Back to home page

EIC code displayed by LXR

 
 

    


Warning, /include/Geant4/tools/glutess/geom is written in an unsupported language. File is not indexed.

0001 // see license file for original license.
0002 
0003 #ifndef tools_glutess_geom
0004 #define tools_glutess_geom
0005 
0006 #include "mesh"
0007 
0008 #define VertEq(u,v)     ((u)->s == (v)->s && (u)->t == (v)->t)
0009 #define VertLeq(u,v)    (((u)->s < (v)->s) || ((u)->s == (v)->s && (u)->t <= (v)->t))
0010 
0011 #define EdgeEval(u,v,w) __gl_edgeEval(u,v,w)
0012 #define EdgeSign(u,v,w) __gl_edgeSign(u,v,w)
0013 
0014 /* Versions of VertLeq, EdgeSign, EdgeEval with s and t transposed. */
0015 
0016 #define TransLeq(u,v)   (((u)->t < (v)->t) || \
0017                          ((u)->t == (v)->t && (u)->s <= (v)->s))
0018 #define TransEval(u,v,w)        __gl_transEval(u,v,w)
0019 #define TransSign(u,v,w)        __gl_transSign(u,v,w)
0020 
0021 
0022 #define EdgeGoesLeft(e)         VertLeq( (e)->Dst, (e)->Org )
0023 #define EdgeGoesRight(e)        VertLeq( (e)->Org, (e)->Dst )
0024 
0025 #define VertL1dist(u,v) (GLU_ABS(u->s - v->s) + GLU_ABS(u->t - v->t))
0026 
0027 #define VertCCW(u,v,w)  __gl_vertCCW(u,v,w)
0028 
0029 ////////////////////////////////////////////////////////
0030 /// inlined C code : ///////////////////////////////////
0031 ////////////////////////////////////////////////////////
0032 
0033 inline int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
0034 {
0035   /* Returns TOOLS_GLU_TRUE if u is lexicographically <= v. */
0036 
0037   return VertLeq( u, v );
0038 }
0039 
0040 inline GLUdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
0041 {
0042   /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
0043    * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
0044    * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
0045    * If uw is vertical (and thus passes thru v), the result is zero.
0046    *
0047    * The calculation is extremely accurate and stable, even when v
0048    * is very close to u or w.  In particular if we set v->t = 0 and
0049    * let r be the negated result (this evaluates (uw)(v->s)), then
0050    * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
0051    */
0052   GLUdouble gapL, gapR;
0053 
0054   assert( VertLeq( u, v ) && VertLeq( v, w ));
0055   
0056   gapL = v->s - u->s;
0057   gapR = w->s - v->s;
0058 
0059   if( gapL + gapR > 0 ) {
0060     if( gapL < gapR ) {
0061       return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
0062     } else {
0063       return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
0064     }
0065   }
0066   /* vertical line */
0067   return 0;
0068 }
0069 
0070 inline GLUdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
0071 {
0072   /* Returns a number whose sign matches EdgeEval(u,v,w) but which
0073    * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
0074    * as v is above, on, or below the edge uw.
0075    */
0076   GLUdouble gapL, gapR;
0077 
0078   /*
0079 #define VertLeq(u,v)    (((u)->s < (v)->s) ||                   \
0080                          ((u)->s == (v)->s && (u)->t <= (v)->t))
0081   */
0082   assert( VertLeq( u, v ) && VertLeq( v, w ));
0083   
0084   gapL = v->s - u->s;
0085   gapR = w->s - v->s;
0086 
0087   if( gapL + gapR > 0 ) {
0088     return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
0089   }
0090   /* vertical line */
0091   return 0;
0092 }
0093 
0094 
0095 /***********************************************************************
0096  * Define versions of EdgeSign, EdgeEval with s and t transposed.
0097  */
0098 
0099 inline GLUdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
0100 {
0101   /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
0102    * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
0103    * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
0104    * If uw is vertical (and thus passes thru v), the result is zero.
0105    *
0106    * The calculation is extremely accurate and stable, even when v
0107    * is very close to u or w.  In particular if we set v->s = 0 and
0108    * let r be the negated result (this evaluates (uw)(v->t)), then
0109    * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
0110    */
0111   GLUdouble gapL, gapR;
0112 
0113   assert( TransLeq( u, v ) && TransLeq( v, w ));
0114   
0115   gapL = v->t - u->t;
0116   gapR = w->t - v->t;
0117 
0118   if( gapL + gapR > 0 ) {
0119     if( gapL < gapR ) {
0120       return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
0121     } else {
0122       return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
0123     }
0124   }
0125   /* vertical line */
