env,1);
0675 eUp = RegionBelow(regUp)->eUp;
0676 static_FinishLeftRegions( tess, RegionBelow(regUp), regLo );
0677 static_AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TOOLS_GLU_TRUE );
0678 return TOOLS_GLU_TRUE;
0679 }
0680 if( dstUp == tess->event ) {
0681 /* Splice dstUp into eLo, and process the new region(s) */
0682 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
0683 if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
0684 regLo = regUp;
0685 regUp = static_TopRightRegion( regUp );
0686 e = RegionBelow(regUp)->eUp->Rprev;
0687 regLo->eUp = eLo->Oprev;
0688 eLo = static_FinishLeftRegions( tess, regLo, NULL );
0689 static_AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TOOLS_GLU_TRUE );
0690 return TOOLS_GLU_TRUE;
0691 }
0692 /* Special case: called from ConnectRightVertex. If either
0693 * edge passes on the wrong side of tess->event, split it
0694 * (and wait for ConnectRightVertex to splice it appropriately).
0695 */
0696 if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
0697 RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE;
0698 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
0699 eUp->Org->s = tess->event->s;
0700 eUp->Org->t = tess->event->t;
0701 }
0702 if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
0703 regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE;
0704 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
0705 eLo->Org->s = tess->event->s;
0706 eLo->Org->t = tess->event->t;
0707 }
0708 /* leave the rest for ConnectRightVertex */
0709 return TOOLS_GLU_FALSE;
0710 }
0711
0712 /* General case -- split both edges, splice into new vertex.
0713 * When we do the splice operation, the order of the arguments is
0714 * arbitrary as far as correctness goes. However, when the operation
0715 * creates a new face, the work done is proportional to the size of
0716 * the new face. We expect the faces in the processed part of
0717 * the mesh (ie. eUp->Lface) to be smaller than the faces in the
0718 * unprocessed original contours (which will be eLo->Oprev->Lface).
0719 */
0720 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
0721 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
0722 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
0723 eUp->Org->s = isect.s;
0724 eUp->Org->t = isect.t;
0725 eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */
0726 if (eUp->Org->pqHandle == LONG_MAX) {
0727 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */
0728 tess->pq = NULL;
0729 longjmp(tess->env,1);
0730 }
0731 static_GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
0732 RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE;
0733 return TOOLS_GLU_FALSE;
0734 }
0735
0736 inline/*static*/ void static_WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp )
0737 /*
0738 * When the upper or lower edge of any region changes, the region is
0739 * marked "dirty". This routine walks through all the dirty regions
0740 * and makes sure that the dictionary invariants are satisfied
0741 * (see the comments at the beginning of this file). Of course
0742 * new dirty regions can be created as we make changes to restore
0743 * the invariants.
0744 */
0745 {
0746 ActiveRegion *regLo = RegionBelow(regUp);
0747 GLUhalfEdge *eUp, *eLo;
0748
0749 for( ;; ) {
0750 /* Find the lowest dirty region (we walk from the bottom up). */
0751 while( regLo->dirty ) {
0752 regUp = regLo;
0753 regLo = RegionBelow(regLo);
0754 }
0755 if( ! regUp->dirty ) {
0756 regLo = regUp;
0757 regUp = RegionAbove( regUp );
0758 if( regUp == NULL || ! regUp->dirty ) {
0759 /* We've walked all the dirty regions */
0760 return;
0761 }
0762 }
0763 regUp->dirty = TOOLS_GLU_FALSE;
0764 eUp = regUp->eUp;
0765 eLo = regLo->eUp;
0766
0767 if( eUp->Dst != eLo->Dst ) {
0768 /* Check that the edge ordering is obeyed at the Dst vertices. */
0769 if( static_CheckForLeftSplice( tess, regUp )) {
0770
0771 /* If the upper or lower edge was marked fixUpperEdge, then
0772 * we no longer need it (since these edges are needed only for
0773 * vertices which otherwise have no right-going edges).
0774 */
0775 if( regLo->fixUpperEdge ) {
0776 static_DeleteRegion( tess, regLo );
0777 if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1);
0778 regLo = RegionBelow( regUp );
0779 eLo = regLo->eUp;
0780 } else if( regUp->fixUpperEdge ) {
0781 static_DeleteRegion( tess, regUp );
0782 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
0783 regUp = RegionAbove( regLo );
0784 eUp = regUp->eUp;
0785 }
0786 }
0787 }
0788 if( eUp->Org != eLo->Org ) {
0789 if( eUp->Dst != eLo->Dst
0790 && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
0791 && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
0792 {
0793 /* When all else fails in CheckForIntersect(), it uses tess->event
0794 * as the intersection location. To make this possible, it requires
0795 * that tess->event lie between the upper and lower edges, and also
0796 * that neither of these is marked fixUpperEdge (since in the worst
0797 * case it might splice one of these edges into tess->event, and
0798 * violate the invariant that fixable edges are the only right-going
0799 * edge from their associated vertex).
