Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-09-18 09:13:52

0001 //
0002 // MIT License
0003 // Copyright (c) 2020 Jonathan R. Madsen
0004 // Permission is hereby granted, free of charge, to any person obtaining a copy
0005 // of this software and associated documentation files (the "Software"), to deal
0006 // in the Software without restriction, including without limitation the rights
0007 // to use, copy, modify, merge, publish, distribute, sublicense, and
0008 // copies of the Software, and to permit persons to whom the Software is
0009 // furnished to do so, subject to the following conditions:
0010 // The above copyright notice and this permission notice shall be included in
0011 // all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED
0012 // "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
0013 // LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
0014 // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
0015 // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0016 // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
0017 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
0018 //
0019 // ---------------------------------------------------------------
0020 // Tasking class header file
0021 //
0022 // Class Description:
0023 //
0024 // This file creates a class for an efficient thread-pool that
0025 // accepts work in the form of tasks.
0026 //
0027 // ---------------------------------------------------------------
0028 // Author: Jonathan Madsen (Feb 13th 2018)
0029 // ---------------------------------------------------------------
0030 
0031 #pragma once
0032 
0033 #include "PTL/AutoLock.hh"
0034 #ifndef G4GMAKE
0035 #include "PTL/Config.hh"
0036 #endif
0037 #include "PTL/ThreadData.hh"
0038 #include "PTL/Threading.hh"
0039 #include "PTL/Types.hh"
0040 #include "PTL/VTask.hh"
0041 #include "PTL/VUserTaskQueue.hh"
0042 
0043 #if defined(PTL_USE_TBB)
0044 #    if !defined(TBB_SUPPRESS_DEPRECATED_MESSAGES)
0045 #        define TBB_SUPPRESS_DEPRECATED_MESSAGES 1
0046 #    endif
0047 #    if !defined(TBB_PREVIEW_GLOBAL_CONTROL)
0048 #        define TBB_PREVIEW_GLOBAL_CONTROL 1
0049 #    endif
0050 #    include <tbb/global_control.h>
0051 #    include <tbb/task_arena.h>
0052 #    include <tbb/task_group.h>
0053 #endif
0054 
0055 #include <algorithm>
0056 #include <atomic>
0057 #include <chrono>
0058 #include <cstdint>
0059 #include <cstdlib>
0060 #include <deque>
0061 #include <functional>
0062 #include <iostream>
0063 #include <map>
0064 #include <memory>
0065 #include <mutex>  // IWYU pragma: keep
0066 #include <set>
0067 #include <thread>
0068 #include <type_traits>  // IWYU pragma: keep
0069 #include <unordered_map>
0070 #include <utility>
0071 #include <vector>
0072 
0073 namespace PTL
0074 {
0075 namespace thread_pool
0076 {
0077 namespace state
0078 {
0079 static const short STARTED = 0;
0080 static const short PARTIAL = 1;
0081 static const short STOPPED = 2;
0082 static const short NONINIT = 3;
0083 
0084 }  // namespace state
0085 }  // namespace thread_pool
0086 
0087 class ThreadPool
0088 {
0089 public:
0090     template <typename KeyT, typename MappedT, typename HashT = KeyT>
0091     using uomap = std::unordered_map<KeyT, MappedT, std::hash<HashT>>;
0092 
0093     // pod-types
0094     using size_type        = size_t;
0095     using task_count_type  = std::shared_ptr<std::atomic_uintmax_t>;
0096     using atomic_int_type  = std::shared_ptr<std::atomic_uintmax_t>;
0097     using pool_state_type  = std::shared_ptr<std::atomic_short>;
0098     using atomic_bool_type = std::shared_ptr<std::atomic_bool>;
0099     // objects
0100     using task_type    = VTask;
0101     using lock_t       = std::shared_ptr<Mutex>;
0102     using condition_t  = std::shared_ptr<Condition>;
0103     using task_pointer = std::shared_ptr<task_type>;
0104     using task_queue_t = VUserTaskQueue;
0105     // containers
0106     using thread_list_t      = std::deque<ThreadId>;
0107     using bool_list_t        = std::vector<bool>;
0108     using thread_id_map_t    = std::map<ThreadId, uintmax_t>;
0109     using thread_index_map_t = std::map<uintmax_t, ThreadId>;
0110     using thread_vec_t       = std::vector<Thread>;
0111     using thread_data_t      = std::vector<std::shared_ptr<ThreadData>>;
0112     // functions
0113     using initialize_func_t = std::function<void()>;
0114     using finalize_func_t   = std::function<void()>;
0115     using affinity_func_t   = std::function<intmax_t(intmax_t)>;