0126   return 0;
0127 }
0128 
0129 inline GLUdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
0130 {
0131   /* Returns a number whose sign matches TransEval(u,v,w) but which
0132    * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
0133    * as v is above, on, or below the edge uw.
0134    */
0135   GLUdouble gapL, gapR;
0136 
0137   assert( TransLeq( u, v ) && TransLeq( v, w ));
0138   
0139   gapL = v->t - u->t;
0140   gapR = w->t - v->t;
0141 
0142   if( gapL + gapR > 0 ) {
0143     return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
0144   }
0145   /* vertical line */
0146   return 0;
0147 }
0148 
0149 
0150 inline int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
0151 {
0152   /* For almost-degenerate situations, the results are not reliable.
0153    * Unless the floating-point arithmetic can be performed without
0154    * rounding errors, *any* implementation will give incorrect results
0155    * on some degenerate inputs, so the client must have some way to
0156    * handle this situation.
0157    */
0158   return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
0159 }
0160 
0161 /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
0162  * or (x+y)/2 if a==b==0.  It requires that a,b >= 0, and enforces
0163  * this in the rare case that one argument is slightly negative.
0164  * The implementation is extremely stable numerically.
0165  * In particular it guarantees that the result r satisfies
0166  * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
0167  * even when a and b differ greatly in magnitude.
0168  */
0169 #define Interpolate(a,x,b,y)                    \
0170   (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b,            \
0171   ((a <= b) ? ((b == 0) ? ((x+y) / 2)                   \
0172                         : (x + (y-x) * (a/(a+b))))      \
0173             : (y + (x-y) * (b/(a+b)))))
0174 
0175 //#define Swap(a,b)     if (1) { GLUvertex *t = a; a = b; b = t; } else
0176 #define Swap(a,b)       do { GLUvertex *t = a; a = b; b = t; } while(false)
0177 
0178 inline void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
0179                          GLUvertex *o2, GLUvertex *d2,
0180                          GLUvertex *v )
0181 /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
0182  * The computed point is guaranteed to lie in the intersection of the
0183  * bounding rectangles defined by each edge.
0184  */
0185 {
0186   GLUdouble z1, z2;
0187 
0188   /* This is certainly not the most efficient way to find the intersection
0189    * of two line segments, but it is very numerically stable.
0190    *
0191    * Strategy: find the two middle vertices in the VertLeq ordering,
0192    * and interpolate the intersection s-value from these.  Then repeat
0193    * using the TransLeq ordering to find the intersection t-value.
0194    */
0195 
0196   if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
0197   if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
0198   if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
0199 
0200   if( ! VertLeq( o2, d1 )) {
0201     /* Technically, no intersection -- do our best */
0202     v->s = (o2->s + d1->s) / 2;
0203   } else if( VertLeq( d1, d2 )) {
0204     /* Interpolate between o2 and d1 */
0205     z1 = EdgeEval( o1, o2, d1 );
0206     z2 = EdgeEval( o2, d1, d2 );
0207     if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
0208     v->s = Interpolate( z1, o2->s, z2, d1->s );
0209   } else {
0210     /* Interpolate between o2 and d2 */
0211     z1 = EdgeSign( o1, o2, d1 );
0212     z2 = -EdgeSign( o1, d2, d1 );
0213     if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
0214     v->s = Interpolate( z1, o2->s, z2, d2->s );
0215   }
0216 
0217   /* Now repeat the process for t */
0218 
0219   if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
0220   if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
0221   if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
0222 
0223   if( ! TransLeq( o2, d1 )) {
0224     /* Technically, no intersection -- do our best */
0225     v->t = (o2->t + d1->t) / 2;
0226   } else if( TransLeq( d1, d2 )) {
0227     /* Interpolate between o2 and d1 */
0228     z1 = TransEval( o1, o2, d1 );
0229     z2 = TransEval( o2, d1, d2 );
0230     if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
0231     v->t = Interpolate( z1, o2->t, z2, d1->t );
0232   } else {
0233     /* Interpolate between o2 and d2 */
0234     z1 = TransSign( o1, o2, d1 );
0235     z2 = -TransSign( o1, d2, d1 );
0236     if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
0237     v->t = Interpolate( z1, o2->t, z2, d2->t );
0238   }
0239 }
0240 
0241 #endif