0800 */
0801 if( static_CheckForIntersect( tess, regUp )) {
0802 /* WalkDirtyRegions() was called recursively; we're done */
0803 return;
0804 }
0805 } else {
0806 /* Even though we can't use CheckForIntersect(), the Org vertices
0807 * may violate the dictionary edge ordering. Check and correct this.
0808 */
0809 (void) static_CheckForRightSplice( tess, regUp );
0810 }
0811 }
0812 if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
0813 /* A degenerate loop consisting of only two edges -- delete it. */
0814 AddWinding( eLo, eUp );
0815 static_DeleteRegion( tess, regUp );
0816 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
0817 regUp = RegionAbove( regLo );
0818 }
0819 }
0820 }
0821
0822
0823 inline/*static*/ void static_ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp,
0824 GLUhalfEdge *eBottomLeft )
0825 /*
0826 * Purpose: connect a "right" vertex vEvent (one where all edges go left)
0827 * to the unprocessed portion of the mesh. Since there are no right-going
0828 * edges, two regions (one above vEvent and one below) are being merged
0829 * into one. "regUp" is the upper of these two regions.
0830 *
0831 * There are two reasons for doing this (adding a right-going edge):
0832 * - if the two regions being merged are "inside", we must add an edge
0833 * to keep them separated (the combined region would not be monotone).
0834 * - in any case, we must leave some record of vEvent in the dictionary,
0835 * so that we can merge vEvent with features that we have not seen yet.
0836 * For example, maybe there is a vertical edge which passes just to
0837 * the right of vEvent; we would like to splice vEvent into this edge.
0838 *
0839 * However, we don't want to connect vEvent to just any vertex. We don''t
0840 * want the new edge to cross any other edges; otherwise we will create
0841 * intersection vertices even when the input data had no self-intersections.
0842 * (This is a bad thing; if the user's input data has no intersections,
0843 * we don't want to generate any false intersections ourselves.)
0844 *
0845 * Our eventual goal is to connect vEvent to the leftmost unprocessed
0846 * vertex of the combined region (the union of regUp and regLo).
0847 * But because of unseen vertices with all right-going edges, and also
0848 * new vertices which may be created by edge intersections, we don''t
0849 * know where that leftmost unprocessed vertex is. In the meantime, we
0850 * connect vEvent to the closest vertex of either chain, and mark the region
0851 * as "fixUpperEdge". This flag says to delete and reconnect this edge
0852 * to the next processed vertex on the boundary of the combined region.
0853 * Quite possibly the vertex we connected to will turn out to be the
0854 * closest one, in which case we won''t need to make any changes.
0855 */
0856 {
0857 GLUhalfEdge *eNew;
0858 GLUhalfEdge *eTopLeft = eBottomLeft->Onext;
0859 ActiveRegion *regLo = RegionBelow(regUp);
0860 GLUhalfEdge *eUp = regUp->eUp;
0861 GLUhalfEdge *eLo = regLo->eUp;
0862 int degenerate = TOOLS_GLU_FALSE;
0863
0864 if( eUp->Dst != eLo->Dst ) {
0865 (void) static_CheckForIntersect( tess, regUp );
0866 }
0867
0868 /* Possible new degeneracies: upper or lower edge of regUp may pass
0869 * through vEvent, or may coincide with new intersection vertex
0870 */
0871 if( VertEq( eUp->Org, tess->event )) {
0872 if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
0873 regUp = static_TopLeftRegion( regUp );
0874 if (regUp == NULL) longjmp(tess->env,1);
0875 eTopLeft = RegionBelow( regUp )->eUp;
0876 static_FinishLeftRegions( tess, RegionBelow(regUp), regLo );
0877 degenerate = TOOLS_GLU_TRUE;
0878 }
0879 if( VertEq( eLo->Org, tess->event )) {
0880 if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
0881 eBottomLeft = static_FinishLeftRegions( tess, regLo, NULL );
0882 degenerate = TOOLS_GLU_TRUE;
0883 }
0884 if( degenerate ) {
0885 static_AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TOOLS_GLU_TRUE );
0886 return;
0887 }
0888
0889 /* Non-degenerate situation -- need to add a temporary, fixable edge.
0890 * Connect to the closer of eLo->Org, eUp->Org.
0891 */
0892 if( VertLeq( eLo->Org, eUp->Org )) {
0893 eNew = eLo->Oprev;
0894 } else {
0895 eNew = eUp;
0896 }
0897 eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew );
0898 if (eNew == NULL) longjmp(tess->env,1);
0899
0900 /* Prevent cleanup, otherwise eNew might disappear before we've even
0901 * had a chance to mark it as a temporary edge.
0902 */
0903 static_AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, TOOLS_GLU_FALSE );
0904 eNew->Sym->activeRegion->fixUpperEdge = TOOLS_GLU_TRUE;
0905 static_WalkDirtyRegions( tess, regUp );
0906 }
0907
0908 /* Because vertices at exactly the same location are merged together
0909 * before we process the sweep event, some degenerate cases can't occur.
0910 * However if someone eventually makes the modifications required to
0911 * merge features which are close together, the cases below marked
0912 * TOLERANCE_NONZERO will be useful. They were debugged before the
0913 * code to merge identical vertices in the main loop was added.
0914 */
0915 //#define TOLERANCE_NONZERO TOOLS_GLU_FALSE
0916
0917 inline/*static*/ void static_ConnectLeftDegenerate( GLUtesselator *tess,
0918 ActiveRegion *regUp, GLUvertex *vEvent )
0919 /*
0920 * The event vertex lies exacty on an already-processed edge or vertex.
0921 * Adding the new vertex involves splicing it into the already-processed
0922 * part of the mesh.
0923 */
0924 {
0925 GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
0926 ActiveRegion *reg;
0927
0928 e = regUp->eUp;
0929 if( VertEq( e->Org, vEvent )) {
0930 /* e->Org is an unprocessed vertex - just combine them, and wait
0931 * for e->Org to be pulled from the queue
0932 */
0933 assert( /*TOLERANCE_NONZERO*/ TOOLS_GLU_FALSE );
0934 static_SpliceMergeVertices( tess, e, vEvent->anEdge );
0935 return;
0936 }
0937
0938 if( ! VertEq( e->Dst, vEvent )) {
0939 /* General case -- splice vEvent into edge e which passes through it */
0940 if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
0941 if( regUp->fixUpperEdge ) {
0942 /* This edge was fixable -- delete unused portion of original edge */
0943 if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
0944 regUp->fixUpperEdge = TOOLS_GLU_FALSE;
0945 }
0946 if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
0947 static_SweepEvent( tess, vEvent ); /* recurse */
0948 return;
0949 }
0950
0951 /* vEvent coincides with e->Dst, which has already been processed.
0952 * Splice in the additional right-going edges.
0953 */
0954 assert( /*TOLERANCE_NONZERO*/ TOOLS_GLU_FALSE );
0955 regUp = static_TopRightRegion( regUp );
0956 reg = RegionBelow( regUp );
0957 eTopRight = reg->eUp->Sym;
0958 eTopLeft = eLast = eTopRight->Onext;
0959 if( reg->fixUpperEdge ) {
0960 /* Here e->Dst has only a single fixable edge going right.
0961 * We can delete it since now we have some real right-going edges.
0962 */
0963 assert( eTopLeft != eTopRight ); /* there are some left edges too */
0964 static_DeleteRegion( tess, reg );
0965 if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
0966 eTopRight = eTopLeft->Oprev;
0967 }
0968 if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
0969 if( ! EdgeGoesLeft( eTopLeft )) {
0970 /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
0971 eTopLeft = NULL;
0972 }
0973 static_AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TOOLS_GLU_TRUE );
0974 }
0975
0976
0977 inline/*static*/ void static_ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent )
0978 /*
0979 * Purpose: connect a "left" vertex (one where both edges go right)
0980 * to the processed portion of the mesh. Let R be the active region
0981 * containing vEvent, and let U and L be the upper and lower edge
0982 * chains of R. There are two possibilities:
0983 *
0984 * - the normal case: split R into two regions, by connecting vEvent to
0985 * the rightmost vertex of U or L lying to the left of the sweep line
0986 *
0987 * - the degenerate case: if vEvent is close enough to U or L, we
0988 * merge vEvent into that edge chain. The subcases are:
0989 * - merging with the rightmost vertex of U or L
0990 * - merging with the active edge of U or L
0991 * - merging with an already-processed portion of U or L
0992 */
0993 {
0994 ActiveRegion *regUp, *regLo, *reg;
0995 GLUhalfEdge *eUp, *eLo, *eNew;
0996 ActiveRegion tmp;
0997
0998 /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
0999
1000 /* Get a pointer to the active region containing vEvent */
1001 tmp.eUp = vEvent->anEdge->Sym;
1002 /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
1003 regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
1004 regLo = RegionBelow( regUp );
1005 eUp = regUp->eUp;
1006 eLo = regLo->eUp;
1007
1008 /* Try merging with U or L first */
1009 if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
1010 static_ConnectLeftDegenerate( tess, regUp, vEvent );
1011 return;
1012 }
1013
1014 /* Connect vEvent to rightmost processed vertex of either chain.