0116 
0117     static affinity_func_t& affinity_functor()
0118     {
0119         static affinity_func_t _v = [](intmax_t) {
0120             static std::atomic<intmax_t> assigned;
0121             intmax_t                     _assign = assigned++;
0122             return _assign % Thread::hardware_concurrency();
0123         };
0124         return _v;
0125     }
0126 
0127     static initialize_func_t& initialization_functor()
0128     {
0129         static initialize_func_t _v = []() {};
0130         return _v;
0131     }
0132 
0133     static finalize_func_t& finalization_functor()
0134     {
0135         static finalize_func_t _v = []() {};
0136         return _v;
0137     }
0138 
0139     struct Config
0140     {
0141         bool              init         = true;
0142         bool              use_tbb      = false;
0143         bool              use_affinity = false;
0144         int               verbose      = 0;
0145         int               priority     = 0;
0146         size_type         pool_size    = f_default_pool_size();
0147         VUserTaskQueue*   task_queue   = nullptr;
0148         affinity_func_t   set_affinity = affinity_functor();
0149         initialize_func_t initializer  = initialization_functor();
0150         finalize_func_t   finalizer    = finalization_functor();
0151     };
0152 
0153 public:
0154     // Constructor and Destructors
0155     explicit ThreadPool(const Config&);
0156     ~ThreadPool();
0157     ThreadPool(const ThreadPool&) = delete;
0158     ThreadPool(ThreadPool&&)      = default;
0159     ThreadPool& operator=(const ThreadPool&) = delete;
0160     ThreadPool& operator=(ThreadPool&&) = default;
0161 
0162 public:
0163     // Public functions
0164     size_type initialize_threadpool(size_type);  // start the threads
0165     size_type destroy_threadpool();              // destroy the threads
0166     size_type stop_thread();
0167 
0168     template <typename FuncT>
0169     void execute_on_all_threads(FuncT&& _func);
0170 
0171     template <typename FuncT>
0172     void execute_on_specific_threads(const std::set<std::thread::id>& _tid,
0173                                      FuncT&&                          _func);
0174 
0175     task_queue_t*  get_queue() const { return m_task_queue; }
0176     task_queue_t*& get_valid_queue(task_queue_t*&) const;
0177 
0178     bool is_tbb_threadpool() const { return m_tbb_tp; }
0179 
0180 public:
0181     /// set the default pool size
0182     static void set_default_size(size_type _v) { f_default_pool_size() = _v; }
0183 
0184     /// get the default pool size
0185     static size_type get_default_size() { return f_default_pool_size(); }
0186 
0187 public:
0188     // add tasks for threads to process
0189     size_type add_task(task_pointer&& task, int bin = -1);
0190     // size_type add_thread_task(ThreadId id, task_pointer&& task);
0191     // add a generic container with iterator
0192     template <typename ListT>
0193     size_type add_tasks(ListT&);
0194 
0195     Thread* get_thread(size_type _n) const;
0196     Thread* get_thread(std::thread::id id) const;
0197 
0198     // only relevant when compiled with PTL_USE_TBB
0199     static tbb_global_control_t*& tbb_global_control();
0200 
0201     void set_initialization(initialize_func_t f) { m_init_func = std::move(f); }
0202     void set_finalization(finalize_func_t f) { m_fini_func = std::move(f); }
0203 
0204     void reset_initialization()
0205     {
0206         m_init_func = []() {};
0207     }
0208     void reset_finalization()
0209     {
0210         m_fini_func = []() {};
0211     }
0212 
0213 public:
0214     // get the pool state
0215     const pool_state_type& state() const { return m_pool_state; }
0216     // see how many main task threads there are
0217     size_type size() const { return m_pool_size; }
0218     // set the thread pool size
0219     void resize(size_type _n);
0220     // affinity assigns threads to cores, assignment at constructor
0221     bool using_affinity() const { return m_use_affinity; }
0222     bool is_alive() { return m_alive_flag->load(); }
0223     void notify();
0224     void notify_all();
0225     void notify(size_type);
0226     bool is_initialized() const;
0227     int  get_active_threads_count() const { return (int)m_thread_awake->load(); }
0228 
0229     void set_affinity(affinity_func_t f) { m_affinity_func = std::move(f); }
0230     void set_affinity(intmax_t i, Thread&) const;
