|
||||
File indexing completed on 2025-01-18 09:59:30
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // 0027 // 0028 // 0029 // --------------------------------------------------------------- 0030 // GEANT 4 class header file 0031 // 0032 // GVFlashHomoShowerTuning 0033 // 0034 // Class description: 0035 // 0036 // Tuning class for GFlash homogeneous shower parameterisation. 0037 // Definitions: 0038 // <t>: shower center of gravity 0039 // T: Depth at shower maximum 0040 // Ec: Critical energy 0041 // X0: Radiation length 0042 // y = E/Ec 0043 // 0044 // Homogeneous media: 0045 // Average shower profile 0046 // (1/E)(dE(t)/dt) = f(t) 0047 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha) 0048 // where Gamma is the Gamma function 0049 // 0050 // <t> = alpha/beta 0051 // T = (alpha-1)/beta 0052 // and 0053 // T = ln(y) + t1 0054 // alpha = a1+(a2+a3/Z)ln(y) 0055 0056 // Author: J.P. Wellisch - October 2004 0057 // 0058 // Usage: use new statement for new instance of class, do not delete. 0059 // The instance of class will be deleted in 0060 // GFlashHomoShowerParameterisation Destructor. 0061 0062 //--------------------------------------------------------------- 0063 #ifndef GVFlashHomoShowerTuning_hh 0064 #define GVFlashHomoShowerTuning_hh 0065 0066 #include "G4Types.hh" 0067 0068 class GVFlashHomoShowerTuning 0069 { 0070 public: 0071 GVFlashHomoShowerTuning() {} 0072 virtual ~GVFlashHomoShowerTuning() {} 0073 0074 public: // with description 0075 0076 virtual G4double ParAveT1(){ return -0.812; } // t1 0077 virtual G4double ParAveA1(){ return 0.81; } // a1 0078 virtual G4double ParAveA2(){ return 0.458; } // a2 0079 virtual G4double ParAveA3(){ return 2.26; } // a3 0080 0081 virtual G4double ParSigLogT1(){ return -1.4; } // t1 0082 virtual G4double ParSigLogT2(){ return 1.26;} // t2 0083 // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y)) 0084 0085 virtual G4double ParSigLogA1(){ return -0.58; } // a1 0086 virtual G4double ParSigLogA2(){ return 0.86; } // a2 0087 // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y)) 0088 0089 virtual G4double ParRho1(){ return 0.705; } // r1 0090 virtual G4double ParRho2(){ return -0.023; } // r2 0091 // Correlation(ln(T),ln(alpha))=r1+r2*ln(y) 0092 0093 // Radial profiles 0094 // f(r) := (1/dE(t))(dE(t,r)/dr) 0095 // Ansatz: 0096 // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2, 0097 // 0<p<1 0098 0099 virtual G4double ParRC1(){ return 0.0251; } // c1 0100 virtual G4double ParRC2(){ return 0.00319; } // c2 0101 virtual G4double ParRC3(){ return 0.1162; } // c3 0102 virtual G4double ParRC4(){ return -0.000381;} // c4 0103 // Rc (t/T)= z1 +z2*t/T 0104 // z1 = c1+c2*ln(E/GeV) 0105 // z2 = c3+c4*Z 0106 0107 virtual G4double ParRT1(){ return 0.659; } // t1 0108 virtual G4double ParRT2(){ return -0.00309;} // t2 0109 virtual G4double ParRT3(){ return 0.645; } // k2 0110 virtual G4double ParRT4(){ return -2.59; } // k3 0111 virtual G4double ParRT5(){ return 0.3585; } // t5 0112 virtual G4double ParRT6(){ return 0.0412; } // t6 0113 // Rt (t/T)= k1*(std::exp(k3*(t/T-k2))+std::exp(k4*(t/T-k2))) 0114 // k1 = t1+t2*Z 0115 // k4 = t5+t6*ln(E/GeV) 0116 0117 virtual G4double ParWC1(){ return 2.632; } // c1 0118 virtual G4double ParWC2(){ return -0.00094;} // c2 0119 virtual G4double ParWC3(){ return 0.401; } // c3 0120 virtual G4double ParWC4(){ return 0.00187; } // c4 0121 virtual G4double ParWC5(){ return 1.313; } // c5 0122 virtual G4double ParWC6(){ return -0.0686; } // c6 0123 // p(t/T) = p1*std::exp((p2-t/T)/p3 - std::exp((p2-t/T)/p3)) 0124 // p1 = c1+c2*Z 0125 // p2 = c3+c4*Z 0126 // p3 = c5 + c6*ln(E/GeV) 0127 0128 virtual G4double ParSpotN1(){ return 93.; } // n1 0129 virtual G4double ParSpotN2(){ return 0.876;} // n2 0130 // Fluctuations on radial profiles through number of spots 0131 // The total number of spots needed for a shower is 0132 // Ns = n1*ln(Z)(E/GeV)**n2 0133 0134 // The number of spots per longitudinal interval is: 0135 // (1/Ns)(dNs(t)/dt) = f(t) 0136 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha) 0137 // <t> = alpha_s/beta_s 0138 // Ts = (alpha_s-1)/beta_s 0139 // and 0140 // Ts = T*(t1+t2*Z) 0141 // alpha_s = alpha*(a1+a2*Z) 0142 0143 virtual G4double ParSpotT1(){ return 0.698; } // t1 0144 virtual G4double ParSpotT2(){ return 0.00212;} // t2 0145 0146 virtual G4double ParSpotA1(){ return 0.639; } //a1 0147 virtual G4double ParSpotA2(){ return 0.00334;} //a2 0148 0149 }; 0150 0151 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |