Back to home page

EIC code displayed by LXR

 
 

    


Warning, /include/Geant4/tools/glutess/normal is written in an unsupported language. File is not indexed.

0001 // see license file for original license.
0002 
0003 #ifndef tools_glutess_normal
0004 #define tools_glutess_normal
0005 
0006 #include "_tess"
0007 
0008 /* __gl_projectPolygon( tess ) determines the polygon normal
0009  * and project vertices onto the plane of the polygon.
0010  */
0011 //void __gl_projectPolygon( GLUtesselator *tess );
0012 
0013 ////////////////////////////////////////////////////////
0014 /// inlined C code : ///////////////////////////////////
0015 ////////////////////////////////////////////////////////
0016 #include <cmath>
0017 
0018 #define Dot(u,v)        (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
0019 
0020 inline/*static*/ int static_LongAxis( GLUdouble v[3] )
0021 {
0022   int i = 0;
0023 
0024   if( GLU_ABS(v[1]) > GLU_ABS(v[0]) ) { i = 1; }
0025   if( GLU_ABS(v[2]) > GLU_ABS(v[i]) ) { i = 2; }
0026   return i;
0027 }
0028 
0029 inline/*static*/ void static_ComputeNormal( GLUtesselator *tess, GLUdouble norm[3] )
0030 {
0031   GLUvertex *v, *v1, *v2;
0032   GLUdouble c, tLen2, maxLen2;
0033   GLUdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
0034   GLUvertex *maxVert[3], *minVert[3];
0035   GLUvertex *vHead = &tess->mesh->vHead;
0036   int i;
0037 
0038   maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
0039   minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
0040   
0041   minVert[0] = 0;minVert[1] = 0;minVert[2] = 0; //G.Barrand : to quiet Coverity.
0042   maxVert[0] = 0;maxVert[1] = 0;maxVert[2] = 0; //G.Barrand : to quiet Coverity.
0043 
0044   for( v = vHead->next; v != vHead; v = v->next ) {
0045     for( i = 0; i < 3; ++i ) {
0046       c = v->coords[i];
0047       if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
0048       if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
0049     }
0050   }
0051 
0052   /* Find two vertices separated by at least 1/sqrt(3) of the maximum
0053    * distance between any two vertices
0054    */
0055   i = 0;
0056   if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
0057   if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
0058   if( minVal[i] >= maxVal[i] ) {
0059     /* All vertices are the same -- normal doesn't matter */
0060     norm[0] = 0; norm[1] = 0; norm[2] = 1;
0061     return;
0062   }
0063 
0064   /* Look for a third vertex which forms the triangle with maximum area
0065    * (Length of normal == twice the triangle area)
0066    */
0067   maxLen2 = 0;
0068   v1 = minVert[i];
0069   v2 = maxVert[i];
0070   if( !v1 || !v2 ) {norm[0] = 0; norm[1] = 0; norm[2] = 1;return;} //G.Barrand.
0071   d1[0] = v1->coords[0] - v2->coords[0];
0072   d1[1] = v1->coords[1] - v2->coords[1];
0073   d1[2] = v1->coords[2] - v2->coords[2];
0074   for( v = vHead->next; v != vHead; v = v->next ) {
0075     d2[0] = v->coords[0] - v2->coords[0];
0076     d2[1] = v->coords[1] - v2->coords[1];
0077     d2[2] = v->coords[2] - v2->coords[2];
0078     tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
0079     tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
0080     tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
0081     tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
0082     if( tLen2 > maxLen2 ) {
0083       maxLen2 = tLen2;
0084       norm[0] = tNorm[0];
0085       norm[1] = tNorm[1];
0086       norm[2] = tNorm[2];
0087     }
0088   }
0089 
0090   if( maxLen2 <= 0 ) {
0091     /* All points lie on a single line -- any decent normal will do */
0092     norm[0] = norm[1] = norm[2] = 0;
0093     norm[static_LongAxis(d1)] = 1;
0094   }
0095 }
0096 
0097 
0098 inline/*static*/ void static_CheckOrientation( GLUtesselator *tess )
0099 {
0100   GLUdouble area;
0101   GLUface *f, *fHead = &tess->mesh->fHead;
0102   GLUvertex *v, *vHead = &tess->mesh->vHead;
0103   GLUhalfEdge *e;
0104 
0105   /* When we compute the normal automatically, we choose the orientation
0106    * so that the sum of the signed areas of all contours is non-negative.
0107    */
0108   area = 0;
0109   for( f = fHead->next; f != fHead; f = f->next ) {
0110     e = f->anEdge;
0111     if( e->winding <= 0 ) continue;
0112     do {
0113       area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
0114       e = e->Lnext;
0115     } while( e != f->anEdge );
0116   }
0117   if( area < 0 ) {
0118     /* Reverse the orientation by flipping all the t-coordinates */
0119     for( v = vHead->next; v != vHead; v = v->next ) {
0120       v->t = - v->t;
0121     }
0122     tess->tUnit[0] = - tess->tUnit[0];
0123     tess->tUnit[1] = - tess->tUnit[1];
0124     tess->tUnit[2] = - tess->tUnit[2];
0125   }
0126 }
0127 
0128 #if defined(SLANTED_SWEEP)
0129 /* The "feature merging" is not intended to be complete.  There are
0130  * special cases where edges are nearly parallel to the sweep line
0131  * which are not implemented.  The algorithm should still behave
0132  * robustly (ie. produce a reasonable tesselation) in the presence
0133  * of such edges, however it may miss features which could have been
0134  * merged.  We could minimize this effect by choosing the sweep line
0135  * direction to be something unusual (ie. not parallel to one of the
0136  * coordinate axes).
0137  */
0138 #define S_UNIT_X        0.50941539564955385     /* Pre-normalized */
0139 #define S_UNIT_Y        0.86052074622010633
0140 #else
0141 #define S_UNIT_X        1.0
0142 #define S_UNIT_Y        0.0
0143 #endif
0144 
0145 /* Determine the polygon normal and project vertices onto the plane
0146  * of the polygon.
0147  */
0148 inline void __gl_projectPolygon( GLUtesselator *tess )
0149 {
0150   GLUvertex *v, *vHead = &tess->mesh->vHead;
0151   GLUdouble norm[3];
0152   GLUdouble *sUnit, *tUnit;
0153   int i, computedNormal = TOOLS_GLU_FALSE;
0154 
0155   norm[0] = tess->normal[0];
0156   norm[1] = tess->normal[1];
0157   norm[2] = tess->normal[2];
0158   if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
0159     static_ComputeNormal( tess, norm );
0160     computedNormal = TOOLS_GLU_TRUE;
0161   }
0162   sUnit = tess->sUnit;
0163   tUnit = tess->tUnit;
0164   i = static_LongAxis( norm );
0165 
0166 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
0167   /* Choose the initial sUnit vector to be approximately perpendicular
0168    * to the normal.
0169    */
0170   Normalize( norm );
0171 
0172   sUnit[i] = 0;
0173   sUnit[(i+1)%3] = S_UNIT_X;
0174   sUnit[(i+2)%3] = S_UNIT_Y;
0175 
0176   /* Now make it exactly perpendicular */
0177   w = Dot( sUnit, norm );
0178   sUnit[0] -= w * norm[0];
0179   sUnit[1] -= w * norm[1];
0180   sUnit[2] -= w * norm[2];
0181   Normalize( sUnit );
0182 
0183   /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
0184   tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
0185   tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
0186   tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
0187   Normalize( tUnit );
0188 #else
0189   /* Project perpendicular to a coordinate axis -- better numerically */
0190   sUnit[i] = 0;
0191   sUnit[(i+1)%3] = S_UNIT_X;
0192   sUnit[(i+2)%3] = S_UNIT_Y;
0193 
0194   tUnit[i] = 0;
0195   tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
0196   tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
0197 #endif
0198 
0199   /* Project the vertices onto the sweep plane */
0200   for( v = vHead->next; v != vHead; v = v->next ) {
0201     v->s = Dot( v->coords, sUnit );
0202     v->t = Dot( v->coords, tUnit );
0203   }
0204   if( computedNormal ) {
0205     static_CheckOrientation( tess );
0206   }
0207 }
0208 
0209 #endif