0231     void set_priority(int _prio, Thread&) const;
0232 
0233     void set_verbose(int n) { m_verbose = n; }
0234     int  get_verbose() const { return m_verbose; }
0235     bool is_main() const { return ThisThread::get_id() == m_main_tid; }
0236 
0237     tbb_task_arena_t* get_task_arena();
0238 
0239 public:
0240     // read FORCE_NUM_THREADS environment variable
0241     static const thread_id_map_t& get_thread_ids();
0242     static uintmax_t              get_thread_id(ThreadId);
0243     static uintmax_t              get_this_thread_id();
0244     static uintmax_t              add_thread_id(ThreadId = ThisThread::get_id());
0245 
0246 private:
0247     void execute_thread(VUserTaskQueue*);  // function thread sits in
0248     int  insert(task_pointer&&, int = -1);
0249     int  run_on_this(task_pointer&&);
0250 
0251 private:
0252     // called in THREAD INIT
0253     static void start_thread(ThreadPool*, thread_data_t*, intmax_t = -1);
0254 
0255     void record_entry();
0256     void record_exit();
0257 
0258 private:
0259     // Private variables
0260     // random
0261     bool             m_use_affinity      = false;
0262     bool             m_tbb_tp            = false;
0263     bool             m_delete_task_queue = false;
0264     int              m_verbose           = 0;
0265     int              m_priority          = 0;
0266     size_type        m_pool_size         = 0;
0267     ThreadId         m_main_tid          = ThisThread::get_id();
0268     atomic_bool_type m_alive_flag        = std::make_shared<std::atomic_bool>(false);
0269     pool_state_type  m_pool_state        = std::make_shared<std::atomic_short>(0);
0270     atomic_int_type  m_thread_awake      = std::make_shared<std::atomic_uintmax_t>(0);
0271     atomic_int_type  m_thread_active     = std::make_shared<std::atomic_uintmax_t>(0);
0272 
0273     // locks
0274     lock_t m_task_lock = std::make_shared<Mutex>();
0275     // conditions
0276     condition_t m_task_cond = std::make_shared<Condition>();
0277 
0278     // containers
0279     bool_list_t   m_is_joined    = {};  // join list
0280     bool_list_t   m_is_stopped   = {};  // lets thread know to stop
0281     thread_list_t m_main_threads = {};  // storage for active threads
0282     thread_list_t m_stop_threads = {};  // storage for stopped threads
0283     thread_vec_t  m_threads      = {};
0284     thread_data_t m_thread_data  = {};
0285 
0286     // task queue
0287     task_queue_t*     m_task_queue     = nullptr;
0288     tbb_task_arena_t* m_tbb_task_arena = nullptr;
0289     tbb_task_group_t* m_tbb_task_group = nullptr;
0290 
0291     // functions
0292     initialize_func_t m_init_func     = initialization_functor();
0293     finalize_func_t   m_fini_func     = finalization_functor();
0294     affinity_func_t   m_affinity_func = affinity_functor();
0295 
0296 private:
0297     static size_type&       f_default_pool_size();
0298     static thread_id_map_t& f_thread_ids();
0299 };
0300 
0301 //--------------------------------------------------------------------------------------//
0302 inline void
0303 ThreadPool::notify()
0304 {
0305     // wake up one thread that is waiting for a task to be available
0306     if(m_thread_awake->load() < m_pool_size)
0307     {
0308         AutoLock l(*m_task_lock);
0309         m_task_cond->notify_one();
0310     }
0311 }
0312 //--------------------------------------------------------------------------------------//
0313 inline void
0314 ThreadPool::notify_all()
0315 {
0316     // wake all threads
0317     AutoLock l(*m_task_lock);
0318     m_task_cond->notify_all();
0319 }
0320 //--------------------------------------------------------------------------------------//
0321 inline void
0322 ThreadPool::notify(size_type ntasks)
0323 {
0324     if(ntasks == 0)
0325         return;
0326 
0327     // wake up as many threads that tasks just added
0328     if(m_thread_awake->load() < m_pool_size)
0329     {
0330         AutoLock l(*m_task_lock);
0331         if(ntasks < this->size())
0332         {
0333             for(size_type i = 0; i < ntasks; ++i)
0334                 m_task_cond->notify_one();
0335         }
0336         else
0337         {
0338             m_task_cond->notify_all();
0339         }
0340     }
0341 }
0342 //--------------------------------------------------------------------------------------//
0343 // local function for getting the tbb task scheduler
0344 inline tbb_global_control_t*&