1015 * e->Dst is the vertex that we will connect to vEvent.
1016 */
1017 reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;
1018
1019 if( regUp->inside || reg->fixUpperEdge) {
1020 if( reg == regUp ) {
1021 eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext );
1022 if (eNew == NULL) longjmp(tess->env,1);
1023 } else {
1024 GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge);
1025 if (tempHalfEdge == NULL) longjmp(tess->env,1);
1026
1027 eNew = tempHalfEdge->Sym;
1028 }
1029 if( reg->fixUpperEdge ) {
1030 if ( !static_FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1);
1031 } else {
1032 static_ComputeWinding( tess, static_AddRegionBelow( tess, regUp, eNew ));
1033 }
1034 static_SweepEvent( tess, vEvent );
1035 } else {
1036 /* The new vertex is in a region which does not belong to the polygon.
1037 * We don''t need to connect this vertex to the rest of the mesh.
1038 */
1039 static_AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TOOLS_GLU_TRUE );
1040 }
1041 }
1042
1043
1044 inline/*static*/ void static_SweepEvent( GLUtesselator *tess, GLUvertex *vEvent )
1045 /*
1046 * Does everything necessary when the sweep line crosses a vertex.
1047 * Updates the mesh and the edge dictionary.
1048 */
1049 {
1050 ActiveRegion *regUp, *reg;
1051 GLUhalfEdge *e, *eTopLeft, *eBottomLeft;
1052
1053 tess->event = vEvent; /* for access in EdgeLeq() */
1054 DebugEvent( tess );
1055
1056 /* Check if this vertex is the right endpoint of an edge that is
1057 * already in the dictionary. In this case we don't need to waste
1058 * time searching for the location to insert new edges.
1059 */
1060 e = vEvent->anEdge;
1061 while( e->activeRegion == NULL ) {
1062 e = e->Onext;
1063 if( e == vEvent->anEdge ) {
1064 /* All edges go right -- not incident to any processed edges */
1065 static_ConnectLeftVertex( tess, vEvent );
1066 return;
1067 }
1068 }
1069
1070 /* Processing consists of two phases: first we "finish" all the
1071 * active regions where both the upper and lower edges terminate
1072 * at vEvent (ie. vEvent is closing off these regions).
1073 * We mark these faces "inside" or "outside" the polygon according
1074 * to their winding number, and delete the edges from the dictionary.
1075 * This takes care of all the left-going edges from vEvent.
1076 */
1077 regUp = static_TopLeftRegion( e->activeRegion );
1078 if (regUp == NULL) longjmp(tess->env,1);
1079 reg = RegionBelow( regUp );
1080 eTopLeft = reg->eUp;
1081 eBottomLeft = static_FinishLeftRegions( tess, reg, NULL );
1082
1083 /* Next we process all the right-going edges from vEvent. This
1084 * involves adding the edges to the dictionary, and creating the
1085 * associated "active regions" which record information about the
1086 * regions between adjacent dictionary edges.
1087 */
1088 if( eBottomLeft->Onext == eTopLeft ) {
1089 /* No right-going edges -- add a temporary "fixable" edge */
1090 static_ConnectRightVertex( tess, regUp, eBottomLeft );
1091 } else {
1092 static_AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TOOLS_GLU_TRUE );
1093 }
1094 }
1095
1096
1097 /* Make the sentinel coordinates big enough that they will never be
1098 * merged with real input features. (Even with the largest possible
1099 * input contour and the maximum tolerance of 1.0, no merging will be
1100 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
1101 */
1102 //#define SENTINEL_COORD (4 * GLU_TESS_MAX_COORD)
1103 inline GLUdouble SENTINEL_COORD() {
1104 static const GLUdouble s_value = 4 * GLU_TESS_MAX_COORD;
1105 return s_value;
1106 }
1107
1108 inline/*static*/ void static_AddSentinel( GLUtesselator *tess, GLUdouble t )
1109 /*
1110 * We add two sentinel edges above and below all other edges,
1111 * to avoid special cases at the top and bottom.
1112 */
1113 {
1114 GLUhalfEdge *e;
1115 ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
1116 if (reg == NULL) longjmp(tess->env,1);
1117
1118 e = __gl_meshMakeEdge( tess->mesh );
1119 if (e == NULL) longjmp(tess->env,1);
1120
1121 e->Org->s = SENTINEL_COORD();
1122 e->Org->t = t;
1123 e->Dst->s = -SENTINEL_COORD();
1124 e->Dst->t = t;
1125 tess->event = e->Dst; /* initialize it */
1126
1127 reg->eUp = e;
1128 reg->windingNumber = 0;
1129 reg->inside = TOOLS_GLU_FALSE;
1130 reg->fixUpperEdge = TOOLS_GLU_FALSE;
1131 reg->sentinel = TOOLS_GLU_TRUE;
1132 reg->dirty = TOOLS_GLU_FALSE;
1133 reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */
1134 if (reg->nodeUp == NULL) longjmp(tess->env,1);
1135 }
1136
1137
1138 inline/*static*/ void static_InitEdgeDict( GLUtesselator *tess )
1139 /*
1140 * We maintain an ordering of edge intersections with the sweep line.
1141 * This order is maintained in a dynamic dictionary.
1142 */
1143 {
1144 /* __gl_dictListNewDict */
1145 tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) static_EdgeLeq );
1146 if (tess->dict == NULL) longjmp(tess->env,1);
1147
1148 static_AddSentinel( tess, -SENTINEL_COORD() );
1149 static_AddSentinel( tess, SENTINEL_COORD() );
1150 }
1151
1152
1153 inline/*static*/ void static_DoneEdgeDict( GLUtesselator *tess )
1154 {
1155 ActiveRegion *reg;
1156 #ifndef NDEBUG
1157 int fixedEdges = 0;
1158 #endif
1159
1160 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1161 while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
1162 /*
1163 * At the end of all processing, the dictionary should contain
1164 * only the two sentinel edges, plus at most one "fixable" edge
1165 * created by ConnectRightVertex().
1166 */
1167 if( ! reg->sentinel ) {
1168 assert( reg->fixUpperEdge );
1169 //G.Barrand : fix a Coverity diagnostic : begin :
1170 //assert( ++fixedEdges == 1 );
1171 #ifndef NDEBUG
1172 fixedEdges++;
1173 #endif
1174 assert( fixedEdges == 1 );
1175 //G.Barrand : end.
1176 }
1177 assert( reg->windingNumber == 0 );
1178 static_DeleteRegion( tess, reg );
1179 /* __gl_meshDelete( reg->eUp );*/
1180 }
1181 dictDeleteDict( tess->dict ); /* __gl_dictListDeleteDict */
1182 }
1183
1184
1185 inline/*static*/ void static_RemoveDegenerateEdges( GLUtesselator *tess )
1186 /*
1187 * Remove zero-length edges, and contours with fewer than 3 vertices.
1188 */
1189 {
1190 GLUhalfEdge *e, *eNext, *eLnext;
1191 GLUhalfEdge *eHead = &tess->mesh->eHead;
1192
1193 /*LINTED*/
1194 for( e = eHead->next; e != eHead; e = eNext ) {
1195 eNext = e->next;
1196 eLnext = e->Lnext;
1197
1198 if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
1199 /* Zero-length edge, contour has at least 3 edges */
1200
1201 static_SpliceMergeVertices( tess, eLnext, e ); /* deletes e->Org */
1202 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */
1203 e = eLnext;
1204 eLnext = e->Lnext;
1205 }
1206 if( eLnext->Lnext == e ) {
1207 /* Degenerate contour (one or two edges) */
1208
1209 if( eLnext != e ) {
1210 if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
1211 if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1);
1212 }
1213 if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
1214 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1);
1215 }
1216 }
1217 }
1218
1219 inline/*static*/ int static_InitPriorityQ( GLUtesselator *tess )
1220 /*
1221 * Insert all vertices into the priority queue which determines the
1222 * order in which vertices cross the sweep line.