0345 ThreadPool::tbb_global_control()
0346 {
0347     static thread_local tbb_global_control_t* _instance = nullptr;
0348     return _instance;
0349 }
0350 //--------------------------------------------------------------------------------------//
0351 // task arena
0352 inline tbb_task_arena_t*
0353 ThreadPool::get_task_arena()
0354 {
0355 #if defined(PTL_USE_TBB)
0356     // create a task arena
0357     if(!m_tbb_task_arena)
0358     {
0359         auto _sz = (tbb_global_control())
0360                        ? tbb_global_control()->active_value(
0361                              tbb::global_control::max_allowed_parallelism)
0362                        : size();
0363         m_tbb_task_arena = new tbb_task_arena_t(::tbb::task_arena::attach{});
0364         m_tbb_task_arena->initialize(_sz, 1);
0365     }
0366 #else
0367     if(!m_tbb_task_arena)
0368         m_tbb_task_arena = new tbb_task_arena_t{};
0369 #endif
0370     return m_tbb_task_arena;
0371 }
0372 //--------------------------------------------------------------------------------------//
0373 inline void
0374 ThreadPool::resize(size_type _n)
0375 {
0376     initialize_threadpool(_n);
0377     if(m_task_queue)
0378         m_task_queue->resize(static_cast<intmax_t>(_n));
0379 }
0380 //--------------------------------------------------------------------------------------//
0381 inline int
0382 ThreadPool::run_on_this(task_pointer&& _task)
0383 {
0384     auto&& _func = [_task]() { (*_task)(); };
0385 
0386     if(m_tbb_tp && m_tbb_task_group)
0387     {
0388         auto* _arena = get_task_arena();
0389         _arena->execute([this, _func]() { this->m_tbb_task_group->run(_func); });
0390     }
0391     else
0392     {
0393         _func();
0394     }
0395     // return the number of tasks added to task-list
0396     return 0;
0397 }
0398 //--------------------------------------------------------------------------------------//
0399 inline int
0400 ThreadPool::insert(task_pointer&& task, int bin)
0401 {
0402     static thread_local ThreadData* _data = ThreadData::GetInstance();
0403 
0404     // pass the task to the queue
0405     auto ibin = get_valid_queue(m_task_queue)->InsertTask(std::move(task), _data, bin);
0406     notify();
0407     return (int)ibin;
0408 }
0409 //--------------------------------------------------------------------------------------//
0410 inline ThreadPool::size_type
0411 ThreadPool::add_task(task_pointer&& task, int bin)
0412 {
0413     // if not native (i.e. TBB) or we haven't built thread-pool, just execute
0414     if(m_tbb_tp || !task->is_native_task() || !m_alive_flag->load())
0415         return static_cast<size_type>(run_on_this(std::move(task)));
0416 
0417     return static_cast<size_type>(insert(std::move(task), bin));
0418 }
0419 //--------------------------------------------------------------------------------------//
0420 template <typename ListT>
0421 inline ThreadPool::size_type
0422 ThreadPool::add_tasks(ListT& c)
0423 {
0424     if(!m_alive_flag)  // if we haven't built thread-pool, just execute
0425     {
0426         for(auto& itr : c)
0427             run(itr);
0428         c.clear();
0429         return 0;
0430     }
0431 
0432     // TODO: put a limit on how many tasks can be added at most
0433     auto c_size = c.size();
0434     for(auto& itr : c)
0435     {
0436         if(!itr->is_native_task())
0437             --c_size;
0438         else
0439         {
0440             //++(m_task_queue);
0441             get_valid_queue(m_task_queue)->InsertTask(itr);
0442         }
0443     }
0444     c.clear();
0445 
0446     // notify sleeping threads
0447     notify(c_size);
0448 
0449     return c_size;
0450 }
0451 //--------------------------------------------------------------------------------------//
0452 template <typename FuncT>
0453 inline void
0454 ThreadPool::execute_on_all_threads(FuncT&& _func)
0455 {
0456     if(m_tbb_tp && m_tbb_task_group)
0457     {
0458 #if defined(PTL_USE_TBB)
0459         // TBB lazily activates threads to process tasks and the main thread
0460         // participates in processing the tasks so getting a specific
0461         // function to execute only on the worker threads requires some trickery
0462         //
0463         std::set<std::thread::id> _first{};
0464         Mutex                     _mutex{};
0465         // init function which executes function and returns 1 only once
0466         auto _init = [&]() {
0467             int _once = 0;
0468             _mutex.lock();
0469             if(_first.find(std::this_thread::get_id()) == _first.end())
0470             {
0471                 // we need to reset this thread-local static for multiple invocations
0472                 // of the same template instantiation
0473                 _once = 1;
0474                 _first.insert(std::this_thread::get_id());
0475             }
0476             _mutex.unlock();
0477             if(_once != 0)
0478             {
0479                 _func();
0480                 return 1;
0481             }
0482             return 0;
0483         };
0484         // this will collect the number of threads which have
0485         // executed the _init function above
0486         std::atomic<size_t> _total_init{ 0 };
0487         // max parallelism by TBB
0488         size_t _maxp = tbb_global_control()->active_value(
0489             tbb::global_control::max_allowed_parallelism);
0490         // create a task arean
0491         auto* _arena = get_task_arena();
0492         // size of the thread-pool
0493         size_t _sz = size();
0494         // number of cores
0495         size_t _ncore = GetNumberOfCores();
0496         // maximum depth for recursion
0497         size_t _dmax = std::max<size_t>(_ncore, 8);
0498         // how many threads we need to initialize
0499         size_t _num = std::min(_maxp, std::min(_sz, _ncore));
0500         // this is the task passed to the task-group
0501         std::function<void()> _init_task;
0502         _init_task = [&]() {
0503             add_thread_id();
0504             static thread_local size_type _depth = 0;
0505             int                           _ret   = 0;
0506             // don't let the main thread execute the function
0507             if(!is_main())
0508             {
0509                 // execute the function
0510                 _ret = _init();
0511                 // add the result
0512                 _total_init += _ret;
0513             }
0514             // if the function did not return anything, recursively execute
0515             // two more tasks
0516             ++_depth;
0517             if(_ret == 0 && _depth < _dmax && _total_init.load() < _num)
0518             {
0519                 tbb::task_group tg{};
0520                 tg.run([&]() { _init_task(); });
0521                 tg.run([&]() { _init_task(); });
0522                 ThisThread::sleep_for(std::chrono::milliseconds{ 1 });
0523                 tg.wait();
0524             }
0525             --_depth;
0526         };
0527 
0528         // TBB won't oversubscribe so we need to limit by ncores - 1
0529         size_t nitr        = 0;
0530         auto   _fname      = __FUNCTION__;
0531         auto   _write_info = [&]() {
0532             std::cout << "[" << _fname << "]> Total initialized: " << _total_init
0533                       << ", expected: " << _num << ", max-parallel: " << _maxp
0534                       << ", size: " << _sz << ", ncore: " << _ncore << std::endl;
0535         };
0536         while(_total_init < _num)
0537         {
0538             auto _n = 2 * _num;
0539             while(--_n > 0)
0540             {
0541                 _arena->execute(
0542                     [&]() { m_tbb_task_group->run([&]() { _init_task(); }); });
0543             }
0544             _arena->execute([&]() { m_tbb_task_group->wait(); });
0545             // don't loop infinitely but use a strict condition
0546             if(nitr++ > 2 * (_num + 1) && (_total_init - 1) == _num)
0547             {
0548                 _write_info();
0549                 break;
0550             }
0551             // at this point we need to exit
0552             if(nitr > 4 * (_ncore + 1))
0553             {
0554                 _write_info();
0555                 break;
0556             }
0557         }
0558         if(get_verbose() > 3)
0559             _write_info();
0560 #endif
0561     }
0562     else if(get_queue())
0563     {
0564         get_queue()->ExecuteOnAllThreads(this, std::forward<FuncT>(_func));
0565     }
0566 }
0567 
0568 //--------------------------------------------------------------------------------------//
0569 
0570 template <typename FuncT>
0571 inline void
0572 ThreadPool::execute_on_specific_threads(const std::set<std::thread::id>& _tids,
0573                                         FuncT&&                          _func)
0574 {
0575     if(m_tbb_tp && m_tbb_task_group)
0576     {
0577 #if defined(PTL_USE_TBB)