1223 */
1224 {
1225 PriorityQ *pq;
1226 GLUvertex *v, *vHead;
1227
1228 /* __gl_pqSortNewPriorityQ */
1229 pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq );
1230 if (pq == NULL) return 0;
1231
1232 vHead = &tess->mesh->vHead;
1233 for( v = vHead->next; v != vHead; v = v->next ) {
1234 v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */
1235 if (v->pqHandle == LONG_MAX) break;
1236 }
1237 if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */
1238 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */
1239 tess->pq = NULL;
1240 return 0;
1241 }
1242
1243 return 1;
1244 }
1245
1246
1247 inline/*static*/ void static_DonePriorityQ( GLUtesselator *tess )
1248 {
1249 pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */
1250 }
1251
1252
1253 inline/*static*/ int static_RemoveDegenerateFaces( GLUmesh *mesh )
1254 /*
1255 * Delete any degenerate faces with only two edges. WalkDirtyRegions()
1256 * will catch almost all of these, but it won't catch degenerate faces
1257 * produced by splice operations on already-processed edges.
1258 * The two places this can happen are in FinishLeftRegions(), when
1259 * we splice in a "temporary" edge produced by ConnectRightVertex(),
1260 * and in CheckForLeftSplice(), where we splice already-processed
1261 * edges to ensure that our dictionary invariants are not violated
1262 * by numerical errors.
1263 *
1264 * In both these cases it is *very* dangerous to delete the offending
1265 * edge at the time, since one of the routines further up the stack
1266 * will sometimes be keeping a pointer to that edge.
1267 */
1268 {
1269 GLUface *f, *fNext;
1270 GLUhalfEdge *e;
1271
1272 /*LINTED*/
1273 for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
1274 fNext = f->next;
1275 e = f->anEdge;
1276 assert( e->Lnext != e );
1277
1278 if( e->Lnext->Lnext == e ) {
1279 /* A face with only two edges */
1280 AddWinding( e->Onext, e );
1281 if ( !__gl_meshDelete( e ) ) return 0;
1282 }
1283 }
1284 return 1;
1285 }
1286
1287 inline int __gl_computeInterior( GLUtesselator *tess )
1288 /*
1289 * __gl_computeInterior( tess ) computes the planar arrangement specified
1290 * by the given contours, and further subdivides this arrangement
1291 * into regions. Each region is marked "inside" if it belongs
1292 * to the polygon, according to the rule given by tess->windingRule.
1293 * Each interior region is guaranteed be monotone.
1294 */
1295 {
1296 GLUvertex *v, *vNext;
1297
1298 tess->fatalError = TOOLS_GLU_FALSE;
1299
1300 /* Each vertex defines an event for our sweep line. Start by inserting
1301 * all the vertices in a priority queue. Events are processed in
1302 * lexicographic order, ie.
1303 *
1304 * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
1305 */
1306 static_RemoveDegenerateEdges( tess );
1307 if ( !static_InitPriorityQ( tess ) ) return 0; /* if error */
1308 static_InitEdgeDict( tess );
1309
1310 /* __gl_pqSortExtractMin */
1311 while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) {
1312 for( ;; ) {
1313 vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */
1314 if( vNext == NULL || ! VertEq( vNext, v )) break;
1315
1316 /* Merge together all vertices at exactly the same location.
1317 * This is more efficient than processing them one at a time,
1318 * simplifies the code (see ConnectLeftDegenerate), and is also
1319 * important for correct handling of certain degenerate cases.
1320 * For example, suppose there are two identical edges A and B
1321 * that belong to different contours (so without this code they would
1322 * be processed by separate sweep events). Suppose another edge C
1323 * crosses A and B from above. When A is processed, we split it
1324 * at its intersection point with C. However this also splits C,
1325 * so when we insert B we may compute a slightly different
1326 * intersection point. This might leave two edges with a small
1327 * gap between them. This kind of error is especially obvious
1328 * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
1329 */
1330 vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/
1331 static_SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
1332 }
1333 static_SweepEvent( tess, v );
1334 }
1335
1336 /* Set tess->event for debugging purposes */
1337 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1338 tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
1339 DebugEvent( tess );
1340 static_DoneEdgeDict( tess );
1341 static_DonePriorityQ( tess );
1342
1343 if ( !static_RemoveDegenerateFaces( tess->mesh ) ) return 0;
1344 __gl_meshCheckMesh( tess->mesh );
1345
1346 return 1;
1347 }
1348
1349 #endif