0578         // TBB lazily activates threads to process tasks and the main thread
0579         // participates in processing the tasks so getting a specific
0580         // function to execute only on the worker threads requires some trickery
0581         //
0582         std::set<std::thread::id> _first{};
0583         Mutex                     _mutex{};
0584         // init function which executes function and returns 1 only once
0585         auto _exec = [&]() {
0586             int _once = 0;
0587             _mutex.lock();
0588             if(_first.find(std::this_thread::get_id()) == _first.end())
0589             {
0590                 // we need to reset this thread-local static for multiple invocations
0591                 // of the same template instantiation
0592                 _once = 1;
0593                 _first.insert(std::this_thread::get_id());
0594             }
0595             _mutex.unlock();
0596             if(_once != 0)
0597             {
0598                 _func();
0599                 return 1;
0600             }
0601             return 0;
0602         };
0603         // this will collect the number of threads which have
0604         // executed the _exec function above
0605         std::atomic<size_t> _total_exec{ 0 };
0606         // number of cores
0607         size_t _ncore = GetNumberOfCores();
0608         // maximum depth for recursion
0609         size_t _dmax = std::max<size_t>(_ncore, 8);
0610         // how many threads we need to initialize
0611         size_t _num = _tids.size();
0612         // create a task arena
0613         auto* _arena = get_task_arena();
0614         // this is the task passed to the task-group
0615         std::function<void()> _exec_task;
0616         _exec_task = [&]() {
0617             add_thread_id();
0618             static thread_local size_type _depth    = 0;
0619             int                           _ret      = 0;
0620             auto                          _this_tid = std::this_thread::get_id();
0621             // don't let the main thread execute the function
0622             if(_tids.count(_this_tid) > 0)
0623             {
0624                 // execute the function
0625                 _ret = _exec();
0626                 // add the result
0627                 _total_exec += _ret;
0628             }
0629             // if the function did not return anything, recursively execute
0630             // two more tasks
0631             ++_depth;
0632             if(_ret == 0 && _depth < _dmax && _total_exec.load() < _num)
0633             {
0634                 tbb::task_group tg{};
0635                 tg.run([&]() { _exec_task(); });
0636                 tg.run([&]() { _exec_task(); });
0637                 ThisThread::sleep_for(std::chrono::milliseconds{ 1 });
0638                 tg.wait();
0639             }
0640             --_depth;
0641         };
0642 
0643         // TBB won't oversubscribe so we need to limit by ncores - 1
0644         size_t nitr        = 0;
0645         auto   _fname      = __FUNCTION__;
0646         auto   _write_info = [&]() {
0647             std::cout << "[" << _fname << "]> Total executed: " << _total_exec
0648                       << ", expected: " << _num << ", size: " << size() << std::endl;
0649         };
0650         while(_total_exec < _num)
0651         {
0652             auto _n = 2 * _num;
0653             while(--_n > 0)
0654             {
0655                 _arena->execute(
0656                     [&]() { m_tbb_task_group->run([&]() { _exec_task(); }); });
0657             }
0658             _arena->execute([&]() { m_tbb_task_group->wait(); });
0659             // don't loop infinitely but use a strict condition
0660             if(nitr++ > 2 * (_num + 1) && (_total_exec - 1) == _num)
0661             {
0662                 _write_info();
0663                 break;
0664             }
0665             // at this point we need to exit
0666             if(nitr > 8 * (_num + 1))
0667             {
0668                 _write_info();
0669                 break;
0670             }
0671         }
0672         if(get_verbose() > 3)
0673             _write_info();
0674 #endif
0675     }
0676     else if(get_queue())
0677     {
0678         get_queue()->ExecuteOnSpecificThreads(_tids, this, std::forward<FuncT>(_func));
0679     }
0680 }
0681 
0682 //======================================================================================//
0683 
0684 }  // namespace PTL